设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2022,11(7),4443-4450
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.117471
5
p
Bergman
˜
m
þ
Hankel
Ž
f
¯¯¯
§§§
–––
’’’
¤¤¤
∗
*
H
“
‰
Æ
ê
Æ
†
Ú
O
Æ
§
2
À
Ö
ô
Â
v
F
Ï
µ
2022
c
6
8
F
¶
¹
^
F
Ï
µ
2022
c
7
5
F
¶
u
Ù
F
Ï
µ
2022
c
7
12
F
Á
‡
©
Ì
‡
•
x
1
<q<p<
∞
ž
§
d
÷
v
˜
½
^
‡
Î
Ò¼
ê
¤
p
Hankel
Ž
f
H
f
,H
f
l
A
p
ω
L
q
Ω
Ó
ž
k
.
½
;
A
§
Ù
¥
ω,
Ω
´
5
"
'
…
c
\
Bergman
˜
m
§
k
.
5
§
Hankel
Ž
f
HankelOperatorsonBergmanSpaces
InducedbyRegularWeights
ErminWang,YechengShi
∗
SchoolofMathematicsandStatistics,LingnanNormalUniversity,ZhanjiangGuangdong
Received:Jun.8
th
,2021;accepted:Jul.5
th
,2022;published:Jul.12
th
,2022
Abstract
Given
ω,
Ω
∈R
,for
1
<q<p<
∞
,wecharacterizethosesymbols
f
forwhichthe
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
¯
,
–
’
¤
.
5
p
Bergman
˜
m
þ
Hankel
Ž
f
[J].
A^
ê
Æ
?
Ð
,2022,11(7):
4443-4450.DOI:10.12677/aam.2022.117471
¯
§
–
’
¤
inducedHankeloperators
H
f
,H
f
arebothbounded(compact)fromweightedBergman
space
A
p
ω
toLebesguespace
L
q
Ω
.
Keywords
WeightedBergmanSpaces,Boundedness,HankelOperators
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
c
ó
D
´
E
²
¡
þ
ü
.
é
1
≤
p<
∞
,
‰
½
D
þ
š
K
Œ
ÿ
¼
ê
ω
,
˜
m
L
p
ω
(
½
P
•
L
p
(
ωdA
))
´
D
þ
¤
k
÷
v
k
f
k
L
p
ω
=
Z
D
|
f
(
z
)
|
p
ω
(
z
)
dA
(
z
)
1
p
<
∞
,
Lebesgue
Œ
ÿ
¼
ê
N
,
Ù
¥
dA
´
D
þ
I
O
¡
È
ÿ
Ý
.
·
‚
^
Î
Ò
L
p
L
«
²
;
p
g
Lebesgue
˜
m
,
Ù
‰
ê
•
k·k
L
p
=
R
D
|·|
p
dA
1
p
.
·
‚
^
H
(
D
)
L
«
D
þ
X
¼
ê
N
.
\
Bergman
˜
m
½
Â
•
A
p
ω
=
L
p
ω
∩
H
(
D
).
w
,
A
p
ω
´
L
p
ω
4
f
˜
m
,
A
2
ω
´
˜
‡
Hilbert
˜
m
.
e
˜
‡
»
•
¼
ê
ω
÷
v
e
n
‡
^
‡
µ
(1)
ω
∈
L
1
[0
,
1);(2)
¼
ê
ˆ
ω
(
z
)=
R
1
|
z
|
ω
(
s
)
ds
÷
v
V
^
‡
,
=
é
¤
k
0
≤
r<
1,
k
ˆ
ω
(
r
)
≤
K
ˆ
ω
(
1+
r
2
),
Ù
¥
K
´
†
r
Ã
'
~
ê
;(3)
é
¤
k
0
≤
r<
1,
k
ω
(
r
)
'
R
1
r
ω
(
s
)
ds
1
−
r
.
K
¡
ω
´
˜
‡
5
,
P
•
ω
∈R
.
„
©
z
[1].
‰
½
˜
‡
»
•
ω
,
·
‚
Œ
±
Ï
L
-
ω
(
z
)=
ω
(
|
z
|
)
ù
«
•
ª
ò
ω
½
Â
D
þ
.
d
5
p
Bergman
˜
m
é
õ
Æ
ö
\
±
ï
Ä
,
„
©
z
[1–4]
.
‰
½
ω
∈R
,
é
z
˜
‡
z
∈
D
,
N
f
7→
f
(
z
)
´
A
2
ω
þ
ë
Y
‚
5
•
¼
.
d
Riesz
L
«
½
n
Œ
•
,
•
3
•
˜
¼
ê
B
z
∈
A
2
ω
,
¦
é
˜
ƒ
f
∈
A
2
ω
,
Ñ
k
f
(
z
) =
h
f,B
z
i
ω
,
Ù
¥
h
f,g
i
ω
=
Z
D
f
(
z
)
g
(
z
)
ω
(
z
)
dA
(
z
)
,f,g
∈
A
2
ω
.
DOI:10.12677/aam.2022.1174714444
A^
ê
Æ
?
Ð
¯
§
–
’
¤
Ù
¥
B
z
¡
•
A
2
ω
Bergman
Ø
.
l
L
2
ω
A
2
ω
Ý
K
P
ω
Œ
L
«
•
P
ω
(
g
)(
z
) =
Z
D
g
(
ζ
)
B
z
(
ζ
)
ω
(
ζ
)
dA
(
ζ
)
.
é
?
¿
1
≤
p<
∞
,
P
ω
•
´
L
p
ω
A
p
ω
k
.
‚
5
Ž
f
.
e
¡
·
‚
Œ
±
½
Â
A
p
ω
þ
Hankel
Ž
f
.
d
Î
Ò
f
p
Hankel
Ž
f
½
Â
•
H
ω
f
(
g
) = (
Id
−
P
ω
)(
fg
)
,
Ù
¥
Id
´
ð
Ž
f
.
é
Hankel
Ž
f
ï
Ä
©
u
[5],
T
©
Ù
ï
Ä
d
Ý
)
Û
¼
ê
p
Hankel
Ž
f
k
.
5
Ú
;
5
A
.
é
u
•
˜
„
¼
ê
,[6]
•
k
‰
Ñ
Hankel
Ž
f
Ú
Bergman
Ý
þ
e
Î
Ò¼
ê
²
þ
ƒ
m
é
X
.
Ù
ù
˜
g
Ž
$
^uk
.
é
¡
•
Ú
r
[
à
•
þ
Hankel
Ž
f
ï
Ä
¥
,
„
[7,8].
3
n
‘
E
˜
m
¥
ü
¥
þ
,
•
›
1
<p
≤
q<
∞
,Pau
<
[9]
ï
Ä
H
f
Ú
H
f
Ó
ž
l
\
Bergman
˜
m
A
p
(1
−|·|
2
)
α
ƒ
A
Lebesgue
˜
m
L
q
(1
−|·|
2
)
β
•
k
.
½
;
Ž
f
¿
‡
^
‡
.
é
1
<q<p<
∞
œ
/
e
,
ƒ
A
(
J
Ù
•®
²
Ñ
,
„
[10].
5
,
é
¤
k
1
<p,q<
∞
,Hu
<
/
•
x
Hankel
Ž
f
´
d
5
ω
p
Bergman
˜
m
A
p
ω
L
q
ω
k
.
½
;
Ž
f
•
x
.
•
C
,
þ
ã
(
J
í
2
–
A
p
ω
L
q
Ω
œ
/
,
Ù
¥
1
<p,q<
∞
,
¿
…
1
<p
≤
q<
∞
ž
,
H
f
,H
f
:
A
p
ω
→
L
q
Ω
Ó
ž
k
.
½
;
A
•
Ó
ž
•
x
,
„
[11].
©
Ì
‡
8
´
•
x
1
<q<p<
∞
ž
,
d
÷
v
˜
½
^
‡
Î
Ò¼
ê
¤
p
Hankel
Ž
f
H
f
,H
f
l
A
p
ω
L
q
Ω
Ó
ž
k
.
½
;
A
.
°
(
/
`
,
‰
½
ω,
Ω
∈R
,
·
‚
•
Ä
d
¼
ê
F
∈
L
1
Ω
p
H
f
,H
f
:
A
p
ω
→
L
q
Ω
Ó
ž
k
.
½
;
¿
‡
^
‡
.
©
ò
[10]
¥
Ì
‡
(
Ø
í
2
–
5
p
Bergman
˜
m
œ
/
.
3
©
¥
,
·
‚
o
´
^
C
L
«
†
¤
‡
•
Ä
¼
ê
Ã
'
~
ê
,
3
Ø
Ó
ª
f
¥
z
?
C
¤
“
L
~
ê
Œ
U
Ø
ƒ
.
ü
‡
þ
A,B
X
J
÷
v
A
≤
CB
,
K
P
•
A
.
B
.
X
J
A,B
÷
v
A
.
B
.
A
,
·
‚
Ò
`
A,B
d
,
P
•
A
'
B
.
2.
ý
•
£
3ù
Ü
©
,
·
‚
‰
Ñ
˜
ý
•
£
.
-
β
(
z,ξ
) =
1
2
log
1+
|
ϕ
z
(
ξ
)
|
1
−|
ϕ
z
(
ξ
)
|
L
«
D
þ
Bergman
å
l
,
Ù
¥
ϕ
z
(
ξ
) =
ξ
−
z
1
−
zξ
.
z
∈
D
,
r>
0,
^
D
(
z,r
) =
{
w
∈
D
:
β
(
z,w
)
<r
}
L
«
±
z
•
¥
:
!
r
•
Œ
»
Bergman
.
‰
½
ω
∈R
,
P
˘
ω
(
z
) = (1
−|
z
|
)
2
ω
(
z
)
.
-
r>
0,
•
3
D
¥
ê
{
z
j
}
∞
j
=1
¦
D
=
∪
∞
j
=1
D
(
z
j
,r
)
,D
z
j
,
r
4
∩
D
z
k
,
r
4
=
∅
,j
6
=
k.
DOI:10.12677/aam.2022.1174714445
A^
ê
Æ
?
Ð
¯
§
–
’
¤
þ
ãê
¡
•
D
˜
‡
r
-
‚
.
e
E
´
D
þ
Lebesgue
Œ
ÿ
8
,
·
‚
^
χ
E
L
«
E
A
¼
ê
,
P
|
E
|
=
R
D
χ
E
dA
.
‰
½
r
-
‚
{
z
j
}
∞
j
=1
Ú
R>
0,
•
3
~
ê
N
¦
∞
X
j
=1
χ
D
(
z
j
,R
)
≤
N.
r>
0,
L
1
loc
þ
Û
Ü
²
þ
¼
ê
M
r
½
Â
•
M
r
(
f
)(
z
) =
1
|
D
(
z,r
)
|
Z
D
(
z,r
)
f
(
ξ
)
dA
(
ξ
)
.
?
‰
½
r>
0,
1
≤
p
≤∞
ž
,
M
r
´
L
p
ω
þ
k
.
‚
5
Ž
f
.
f
∈
L
p
loc
,
½
Â
G
p,r
(
f
)
•
G
p,r
(
f
)(
z
) = inf
(
1
|
D
(
z,r
)
|
Z
D
(
z,r
)
|
f
−
h
|
p
dA
1
p
:
h
∈
H
(
D
(
z,r
))
)
.
du
ω
∈R
,
k
G
p,r
(
f
)(
z
)
'
inf
(
1
ω
(
D
(
z,r
))
Z
D
(
z,r
)
|
f
−
h
|
p
ωdA
1
p
:
h
∈
H
(
D
(
z,r
))
)
.
-
f
∈
L
p
loc
,
r>
0,
P
MO
p,r
(
f
)(
z
) =
1
|
D
(
z,r
)
|
Z
D
(
z,r
)
|
f
−
f
D
(
z,r
)
|
q
dA
1
p
Ù
¥
f
D
(
z,r
)
=
1
|
D
(
z,r
)
|
R
D
(
z,r
)
fdA
.
±
9
Oss
r
(
f
)(
z
) =sup
ξ
∈
D
(
z,r
)
|
f
(
ξ
)
−
f
(
z
)
|
.
3
[11]
¥
,
·
‚
y
²
X
e
½
n
µ
½
n
A:
ω,
Ω
∈R
,1
<q<p<
∞
.
K
é
f
∈
L
1
Ω
,
e
Ø
ã
d
:
(
A
)
H
Ω
f
:
A
p
ω
→
L
q
Ω
k
.
;
(
B
)
H
Ω
f
:
A
p
ω
→
L
q
Ω
;
;
(
C
)
•
3
(
d
u
:
?
¿
)0
<r
≤
α/
2,
k
Ω
1
q
ω
−
1
p
G
q,r
(
f
)
∈
L
pq
p
−
q
;
(
D
)
f
ä
k
X
e
©
)
f
=
f
1
+
f
2
,
Ù
¥
f
1
÷
v
:
f
1
∈
C
1
(
D
)
,
Ω
1
q
ω
−
1
p
(1
−|·|
)
|
∂f
1
|∈
L
pq
p
−
q
;
f
2
÷
v
:
•
3
(
d
u
:
?
¿
)
r>
0,
k
Ω
1
q
ω
−
1
p
M
r
(
|
f
2
|
q
)
1
q
∈
L
pq
p
−
q
.
DOI:10.12677/aam.2022.1174714446
A^
ê
Æ
?
Ð
¯
§
–
’
¤
?
k
k
H
Ω
f
k
A
p
ω
→
L
q
Ω
'
Ω
1
q
ω
−
1
p
G
q,r
(
f
)
L
pq
p
−
q
.
(2.1)
3.
Ì
‡
(
Ø
3ù
Ü
©
,
·
‚
‰
Ñ
©
Ì
‡
½
n
¿
\
±
y
²
.
½
n
1:
ω,
Ω
∈R
,1
<q<p<
∞
.
K
é
f
∈
L
1
Ω
,
e
Ø
ã
d
:
(
A
)
H
Ω
f
,H
Ω
f
:
A
p
ω
→
L
q
Ω
•
k
.
Ž
f
;
(
B
)
H
Ω
f
,H
Ω
f
:
A
p
ω
→
L
q
Ω
•
;
Ž
f
;
(
C
)
•
3
(
d
u
:
?
¿
)
r>
0,
k
Ω
1
q
ω
−
1
p
MO
q,r
(
f
)
∈
L
pq
p
−
q
;
(
D
)
f
ä
k
X
e
©
)
f
=
f
1
+
f
2
,
Ù
¥
f
1
÷
v
:
f
1
∈
C
1
(
D
)
,
Ω
1
q
ω
−
1
p
Oss
r
(
f
1
)
∈
L
pq
p
−
q
;
f
2
÷
v
:
•
3
(
d
u
:
?
¿
)
r>
0,
k
Ω
1
q
ω
−
1
p
M
r
(
|
f
2
|
q
)
1
q
∈
L
pq
p
−
q
.
¿
…
k
H
Ω
f
A
p
ω
→
L
q
Ω
+
H
Ω
f
A
p
ω
→
L
q
Ω
'
˘
Ω
1
q
˘
ω
−
1
p
MO
q,r
(
f
)
L
pq
p
−
q
.
(3.1)
y
²
:
(
B
)
⇒
(
A
)
w
,
¤
á
.
e
y
(
A
)
⇔
(
C
)
⇔
(
D
)
±
9
(
C
)
⇒
(
B
).
(
C
)
⇔
(
D
).
b
•
3
r>
0
¦
f
÷
v
(
C
).
-
f
1
=
M
r
2
(
f
),
f
2
=1
−
f
1
.
K
β
(
z,ξ
)
≤
r
2
ž
,
·
‚
k
|
f
1
(
z
)
−
f
1
(
ξ
)
|≤|
f
1
(
z
)
−
M
r
(
f
)(
z
)
|
+
|
M
r
(
f
)(
z
)
−
f
1
(
ξ
)
|
≤
1
|
D
(
z,r/
2)
|
Z
D
(
z,r/
2)
|
f
1
(
·
)
−
M
r
(
f
)(
z
)
|
dA
+
1
|
D
(
ξ,r/
2)
|
Z
D
(
ξ,r/
2)
|
f
1
(
·
)
−
M
r
(
f
)(
z
)
|
dA
≤
CMO
q,r
(
f
)(
z
)
.
¤
±
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
Oss
r
(
f
)(
z
)
.
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
MO
q,r
(
f
)(
z
)
.
(3.2)
DOI:10.12677/aam.2022.1174714447
A^
ê
Æ
?
Ð
¯
§
–
’
¤
é
f
2
,
·
‚
k
M
r
2
(
|
f
2
|
q
)(
z
)
1
q
≤
M
r
2
(
|
f
−
f
1
(
z
)
|
q
)(
z
)
1
q
+Oss
r
2
(
f
1
)(
z
)
≤
CMO
q,
r
2
(
f
)(
z
)+Oss
r
2
(
f
1
)(
z
)
.
d
d
Ú
(3.2)
Œ
±
í
Ñ
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
M
r
2
(
|
f
2
|
q
)(
z
)
1
q
.
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
MO
q,r
(
f
)(
z
)
.
5
¿
(
D
)
¥
^
‡
†
r
Ã
'
,
·
‚
Ñ
(
C
)
⇒
(
D
).
‡
ƒ
,
b
f
ä
k
X
(
D
)
¥
©
)
:
f
=
f
1
+
f
2
.
d
MO
q,r
(
f
)(
z
)
.
Oss
r
(
f
)(
z
),
Œ
•
f
1
÷
v
(
C
).
¿
…
MO
q,r
(
f
2
)(
z
)
≤
M
r
(
|
f
2
|
q
)(
z
)
1
q
+
M
r
(
|
f
|
)
≤
2
M
r
(
|
f
2
|
q
)(
z
)
1
q
L
²
f
2
•
÷
v
(
C
).
(
D
)
Œ
í
Ñ
(
C
).
du
(
D
)
¥
^
‡
†
r
Ã
'
,
·
‚
Œ
±
Ω
1
q
ω
−
1
p
MO
q,r
(
f
)
∈
L
pq
p
−
q
†
r
Ã
'
.
(
A
)
⇔
(
C
).
Ø
”
0
<r<α
.
e
H
Ω
f
Ú
H
Ω
f
Ñ
k
.
,
d
(2.1)
Œ
•
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
G
q,r
(
f
)(
z
)
.
H
Ω
f
A
p
ω
→
L
q
Ω
±
9
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
G
q,r
(
f
)(
z
)
.
H
Ω
f
A
p
ω
→
L
q
Ω
.
a
q
u
©
z
[12]
¥
·
K
2.5
y
²
Œ
•
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
MO
q,r
(
f
)(
z
)
.
H
Ω
f
A
p
ω
→
L
q
Ω
+
H
Ω
f
A
p
ω
→
L
q
Ω
.
(3.3)
‡
ƒ
,
d
G
q,r
(
f
)
½
´
•
G
q,r
(
f
)(
z
)
≤
MO
q,r
(
f
)(
z
)
,G
q,r
(
f
)(
z
)
≤
MO
q,r
(
f
)(
z
)
.
(3.4)
d
½
n
A
Œ
•
H
Ω
f
A
p
ω
→
L
q
Ω
+
H
Ω
f
A
p
ω
→
L
q
Ω
.
˘
Ω(
z
)
1
q
˘
ω
(
z
)
−
1
p
MO
q,r
(
f
)
L
∞
.
(3.5)
(3.1)
ª
d
(3.3)
9
(3.5)
=
Œ
Ñ
.
(
C
)
⇒
(
B
).
d
(
C
)
9
(3.4)
Œ
•
:Ω
1
q
ω
−
1
p
G
q,r
(
f
)
∈
L
pq
p
−
q
.
2
d
½
n
A
Œ
•
H
Ω
f
:
A
p
ω
→
L
q
Ω
•
;
Ž
f
;
Ó
n
,
H
Ω
f
:
A
p
ω
→
L
q
Ω
•
;
Ž
f
.
½
n
y
.
DOI:10.12677/aam.2022.1174714448
A^
ê
Æ
?
Ð
¯
§
–
’
¤
—
a
"
v
<
@
ý
"
.
Ä
7
‘
8
Ø
©
É
I
[
g
,
‰
Æ
Ä
7
‘
8
(12001258)
Ú
*
H
“
‰
Æ
‰
ï
‘
8
(ZL1925)
]
Ï
.
ë
•
©
z
[1]Hu,Z.J.andLu, J.(2019)HankelOperatorsonBergmanSpaceswithRegularWeights.
Journal
ofGeometricAnalysis
,
29
,3494-3519.https://doi.org/10.1007/s12220-018-00121-y
[2]Pavlovic,M.andPelaez,J.A.(2008)AnEquivalenceforWeightedIntegralsofanAnalytic
FunctionandItsDerivative.
MathematischeNachrichten
,
281
,1612-1623.
https://doi.org/10.1002/mana.200510701
[3]Pelaez,J.A.andRattya,J.(2013)WeightedBergmanSpacesInducedbyRapidlyIncreasing
Weights.
MemoirsoftheAmericanMathematicalSociety
,
227
,1066.
[4]Pelaez,J.A., Rattya, J.and Sierra,A.K. (2018)Berezin Transformand ToeplitzOperatorson
BergmanSpacesInducedbyRegularWeights.
JournalofGeometricAnalysis
,
28
,656-687.
https://doi.org/10.1007/s12220-017-9837-9
[5]Axler,S.(1986)TheBergmanSpace,theBlochSpaceandCommutatorsofMultiplication
Operators.
DukeMathematicalJournal
,
53
,315-332.
https://doi.org/10.1215/S0012-7094-86-05320-2
[6]Zhu,K.(1987)VMO,ESV,andToeplitzOperatorsontheBergmanSpace.
Transactionsof
theAmericanMathematicalSociety
,
302
,617-646.
https://doi.org/10.1090/S0002-9947-1987-0891638-4
[7]Bekolle,D.,Berger,C.A.,Coburn,L.A.andZhu,K.(1990)BMOintheBergmanMetricon
BoundedSymmetricDomains.
JournalofFunctionalAnalysis
,
93
,310-350.
https://doi.org/10.1016/0022-1236(90)90131-4
[8]Li,H.(1992)BMO,VMO,andHankelOperatorsontheBergmanSpaceofStronglyPseudo
ConvexDomains.
JournalofFunctionalAnalysis
,
106
,375-408.
https://doi.org/10.1016/0022-1236(92)90054-M
[9]Pau,J.,Zhao,R. and Zhu, K. (2016) Weighted BMO and Hankel Operatorsbetween Bergman
Spaces.
IndianaUniversityMathematicalJournal
,
65
,1639-1673.
https://doi.org/10.1512/iumj.2016.65.5882
DOI:10.12677/aam.2022.1174714449
A^
ê
Æ
?
Ð
¯
§
–
’
¤
[10]Lv,X.andZhu,K.(2019)IntegrabilityofMeanOscillationwithApplicationstoHankel
Operators.
IntegralEquationsandOperatorTheory
,
91
,ArticleNo.5.
https://doi.org/10.1007/s00020-019-2504-8
[11]Wang,E.M.andXu,J.J.HankelOperatorsonBergman SpacesInducedbyRegularWeights.
JournaloftheIranianMathematicalSociety
.InPress.
[12]Hu,Z.J.andWang,E.M.(2018)HankelOperatorsbetweenFockSpaces.
IntegralEquations
andOperatorTheory
,
90
,ArticleNo.37.https://doi.org/10.1007/s00020-018-2459-1
DOI:10.12677/aam.2022.1174714450
A^
ê
Æ
?
Ð