设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(7),4323-4334
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.117459
äkÓ ÜŠ*Ñ +
Ó .
¾¾¾ÿÿÿ§§§ŠŠŠ###lll
∗
=²nóŒÆ,nÆ§A^êÆX,[‹=²
ÂvFϵ2022c66F¶¹^Fϵ2022c71F¶uÙFϵ2022c78F
Á‡
)Ô«+m'X•)p¨)!M)!¿ÚÓ o«Ä'X§Ù¥Ó 'X3)Ô.¥´7
ØŒ""Ó ö† ƒmÐyÑJÓ†<;y–§ù‡Nج•Ï½3,˜«•§
´ŠXk|ug¤•/•£Ä§dž«+¥•3* Ñy–"Ïd§Äuõ«ÏƒK•§
©ïá˜‡äkÓ ööÜŠ*Ñ +Ó ."Äk§3.Ø•Ä*Ñe§?Ø
¤ k²ï:•35Ú-½5"Ùg§ÏLnØ*Ѭ—.Ø-½"•§ÏLê
Š[yþã©Û(J"
'…c
*ѧ +§öÜŠ
DynamicBehaviorsofanDiffusion
IntraguildPredationModelwith
HuntingCooperation
YanFeng,XinyouMeng
∗
AppliedMathematicsDepartment,SchoolofScience,LanzhouUniversityofTechnology,Lanzhou
Gansu
Received:Jun.6
th
,2021;accepted:Jul.1
st
,2022;published:Jul.8
th
,2022
∗ÏÕŠö"
©ÙÚ^:¾ÿ,Š#l.äkÓ ÜŠ*Ñ +Ó .[J].A^êÆ?Ð,2022,11(7):4323-4334.
DOI:10.12677/aam.2022.117459
¾ÿ§Š#l
Abstract
Therelationshipsamongspeciesincludemutualism,parasitism,competitionandpre-
dation,amongwhichpredationisindispensableinthebiologicalworld.Inthisway,
individualswillnotbefixedinacertainareaforalongtime,butmovetoaplace
conducive to their own growth.At this time, there is aphenomenon of diffusion in the
population.Therefore,basedontheinfluenceofmanyfactors,adiffusionintraguild
predationmodelwithhuntingcooperationisestablishedinthispaper.Firstly,the
existenceandstabilityofallequilibriumpointsarediscussedwithoutconsideringd-
iffusion.Secondly,wegetthetheorythatdiffusionwillleadtotheinstabilityofthe
model.Finally,theresultsareverifiedbynumericalsimulation.
Keywords
Diffusion,Intraguild,HuntingCooperation
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
)Ô)• †„û†‚¸ƒm'X—ØŒ©.˜•¡,)Ô)·¹ÄÏL¤?‚¸
ÔŸ!Uþ!&EÚÑE¤,l6±)•;,˜•¡,)Ô)• Gqžž••/K•X‚¸
•3G¹†uÐCz.1920c“, Lotka[1]ÚVolterra[2] ü ÆöJÑ²;Ó ö- ..
•d,Ó ö† ƒmƒpŠ^¤•êÆ.Ú)ÔÆ+•˜‡-‡‘K.‘XÓ ö- 
.3«+)Æ¥2•A^,NõÆö3²;Ó ö- .Ä:þ‰ÑNõïÄ
¤J[3–6].Ó ö- .ÄåÆ1•3)Ô.¥®²¤•˜‡é-‡ïÄ••.
3)XÚ¥,ü‡«+ƒm'XŒUQ´Ó 'Xq´¿'X[7,8].•d,)Æ[
Polis,MyersÚHolt[9]ÄgJÑ +Ó (IGP).Vg.T.£ãü‡Ô«ƒp¿
˜«]Óžq´Ó 'X,•{ü/ª´dn‡Ô«|¤:•]! +S Ú
+SÓ ö. +S •±•]• , +SÓ ö± +S Ú•]•
.HoltÚPolis[10]Äg3êÆ.¥£ã +Ó .Vg,T./ªXe:













dR
dt
= R(ϕ(R)−ρ
1
(R,N,P)N−ρ
2
(R,N,P)P),
dN
dt
= N(e
1
ρ
1
(R,N,P)R−ρ
3
(R,N,P)P−m
1
),
dP
dt
= P(e
2
ρ
2
(R,N,P)R+e
3
ρ
3
(R,N,P)N−m
2
),
(1.1)
DOI:10.12677/aam.2022.1174594324A^êÆ?Ð
¾ÿ§Š#l
Ù¥R(t),N(t) ÚP(t) ©OL«•]! +S Ú +SÓ ö—Ý. ρ
2
(R,N,P)R
Úρ
3
(R,N,P)N©O´ +Ó öé•]Ú +S õU‡A¼ê,ρ
1
(R,N,P)R
´ +S é• ]õU‡A¼ê,m
1
Úm
2
´†—ÝÃ'g,k Ç.ëêe
1
Úe
2
©OL«•]é +S Ú +SÓ özÇ,e
3
L« +S é +SÓ
özÇ,Rϕ(R)´•]Ñ)Ç. +SÓ y–3g,.¥??•3,…3)+
ᥕ3XŒþ~f[11–13].d,˜mA3 +SÓ .¥•kNõïÄ[13–16].
«+Ϧ2o¤,¦Ó öéJé Ô,B3?zL§¥•)˜X·A5A
,Xb¸!|9!Óßóä,¿$^p?1JÂ!8Nö•ª5•Ð/ÓP .2017
c,Hilker[17]<ïÄ˜‡Ó ö- .,¿òÓ öö܊σ ±HollingI.õU‡
A¼êÚ\:





dN
dt
= rN(1−
N
K
)−Φ(N,P)P,
dP
dt
= eΦ(N,P)P−mP,
Ù¥NÚP©O´ ÚÓ ö«+—Ý,¼êΦ(N,P)´HollingI.õU‡A¼ê,=
Φ(N,P)=λN,λ>0´ü‡Ó öé ôÂÇ.3Ó ööÜŠœ¹e,õU‡A¼ê
Óžûu ÚÓ ö—Ý.¦‚b,ÜŠ Ó ö¬l§‚1•¥ÉÃ.Ïd,ô 
¤õǬ‘XÓ ö—ÝO\O\.Hilker<B3.¥ÏL^˜‡—݃'‘O†~ê
ôÂÇλ5L«ù˜b:
Φ(N,P) = (λ+aP)N,(1.2)
Ù¥a>0^5£ãÓ ö3ö¥ÜŠrÝ,aP´ÜŠ‘. Major[18]ïÄCaranxignobilis
ÚHawaiiananchovyƒmƒpŠ^,uyÓ ö+Ø1•ŒUŠ•˜«·A1•Ó?z,
¦Ó ökŒU©)¿á+Ø .
¯¤±•,3y¢)¥,Ô«©Ù ´Øþ!,©Ù3˜ m¥«+†˜m•Ù§«
+ƒpŠ^,ƒpK•,*Ñ´—ù˜y–σ˜,‘k*Ñ«+.Ä1•ÏÙ
U)E,˜ m‚ ÛÉ¯õÆö'5[19–22].Ïd,é*ÑA•Ä´š~k7‡,
••Cuy¢.¤±*ÑA3Ó ö- .¥2•ïÄ.Ù.˜„/ªXe:



















∂u
∂t
−d
1
∆u= f(u)u−p(u,v)v,x∈Ω,t>0,
∂v
∂t
−d
2
∆v= αp(u,v)v−βv,x∈Ω,t>0,
∂u(x,t)
∂ν
=
∂v(x,t)
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x) ≥0,v(x,0) = v
0
(x) ≥0,x∈Ω,
Ù¥u(x,t),v(x,t)©O´ ÚÓ ö«+©Ù—Ý,x∈Ω⊆R
3
´3˜‡äk1w>.∂Ω
n‘k.•,ν´>.∂Ωü {•þ.f(u)´ Ñ)Ç,p(u,v)´õU‡A¼ê,α
L«Ó ö¯K ¿žz=zÇ,β´Ó ökÇ,d
1
,d
2
©O•ü«+g*ÑXê.
Guan[21]ïÄ˜‡äk 2o‘Ó ö- .,ïáoäÊìżê,y²*
Ñ.²ï:Û-½5,¿(½˜m•¥ã(˜m,|^êŠ[uyE,ã(
ª:^«!:-^«•!:ª.´L;JAéÓ ö- .ÄK•.
©Ù•{Ü©SNXe.31Ü©¥ò‰Ñ©ïá..31nÜ©¥ò©Û.3
vk*Ñœ¹e,ˆ²ï:•35Ú-½5.1oÜ©òïÄ.3Ú\*Ñœ¹e,XÚ-
½5.1ÊÜ©?1êŠ[,énةۉy.18Ü©?1(Øo(Ú™5Ð".
DOI:10.12677/aam.2022.1174594325A^êÆ?Ð
¾ÿ§Š#l
2..ïá
Sapkota[23]ïÄ˜‡äkÓ öÜŠÓ ö- .,T.´dü «+ÚVÓ
ö«+|¤:



















du
1
dt
= u
1

a
1
−b
1
u
1
−
ω
0
(1+αu
2
)u
2
(1+αu
2
)u
1
+D
0

,
du
2
dt
= u
2

−a
2
+
ω
0
(1+αu
2
)u
1
(1+αu
2
)u
1
+D
1
−
ω
2
u
3
u
2
+D
2

,
du
3
dt
= u
2
3

a
3
−
ω
3
u
2
+D
3

,
Ù¥u
1
,u
2
Úu
3
©OL« !¥mÚºÓ ö3?¿ž•t—Ý,ºÓ öÓ ¥mÓ
ö§¥mÓ öÓ .¥mÓ öƒmöÜŠéÓ öÚ êþÑkXkK
•.T.‚5-½5ÚöÜŠVëêꊩÛ3©z[23]¥?1.3dÄ:þ,Ù„•
Ä*ÑA,ïá +Ó XÚ:



































∂X(x,t)
∂t
= d
11
∆X+rX−d
1
X−α
1
XY−α
2
XZ,x∈Ω,t>0,
∂Y(x,t)
∂t
= d
22
∆Y+β
1
XY−(α
3
+cZ)YZ−d
2
Y,x∈Ω,t>0,
∂Z(x,t)
∂t
= d
33
∆Z+β
2
XZ+β
3
(α
3
+cZ)YZ−d
3
Z,x∈Ω,t>0,
∂X(x,t)
∂ν
=
∂Y(x,t)
∂ν
=
∂Z(x,t)
∂ν
= 0,x∈∂Ω,t>0,
X(x,0) = X
0
(x) ≥0,Y(x,0) = Y
0
(x) ≥0,Z(x,0) = Z
0
(x) ≥0,x∈Ω,
(2.1)
Ù¥X(x,t),Y(x,t)ÚZ(x,t)©OL«•]«+! +S «+Ú +SÓ ö«+
3 ˜xÚžmt?—Ý,Ω⊂R
N
(N≤3)´3˜‡äk1w>.∂Ωk.˜m•,ν´>
.∂Ωü {•þ.d
11
,d
22
Úd
33
©O´n«+g*ÑXê,rL«•]«+Ñ)Ç.
d
0
i
s´n«+g,kÇ;α
1
,α
2
Úα
3
©OL«ˆgÓ öü žmSU¯K •Œê
þ;β
0
i
s´ ˆgÓ öÓ¼=zÇ,i= 1,2,3.ëêcL« +SÓ ö«+3öL
§¥,Ó öƒmÓ ÜŠrÝ.XÚ¥¤këêþ•~ê.
½ÂU= (X,Y,Z)
T
, D= diag(d
11
,d
22
,d
33
)9
J(U) =




J
1
(U)
J
2
(U)
J
3
(U)




=




rX−d
1
X−α
1
XY−α
2
XZ
β
1
XY−(α
3
+cZ)YZ−d
2
Y
β
2
XZ+β
3
(α
3
+cZ)YZ−d
3
Z




.
(2.1)Œ±U¤









U
t
−D∆U= J(U),x∈Ω,t>0,
∂U
∂ν
= 0,x∈∂Ω,t>0,
U(x,0) ≥0,x∈Ω.
(2.2)
DOI:10.12677/aam.2022.1174594326A^êÆ?Ð
¾ÿ§Š#l
3..-½5
ùÜ©¥,̇•ÄXÚ(2.2)éAODEX Ú²ï:•35!-½5!Hopf©|•
35Ú5Ÿ.ODE.Xe:
dU
dt
= J(U).(3.1)
XÚ(3.1)k±ešK~ê):
(1)²…)E
0
(0,0,0);
(2)  +SÓ ö«+Ø•3ž,XJ^‡(H
1
):r−d
1
>0¤á,k>.²ï:E
1
(X
1
,Y
1
,0),
X
1
=
d
2
β
1
,Y
1
=
(r−d
1
)
α
1
;
(3)  +S «+Ø•3ž,XJ^‡(H
2
):r−d
1
>0¤á,k>.²ï:E
2
(X
2
,0,Z
2
),
X
2
=
d
3
β
2
,Z
2
=
(r−d
1
)
α
2
;
(4) •²ï:E
∗
(X
∗
,Y
∗
,Z
∗
),Ù¥X
∗
=
c(Z
∗
)
2
+α
3
Z
∗
+d
2
β
1
,Y
∗
=
d
3
−β
2
X
∗
β
3
(α
3
+cZ
∗
)
,Z
∗
´e˜g
•§Š:
A
1
Z
2
+A
2
Z+A
3
= 0,(3.2)
Ù¥
A
1
= c(α
1
β
2
−α
2
β
1
β
3
),
A
2
= cβ
1
β
3
(r−d
1
)+α
3
(α
1
β
2
−α
2
β
1
β
3
),
A
3
= α
3
β
1
β
3
(r−d
1
)+α
1
(d
2
β
2
−d
3
β
1
).
,Šâ(kÎÒOK,Œ±wÑXÚ(3.1)¥•²ï:•35´š~E,.Ïd,©•
?ØÙ¥˜«œ¹,=XÚ(3.1)•k˜‡•²ï:^‡•
(H
3
) :d
3
−β
2
X
∗
,A
1
>0,A
2
>0,A
3
<0.
e5,ò|^IO‚5z•{5ïÄz‡²ï:-½5..(3.1)JacobianÝ•
J
U
=


J
11
J
12
J
13
J
21
J
22
J
23
J
31
J
32
J
33


,(3.3)
Ù¥
J
11
= r−d
1
−α
1
Y−α
2
Z,J
12
= −α
1
X,
J
13
= −α
2
X,J
21
= β
1
Y,
J
22
= β
1
X−(α
3
+cZ)Z−d
2
,J
23
= −α
3
Y−2cYZ,
J
31
= β
2
Z,J
32
= β
3
(α
3
+cZ)Z,
J
33
= β
2
X+β
3
(α
3
Y+2cYZ)−d
3
.
Ún3.1.XÚ(3.1)²…²ï:E
0
(0,0,0)o´Ø-½.
y².XÚ(3.1)3²ï:E
0
?A•§•
[λ−(r−d
1
)](λ+d
2
)(λ+d
3
) = 0.
Œ±éAAŠ•
λ
1
= r−d
1
>0,λ
2
= −d
2
<0,λ
3
= −d
3
<0.
DOI:10.12677/aam.2022.1174594327A^êÆ?Ð
¾ÿ§Š#l
¤±XÚ(3.1)3²ï:E
0
?´Ø-½.
Ún3.2.3^‡(H
1
)¤áž,XJB
33
<0,XÚ(3.1)3>.²ï:E
1
(X
1
,Y
1
,0)?´ÛÜ
ìC-½.
y².ŠâÝ(3.3),.(3.1)3²ï:E
1
?A•§•
(λ−B
33
)

λ
2
−(B
11
+B
22
)λ+B
11
B
22
−B
12
B
21

= 0,
Ù¥B
11
= r−d
1
−α
1
Y
1
,B
12
= −α
1
X
1
,B
21
= β
1
Y
1
,B
22
= β
1
X
1
−d
2
,B
33
= β
2
X
1
+α
3
β
3
Y
1
−d
3
.
Ïd,λ
1
= B
33
,λ
2
Úλ
3
´e•§Š:
λ
2
+G
1
λ+G
2
= 0,
Ù¥G
1
= −(B
11
+B
22
) >0,G
2
= B
11
B
22
−B
12
B
21
>0.
l±þ©ÛŒ±Ñλ
2
<0Úλ
3
<0,B
33
<0ž,XÚ(3.1)3>.²ï:E
1
?´ÛÜ
ìC-½.
Ún3.3.3^‡(H
2
)÷vž,C
22
<0,G
3
≥0ž,X Ú(3.1)3>.²ï:E
2
(X
2
,0,Z
2
)
?´ÛÜìC-½.
y²..(3.1)3²ï:E
2
?A•§•
(λ−C
22
)

λ
2
−(C
11
+C
33
)λ+C
11
C
33
−C
13
C
31

= 0,
Ù¥C
11
=r−d
1
−α
2
Z
2
,C
13
=−α
2
X
2
,C
22
=β
1
X
2
−(α
3
+cZ
2
)Z
2
−d
2
,C
31
=β
2
Z
2
,C
33
=
β
2
X
2
−d
3
.Ïdλ
1
= C
22
,λ
2
Úλ
3
´e•§Š:
λ
2
+G
3
λ+G
4
= 0,
Ù¥G
3
= −(C
11
+C
33
),G
4
= C
11
C
33
−C
13
C
31
>0.
lÑλ
1
<0,λ
2
<0,λ
3
<0…=C
22
<0,G
3
≥0,ÏdXÚ(3.1)3>.²ï:E
2
?´ÛÜìC-½.
e5,©Û•²ï:E
∗
(X
∗
,Y
∗
,Z
∗
)-½5.dÝ(3.3)Œ±Ñ.(3.1)3²ï
:E
∗
?A•§Xe
λ
3
+G
5
λ
2
+G
6
λ+G
7
= 0,(3.4)
Ù¥
G
5
= −(D
11
+D
33
),G
6
= D
11
D
33
−D
13
D
31
−D
12
D
21
−D
23
D
32
,
G
7
= D
11
D
23
D
32
+D
12
D
21
D
33
−D
21
D
13
D
32
−D
12
D
23
D
31
,
D
11
= 0,D
12
= −α
1
X
∗
,D
13
= −α
2
X
∗
,
D
21
= β
1
Y
∗
,D
22
= 0,D
23
= −α
3
Y
∗
−2cY
∗
Z
∗
,
D
31
= β
2
Z
∗
,D
32
= β
3
(α
3
+cZ
∗
)Z
∗
,D
33
= cβ
3
Y
∗
Z
∗
.
ΥG
5
<0,G
6
>0.ÄuRouth-Hurwitz-½5⌱±e½n.
½n3.1.b^‡(H
3
)÷v,kG
5
<0,XÚ(3.1)3•²ï:E
∗
(X
∗
,Y
∗
,Z
∗
)?´Ø-
½.
DOI:10.12677/aam.2022.1174594328A^êÆ?Ð
¾ÿ§Š#l
4.‡A*Ñ.ÄåÆ
-0=µ
1
<µ
2
<µ
3
<···´Žf−∆3àgNeumann>.^‡eAŠ,E(µ
i
)´
3H
1
(Ω)þµ
i
éAA˜m.-{φ
ij
:j=1,2,...,dim(E(µ
i
))}´E(µ
i
)IOÄ,…
X= [H
1
(Ω)]
3
,X
ij
= {cφ
ij
: c∈R
3
},K
X=
+∞
M
i=1
X
i
,X
i
=
dimE(µ
i
)
M
j=1
X
ij
.(4.1)
b^‡(H
3
)¤á,-L=D∆+J
U
(U
∗
),X Ú(2.2)3U
∗
?‚5zXÚ•U
t
=LU.
éz‡i≥1,X
i
3ŽfLe´ØC,…λ´L˜‡AŠ…=éi≥1,XJλ´Ý
−µ
i
D+J
U
(U
∗
)˜‡AŠ,K3ŽfX
i
¥•3˜‡A•þ.−µ
i
D+J
U
(U
∗
)Aõ‘
ª´
ϕ
i
(λ) = λ
3
+H
1i
λ
2
+H
2i
λ+H
3i
,
Ù¥
H
1i
= (d
11
+d
22
+d
33
)µ
i
+G
5
,
H
2i
= (d
11
d
22
+d
11
d
33
+d
22
d
33
)µ
2
i
−[D
33
d
11
+(D
11
+D
33
)d
22
+D
11
d
33
]µ
i
+G
6
,
H
3i
= d
11
d
22
d
33
µ
3
i
−(D
33
d
11
+D
11
d
33
)d
22
µ
2
i
−[D
23
D
32
d
11
+D
12
D
21
d
33
+(D
13
D
31
−D
11
D
33
)d
22
]µ
i
+G
7
,
D
ij
ÚG
i
3ªf(3.4)¥‰Ñ.XJd
33
≥d
11
,KkH
1i
,H
2i
,H
3i
>0.ÏLOŽŒ
H
1i
H
2i
−H
3i
= G
11
µ
3
i
+G
12
µ
2
i
+G
13
µ
i
+G
5
G
6
−G
7
,(4.2)
G
11
= (d
11
+d
22
+d
33
)(d
11
d
22
+d
11
d
33
+d
22
d
33
)−d
11
d
22
d
33
>0,
G
12
= (d
11
d
33
+d
2
22
+2d
11
d
22
+2d
22
d
33
)G
5
−(d
11
+d
33
)(D
33
d
11
+D
11
d
33
) >0,
G
13
= (D
11
+D
33
)[D
33
d
11
+D
11
d
33
+(D
11
+D
33
)d
22
]+G
6
(d
11
+d
33
)+D
23
D
32
d
11
+D
12
D
21
d
33
−(D
12
D
21
+D
23
D
32
)d
22
.
XJd
22
≥d
11
,d
33
,KkG
13
>0.
½n4.1.b^‡(H
3
),±9d
22
≥d
33
≥d
11
÷v,duG
5
<0,G
7
>0,G
5
G
6
−G
7
<0,¤
±XÚ(2.2)•²ï:E
∗
(X
∗
,Y
∗
,Z
∗
)´Ø-½.
5.êŠ[
3ù˜Ü©,òÏLêŠ[5y²cA!©Û(J.XÚ(2.1)Њb•X(0)=
0.41,Y(0)=0.21,Z(0) = 0.2.Ù¦ëêŠÀJXe:r= 0.7,d
1
= 0.12,α
1
= 1.9,α
2
= 2.5,β
1
=
2.2,α
3
= 2.57,c= 0.5,d
2
= 0.2,β
2
= 1.1,β
3
= 2,d
3
= 0.5.
Äk,y²~‡©.(3.1)-½5.Šâ½n3.1,.(3.1)k²ï:E
∗
=
(0.3430,0.0237,0.2140)…´Ø-½(„ã1Úã2).
e5,½ëêr= 0.7,d
1
= 0.12,α
1
= 1.9,α
2
= 2.5,β
1
= 2.2,α
3
= 2.57,d
2
= 0.2,β
2
=
1.1,β
3
= 2,d
3
= 0.5,XÚ(3.1)vkÓ ööÜŠAž,3²ï:E
∗
?ÄåÆ1•„ã
3.
DOI:10.12677/aam.2022.1174594329A^êÆ?Ð
¾ÿ§Š#l
Figure1.The co-existenceequilibriumE
∗
of model(3.1)isunstable.(a)Sharedresource;(b)IG prey;(c)IG
predator
ã1..(3.1)•²ï:E
∗
´Ø-½"(a)•]¶(b) +S ¶(c) +SÓ ö
Figure2.Thedynamicbehaviorofthemodel(3.1).(a)Unstablebehaviorofpopulation;
(b)phaseportrait
ã2..(3.1)ÄåÆ1•"(a)«+Ø-½1•¶(b)ƒã
d,Ú\Ó ööÜŠAž,XÚ(3.1)3E
∗
?ÄåÆ1•„ã4.TãL²Ó
öÜŠAo´¦XÚØ-½.
•,·‚ÀJ˜Xëê5[XÚ(2.1):Ω=[0,10π],r=0.7,d
1
= 0.12,α
1
= 1.9,α
2
=
2.5,β
1
=2.2,α
3
=2.57,c=0.3,d
2
=0.2,β
2
=1.1,β
3
=2,d
3
=0.5.Šâ½n4.1,
d
11
= 10,d
22
= 20,d
33
= 15ž,XÚ(2.1)•²ï:E
∗
´Ø-½(„ã5).
6.o(†Ð"
©ïÄ˜‡äkÓ ööÜŠ*Ñ +Ó ..Ù¥,Ó öö܊σ•Ä
 +SÓ öé +S HollingI.õU‡A¥.Äk,3vk*Ñœ¹e,?Ø
.²ï:•35Ú-½5.ÏLêŠ[,uyÚ\Ó ööÜŠëêcž,o¬¦XÚ
(3.1)CØ-½.d,é*ÑXÚ(2.1),3˜½^‡e,XÚo´Ø-½.
3©ïĤJÄ:þ,²Ù¦ƒ'©zuy„kNõÙ¦óŠk–ïÄ.1˜,„Œ±
•ÄÙ§©|,X:Bogdanov-Taken©|!Ó‰©|;Ùg,vk•ÄÚ\Bž¢¦.•
DOI:10.12677/aam.2022.1174594330A^êÆ?Ð
¾ÿ§Š#l
Figure3.Thedynamicbehaviorofthesystemat
thepositiveequilibriumE
∗
withouttheeffectof
huntingcooperation
ã3.XÚvkÓ ööÜŠAž§3²ï:
E
∗
?ÄåÆ1•
Figure4.ThedynamicbehaviorofthesystematthepositiveequilibriumE
∗
withtheeffectofhunting
cooperation.(a)Sharedresource;(b)IGprey;(c)IGpredator
ã4.•kÓ ööÜŠAž§XÚ3²ï:E
∗
?ÄåÆ1•"(a)•]¶(b) +S ¶(c)
 +SÓ ö
\ý¢.Ïd,3.(2.1)Ä:þ,•Ä•]«+Bž¢,KŒïıe.:































∂X(x,t)
∂t
= d
11
∆X+rX−d
1
X−α
1
XY−α
2
XZ,x∈Ω,t>0,
∂Y(x,t)
∂t
= d
22
∆Y+β
1
X(t−τ)Y−(α
3
+cZ)YZ−d
2
Y,x∈Ω,t>0,
∂Z(x,t)
∂t
= d
33
∆Z+β
2
X(t−τ)Z+β
3
(α
3
+cZ)YZ−d
3
Z,x∈Ω,t>0,
∂X(x,t)
∂ν
=
∂Y(x,t)
∂ν
=
∂Z(x,t)
∂ν
= 0,x∈∂Ω,t>0,
X(x,0) = X
0
(x) ≥0,Y(x,0) = Y
0
(x) ≥0,Z(x,0) = Z
0
(x) ≥0,x∈Ω,
٥Щ^‡!>.^‡†.(2.1)˜,τL«•]«+Bž¢.
DOI:10.12677/aam.2022.1174594331A^êÆ?Ð
¾ÿ§Š#l
Figure5.Unstablebehaviorforsystem(2.1)withd
11
= 1,d
22
= 0.05,d
33
= 0.01,m
1
= 0.8
ã5.d
11
= 1,d
22
= 0.05,d
33
= 0.01m
1
= 0.8§XÚ(2.1)Ø-½51•
Ä7‘8
I[g,‰ÆÄ7‘8(12161054911661050)¶[‹Žg,‰ÆÄ7‘8(20JR10RA156)"
ë•©z
[1]Lotka,A.J.(1926)ElementsofPhysicalBiology.AmericanJournalofPublicHealth,82,341-
343.
[2]Volterra,V.(1928)Variations andFluctuationsoftheNumberofIndividualsinAnimalSpecies
LivingTogether.JournalofMarineScience,3,3-51.https://doi.org/10.1093/icesjms/3.1.3
[3]Meng,X.Y.,Huo,H.F.andZhang,X.B.(2019)StabilityandGlobalHopfBifurcationina
Leslie-GowerPredator-PreyModelwithStageStructureforPrey.JournalofAppliedMathe-
maticsandComputing,60,1-25.https://doi.org/10.1007/s12190-018-1201-0
[4]Meng,X.Y.,Huo,H.F.,Xiang,H.andYin,Q.Y.(2014)StabilityinaPredator-PreyModel
withCrowley-MartinfunctionandStageStructureforPrey.AppliedMathematicsandCom-
putation,232,810-819.https://doi.org/10.1016/j.amc.2014.01.139
[5]Meng,X.Y.,Huo,H.F.andZhang,X.B.(2011)StabilityandGlobalHopfBifurcationina
DelayedFoodWebConsistingofaPreyandTwoPredators.CommunicationsinNonlinear
Science and Numerical Simulation, 16,4335-4348.https://doi.org/10.1016/j.cnsns.2011.03.009
DOI:10.12677/aam.2022.1174594332A^êÆ?Ð
¾ÿ§Š#l
[6]Meng,X.Y.,Qin,N.N.andHuo,H.F.(2018)DynamicsAnalysisofaPredator-PreySystem
withHarvestingPreyandDiseaseinPreySpecies.JournalofBiologicalDynamics,12,342-
374.https://doi.org/10.1080/17513758.2018.1454515
[7]Wanjugi,P.andHarwood,V.J.(2013)TheInfluenceofPredationandCompetitiononthe
SurvivalofCommensalandPathogenicFecalBacteriainAquaticHabitats.Environmental
Microbiology,15,517-526.https://doi.org/10.1111/j.1462-2920.2012.02877.x
[8]Catano,L.B.,Shantz,A.A.andBurkepile,D.E.(2014)PredationRisk,Competition,and
TerritorialDamsel-FishesasDriversofHerbivoreForaging onCaribbean CoralReefs.Marine
EcologyProgressSeries,511,193-207.https://doi.org/10.3354/meps10921
[9]Polis,G.A., Myers, C.A.andHolt, R.D.(1989)TheEcologyandEvolutionof IntraguildPreda-
tion:Potential Competitors That Eat Each Other. Annual ReviewofEcologyandSystematics,
20,297-330.https://doi.org/10.1146/annurev.es.20.110189.001501
[10]Holt,R.D.andPolis,G.A.(1997)ATheoreticalFrameworkforIntraguildPredation.The
AmericanNaturalist,149,745-764.https://doi.org/10.1086/286018
[11]Doncaster, C.P.(1992) Testing theRole of Intraguild Predationin RegulatingHedgehog Popu-
lations.ProceedingsoftheRoyal Society ofLondon. Series B: Biological Sciences, 249,113-117.
https://doi.org/10.1098/rspb.1992.0092
[12]Polis,G.A.andHolt,R.D.(1992)IntraguildPredation:TheDynamicsofComplexTrophic
Interactions.TrendsinEcologyandEvolution,7,151-154.
https://doi.org/10.1016/0169-5347(92)90208-S
[13]Bampfylde,C.andLewis,M.(2007)BiologicalControlthroughIntraguildPredation:Case
StudiesinPestControl,InvasiveSpeciesandRangeExpansion.BulletinofMathematical
Biology,69,1031-1066.https://doi.org/10.1007/s11538-006-9158-9
[14]Amarasekare,P.(2006)Productivity,DispersalandtheCoexistenceofIntraguildPredators
andPrey,JournalofTheoreticalBiology,243,121-133.
https://doi.org/10.1016/j.jtbi.2006.06.007
[15]Sieber, M. and Hilker, F.M. (2011) Prey, Predators, Parasites:IntraguildPredation or Simpler
CommunityModulesinDisguise?JournalofAnimalEcology,80,414-421.
https://doi.org/10.1111/j.1365-2656.2010.01788.x
[16]Ryan, D.andCantrell, R.S.(2015) Avoidance Behavior inIntraguild PredationCommunities:
ACross-DiffusionModel.DiscreteandContinuousDynamicalSystems,35,1641-1663.
https://doi.org/10.3934/dcds.2015.35.1641
[17]Alves,M.T.andHilker,F.M.(2017)HuntingCooperationandAlleeEffectsinPredators.
JournalofTheoreticalBiology,419,13-22.https://doi.org/10.1016/j.jtbi.2017.02.002
[18]Major,P.F.(1978)Predator-PreyInteractionsinTwoSchoolingFishes,Caranxignobilisand
Stolephoruspurpureus.AnimalBehaviour,26,760-777.
https://doi.org/10.1016/0003-3472(78)90142-2
[19]Yue,Z.M. andWang,W.J. (2013)QualitativeAnalysisofa Diffusive Ratio-DependentHolling-
TannerPredator-PreyModelwithSmithGrowth.DiscreteDynamicsinNatureandSociety,
2013,ArticleID:267173.https://doi.org/10.1155/2013/267173
[20]Jiang,H.P.,Fang,H.P.andWu,Y.F.(2020)HopfBifurcationinaDiffusivePredator-Prey
Model withSmithGrowthRateand HerdBehavior.AdvancesinDifferenceEquations,2020,
ArticleNo.518.https://doi.org/10.1186/s13662-020-02879-4
DOI:10.12677/aam.2022.1174594333A^êÆ?Ð
¾ÿ§Š#l
[21]Guan,X.N.,Wang,W.M.andCai,Y.L.(2011)SpatiotemporalDynamicsofaLeslie-Gower
Predator-PreyModelIncorporatingaPreyRefuge.NonlinearAnalysis:RealWorldApplica-
tions,12,2385-2395.https://doi.org/10.1016/j.nonrwa.2011.02.011
[22]Ou,Y.Q.(2010)NolinearScienceandthePatternDynamicsIntroduction.PekingUniversity
Press,Beijing.
[23]Sapkota,N.,Bhatta,R.,Dabney,P.andXie,Z.(2020)HuntingCo-OperationintheMiddle
PredatorinThreeSpeciesFoodChainModel.arXivpreprintarXiv:2006.16525
DOI:10.12677/aam.2022.1174594334A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.