设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(7),4562-4577
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.117483
äkr{Zšg£Kirchhoff.Å•§
žm•6.£áÚf
XXXpppõõõ§§§ààà
∗
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c611F¶¹^Fϵ2022c77F¶uÙFϵ2022c714F
Á‡
©ïÄ ‘kr{ZÚš‚56Äšg£KirchhoffÅ•§)ìC5"$^ ¼êÚìC
kO•{yžm•6.£áÚf•35"
'…c
 ¼ê§žm•6.£áÚf§r{Z§KirchhoffÅ•§
ThePullbackAttractorsfor
Non-AutonomousKirchhoff-Type
WaveEquationwithStrong
Damping
KaihongTian,XuanWang
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jun.11
th
,2021;accepted:Jul.7
th
,2022;published:Jul.14
th
,2022
∗ÏÕŠö"
©ÙÚ^:Xpõ,à.äkr{Zšg£Kirchhoff.Å•§žm•6.£áÚf[J].A^êÆ?Ð,2022,
11(7):4562-4577.DOI:10.12677/aam.2022.117483
Xpõ§à
Abstract
Inthispaper,westudytheasymptoticbehaviorofsolutionsofNon-autonomous
Kirchhoff-type wave equations with strongdamping and nonlinear perturbations.The
existenceoftime-dependentpullbackattractorsisverifiedbyusingcontractionfunc-
tionandasymptoticpriorestimation.
Keywords
ContractionFunction,TheTimeDependentPullbackAttractors,StrongDamping,
KirchhoffWaveEquation
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3>.¿©1wk.•Ω⊂R
N
(N>3) ¥,•ÄXe‘kr{ZÚš‚56Äšg£
Kirchhoff.Å•§











ε(t)u
tt
−(1+δk∇uk
2
)∆u−∆u
t
+h(u
t
)+f(u) = g(x,t),(x,t) ∈Ω×R
+
,
u(x,t) = 0,x∈∂Ω,t∈R,
u(x,0) = u
0
(x),u
t
(x,0) = u
1
(x),x∈Ω,
(1.1)
Ù¥δ∈[0,1],h(u
t
)Úf(u)´š‚5‘, g(x)´å‘.
KirchhoffÅ•§gKirchhoffïáŒ -î•įK(„©[1]). éu•§(1.1),
ε(t)•~êž, ®²kéõïÄ(J.~X, ε(t) = 1 ž,2008c,¨Ú3©[2]¥ïÄäkš
‚5{Z‘a(x)g(u
t
)Plate •§3k.•¥ÛáÚf•35. Óc,3©[3]¥ïÄš
g£Plate•§3k.•þ˜—áÚf•35.2009c,3©[4]¥ïÄPlate•§3Ã.•
þ)ìC;5. ©[5]¥, ïÄšg£Lx•§ìC1•, ¿ÏLA^ #(JÚUþO,
y²˜—áÚf3˜mH
2
0
×L
2
(Ω) þ•35. 2014c, MÚo3©[6]¥ïÄšg £Å•§
ÄåÆ1•¿y.£áÚf•35.ê3©[7]¥‰Ñäkr{Zšg£Kirchhoff•§
DOI:10.12677/aam.2022.1174834563A^êÆ?Ð
Xpõ§à
.£áÚf•35.
(t) •üNk.4~…3á?ªu0¼êž, ¯K(1.1) C•\E,. ù´Ï•=¦
呆žmtÃ',•§(1.1)E,3šg£œ/e?Ø.•)ûùa¯K,Conti<3©[8]¥
JÑÄu.£áÚ5•5.£áÚfVg, ¿y©[9]¥Phinio <3žm•6˜mþ
ïááÚfnØ. 4<3©[10]¥A^©[9]•{ïÄPlate •§3rÿÀ˜mþžm•
6.£áÚf. 'u‘kr{Zšg£KirchhoffÅ•§žm•6ÄåÆ1•„™„ïÄ. 3
©ïÄ¥uyš‚5{Z, šg£å‘ÚKirchhoff.šÛÜ‘ ‰áÂ8y² ‘5(J.
XÛ)ûùŸ5(J¤•©ïÄ'…. •ª, |^©z[11]JÑ ¼ê•{, ±9 ©
z[12]¥JÑÄåXÚθpÑ¼êφy²•§(1.1) žm•6.£áÚf•35.
©1ܩЫý•£9I‡½n, 1nÜ©yáÂ8Úžm•6.£áÚf
•35.
2.ý•£
½ÂC´˜‡~ê, 3©¥Ñyz˜‡C3ØÓØª¥“LéA~êŠ,C(·) ´
˜‡4O¼ê.b¼êf(u),h(u
t
),ε(t),Úg(x,t)÷v:
(A
1
)¼êε(t) ∈C
1
(R)´˜‡4~k.¼ê…÷v
lim
t→∞
ε(t) = 0,(1.2)
•3~êL>0,¦
sup
t∈R
[|ε(t)|+|ε
0
(t)|] 6L.(1.3)
(A
2
)š‚5‘f∈C
1
(R)÷v
O•5^‡
|f
0
(s)|6C(1+|s|
p−1
),s∈R,(1.4)
ÑÑ5^‡
liminf
|s|→∞
|f
0
(s)|>−λ
1
,(1.5)
N>3 ž,1 6p<p
∗
≡
N+2
N−2
.Ù¥λ
1
•−∆3Dirichlet>.^‡e1˜AŠ.
(A
3
)š‚56Ä‘h∈C
1
(R),h(0) = 0,h´î‚O,¿…k
liminf
|s|→∞
h
0
(s) >0,(1.6)
|h(s)|6C(1+|s|
q−1
),s∈R,(1.7)
DOI:10.12677/aam.2022.1174834564A^êÆ?Ð
Xpõ§à
N>3 ž,1 6q<p
∗
≡
N+2
N−2
.
(A
4
)å‘g(x,t) ∈L
2
loc
(R,L
2
(Ω)),…k
Z
t
−∞
e
σs
kg(s)k
2
ds<+∞,(1.8)
Ù¥0 <σ<
γ
2
,γ••§(1.1) ‰kOž¤^¢¼ê¥~êXê.
Ún1bh÷v(1.6)-(1.7)ª,…éu?¿δ>0,•3˜‡~êC
δ
>0,é¤k
u,v∈R,¦
|u−v|
2
6δ+C
δ
(h(u)−h(v))(u−v).(1.9)
(Ü^‡(1.3)±9¥Š½nŒ,•3˜‡~êC
1
,¦
|f(u)−f(v)|6C
1
(1+|u|
p−1
+|v|
p−1
)|u−v|,∀u,v∈R,1 6p<
N+2
N−2
.(1.10)
-
F(u) =
Z
u(x)
0
f(s)ds,
|^(1.4)ªk
Z
Ω
F(u)dx>−
λ
4
kuk
2
−C.(1.11)
l´
hf(u),ui>
Z
Ω
F(u)dx−
λ
4
kuk
2
−C,(1.12)
Ù¥λ<λ
1
.
y3·‚½ÂL
2
¥gŠŽfA: V
1
−→V
−1
,hAu,vi= h∇u,∇vi,∀u,v∈V
1
.Ù¥ŽfA
½Â•D(A) = {u∈L
2
|Au∈L
2
}= H
2
∩H
1
0
,Au= −∆uéu∈D(A).
·‚Œ±½ÂA˜ŽfA
s
(s∈R),˜mV
s
= D(A
s
2
)´Hilbert˜m,kSÈÚ‰ê
hu,vi
s
= hA
s
2
u,A
s
2
vi,kuk
V
s
= kA
s
2
uk.
·‚½Âžm•6˜mX
t
= V
1
×L
2
,¿…DƒƒA‰êk(u,u
t
)k
2
X
t
= k∇uk
2
+(t)ku
t
k
2
.
(X,d)´Ýþ˜m,(Q,ρ)•Ýþ˜m,•¡•ÎÒ˜m,θ= {θ
t
}
t∈R
´½Â3Qþ
ÄåXÚ…÷v:
(1)∀q∈Q,θ
0
(q) = q;
(2)∀q∈Q,t,τ∈R,θ
t+τ
(q) = θ
t
(θ
τ
(q));
(3)(t,q) →θ
t
(q) ëY.
½Â1XJNφ: R
+
×Q×X→X÷v:
DOI:10.12677/aam.2022.1174834565A^êÆ?Ð
Xpõ§à
(1)∀(q,x) ∈Q×X,φ(0,q,x) = x;
(2)∀s,t∈R
+
,(q,x) ∈Q×X,φ(t+s,q,x) = φ(s,θ
t
(q),φ(t,q,x)),
K¡Nφ: R
+
×Q×X→X´dθpÑ.
½Â2( ¼ê)X•Banach ˜m, B•X¥k.8, Φ(·,·)´½Â3X×Xþ¼
ê,XJé?¿S{x
n
}
∞
n=1
⊂B, •3f{x
n
k
}
∞
k=1
⊂{x
n
}
∞
n=1
,¦
lim
l→∞
lim
k→∞
Φ(x
n
k
,x
n
l
) = 0.
K¡Φ(·,·)•X×Xþ ¼ê,CL«½Â33X×Xþ ¼ê8Ü.
½n1-(θ,φ) •Q×Xþšg£ÄåXÚ, b8ÜxD= {D
q
}
q∈Q
•φ.£áÂ8
…φ´.£D−ìC;,KφPk.£áÚfA= {A
q
}
q∈Q
,Ù¥
A
q
=
\
t>o
[
s>t
φ(s,θ
−s
(q),D
θ
−s
(q)
),q∈Q.(1.13)
½n2-(θ,φ) •Q×Xþšg£ÄåXÚ, k.8xD={D
q
}
q∈Q
†
˜
D={
˜
D
q
}
q∈Q
÷
vé?¿q∈Q, •3˜‡t
q
= t(q,D,
˜
D) >0,¦
φ(t,θ
−t
(q),D
θ
−t
(q)
) ⊂
˜
D
q
, ∀t>t
q
.(1.14)
bé?¿>0,q∈Q, ¿•3˜‡t=t(,
˜
D,q)>0†½Â3
˜
D
θ
−t(q)
×
˜
D
θ
−t(q)
þ ¼ê
Φ
t,q
(·,·),¦é?¿x,y∈
˜
D
θ
−t(q)
,k
kφ(t,θ
−t
(q),x)−φ(t,θ
−t
(q),y)k
X
6+Φ
t,q
(x,y),
φ3Xþ´.£D−ìC;.
3.̇(J
3.1.)•3•˜5
éu•§(1.1))•35Œ±ÏLIOFaedo−Galerkin •{.
½n3()•3•˜5)b(1.2)-(1.8)ª¤á,y
0
∈X
t
,g(·) ∈L
2
loc
(R,L
2
(Ω))K3«m[τ,t]
þ,é?¿Њ(u
0
,v
0
),¯K(1.1)•3•˜):
(u,u
t
) ∈C([τ,t],H
2
(Ω)∩H
1
0
(Ω)),u
t
∈C([τ,t],L
2
(Ω)).
P
y
0
= y
τ
= {u
0
,u
1
},y(t) = {u(t),u
t
(t)}.
DOI:10.12677/aam.2022.1174834566A^êÆ?Ð
Xpõ§à
d¯K(1.1) Œ3˜mX
t
¥E˜‡šg£ÄåXÚ, é?¿t,τ∈R,-Q=R,θ
t
(τ) =t+τ,
½Â
φ(t,τ,y
0
) = φ(t+τ,τ,y
0
) = {u(t+τ),u(t+τ)},τ∈R,s,t>0,y
0
∈X
τ
,(2.1)
d•§(1.1))•3•˜5Œ•
φ(t+s,τ,y
0
) = φ(t,s+τ,φ(s,τ,y
0
)),τ∈R,s,t>0,y
0
∈X
τ
,
¿…,é?¿τ∈R,t>0,Kd(2.1)ª½ÂNφ(t,τ,·) :X
τ
→X
t
´ëYN.Ïd,Nφ
´X
t
þN.
Ï•h(·) ∈L
2
loc
(R,L
2
(Ω))÷v(1.8)ª,R
δ
´¤k¼êr: R→(0,+∞)8Ü,÷v
lim
t→−∞
e
δt
r
2
(t) = 0,(2.2)
…D
δ,X
t
´é?¿r
b
D
∈R
δ
,¦D(t)⊂
¯
B(0;r
b
D
(t))¤k
ˆ
D={D(t),t∈R}8a,Ù¥
¯
B(0,r
b
D
(t))´±0•¥%r
b
D
(t)•Œ»4¥.
3.2..£áÂ8•35
é•§(1.1))3˜mX
t
¥‰kO.
-G(t) =
1
2
ε(t)ku
t
k
2
+
1
2
k∇uk
2
+
δ
4
k∇uk
4
,½ÂUþ¼ê
K(t) = G(t)+
Z
Ω
F(u)dx,(2.3)
d(1.10)ªk
Z
Ω
F(u)dx>−
1
2λ
1
k∇uk
2
−C,(2.4)
d(1.2)ª9H¨olderØª,k
|βε(t)(u
t
,u)|6
ε(t)
4
ku
t
k
2
+
Lβ
2
λ
1
k∇uk
2
.(2.5)
d(1.3)ª9i\V
1
→L
p+1
(Ω),
Z
Ω
F(u)dx6C
Z
Ω
(1+|u|
p+1
)dx6C(k∇uk
2
).(2.6)
d(1.4)ª9Sobolev i\,•3~êc
0
,C
0
±94O¼êC(s),¦
c
0
G(t)−C
0
6K(t) 6C(G(t)).(2.7)
DOI:10.12677/aam.2022.1174834567A^êÆ?Ð
Xpõ§à
0 <β<1,‰•§(1.1) ¦±u
t
+βu,Œ
d
dt
K
1
(t)+
Z
Ω
[h(u
t
)u
t
−

0
(t)
2
|u
t
|
2
−β(t)|u
t
|
2
]dx+k∇u
t
k
2
+ρ(1+δk∇uk
2
)k∇uk
2
+βhh(u
t
),ui−βhf(u),ui
= hg(t),u
t
+βui+β
0
(t)hu
t
,ui.(2.8)
Ù¥K
1
(t) = K(t)+βhu
t
,ui+
1
2
βk∇uk
2
.Ï•
hg(t),u
t
+βui6
aβ
2
2λ
1
k∇uk
2
+
a
2
ku
t
k
2
+aβhu,u
t
i+
2
a
kg(t)k
2
,
¤±
d
dt
K
1
(t)+βK
1
(t)+Λ(t) 6
2
a
kg(t)k
2
,(2.9)
Ù¥
Λ(t) =
Z
Ω
[h(u
t
)u
t
−

0
(t)
2
|u
t
|
2
−β(t)|u
t
|
2
]dx+β(h(u
t
),u)+β(f(u),u)
−β
Z
Ω
F(u)dx+(β−
β
2
−
β
2
2
−
aβ
2
2λ
1
)k∇uk
2
+βδk∇uk
4
−β
2
ε(t)hu
t
,ui−β(ε
0
(t)−a)(u,u
t
).
d(1.3)ª9H¨olderØª,k
|(ε
0
(t)+a)(u
t
,u)|6Cku
t
kkuk6
C
4η
ku
t
k
2
+ηk∇uk
2
.(2.10)
d(1.6)ªÚ(1.7)ª,Œ
|
Z
Ω
h(u
t
)udx|6kh(u
t
)kkuk
6C
Z
Ω
|u|dx+C
Z
Ω
(h(u
t
)u
t
)
p
p+1
|u|dx
6C
Z
Ω
|u|dx+C
Z
Ω
(h(u
t
)u
t
dx)
p
p+1
Z
Ω
(|u|
p+1
dx)
1
p+1
6C
Z
Ω
|u|dx+C
Z
Ω
(h(u
t
)u
t
dx)
p
p+1
k∇uk
6C
Z
Ω
|u|dx+C(1+
Z
Ω
(h(u
t
)u
t
dx)k∇uk
6M
g,Ω
+ηk∇uk
2
+C(G(τ))
Z
Ω
h(u
t
)u
t
dx.(2.11)
DOI:10.12677/aam.2022.1174834568A^êÆ?Ð
Xpõ§à
Ù¥η>0 v,M
g,Ω
´˜‡CzÊÏ~ê.d(1.11) ªÚ(1.12) ª,Œ
β(f(u),u)−
Z
Ω
F(u)dx>β(
Z
Ω
F(u)dx−
1
2λ
1
k∇uk
2
−C−
Z
Ω
F(u)dx)
>−
β
2λ
1
k∇uk
2
−βC.(2.12)
(Ü(2.7)ªÚ(2.10)-(2.12)ª,k
Λ(t) =
Z
Ω
[(1−C(G(τ)))h(u
t
)u
t
−
(
0
(t)+a)
2
|u
t
|
2
−β(
7(t)
4
+
C
4η
)|u
t
|
2
]dx
+(1+βk∇uk
2
−
1
2
−
β
2
−
β
2
2
−
Lβ
2
2λ
1
−2η)k∇uk
2
−βM
g,Ω
.(2.13)
d(1.4)ª,•3m>0 Ú|s|>R
0
,kh
0
>m,Ïd,
Z
Ω
h(u
t
)u
t
dx>m
Z
Ω{|u
t
|>R
0
}
|u
t
|
2
dx.(2.14)
éβ
1
v,·‚k
Z
Ω
h(u
t
)u
t
dx−β
1
ku
t
k
2
>m
Z
Ω{|u
t
|>R
0
}
|u
t
|
2
dx−β
1
Z
Ω{|u
t
|>R
0
}
|u
t
|
2
dx−β
1
Z
Ω{|u
t
|6R
0
}
|u
t
|
2
dx
>(m−β
1
)
Z
Ω{|u
t
|>R
0
}
|u
t
|
2
dx+β
1
Z
Ω{|u
t
|6R
0
}
|u
t
|
2
dx−2β
1
R
2
0
|Ω|.(2.15)
β=η
2
,ÀJηv,¦1 −βC(E(τ))>
1
2
,r(2.15)ª“\(2.13)ª¥,ŒΛ(t)>
−βM
g,Ω
.·‚Œ
d
dt
K
1
(t)+βK
1
(t) 6βM
g,Ω
+
2
a
kg(t)k
2
.(2.16)
é(2.16)ü>Ó¦±e
βt
¿3[t−τ,t] þÈ©,k
K
1
(t) 6β
−1
(1−e
−βτ
)+e
−βτ
−K(t−τ)+
2
a
Z
t
t−τ
e
−βs
kh(s)k
2
ds.(2.17)
é?¿y
0
∈D
t−τ
,t∈R,t>0,
A^GronwallÚn,d(2.7)ª,·‚k
kφ(τ,t−τ,y
0
)k
2
X
t
62Ce
−βt
K
1
(t−τ)+2M
g,Ω
(1−e
−βτ
)+
4
a
Z
t
t−τ
e
−βs
kh(s)k
2
ds.(2.18)
(Q
β
(t))
2
62C(1 −e
−βτ
) +
4
a
R
t
t−τ
e
−βs
kh(s)k
2
ds, •ÄX
t
¥4¥B
β,X
t
, ½ÂB
β
,X
t
={y∈
X
t
,kyk
2
X
t
6(Q
β
(t))
2
},(Ü(2.7)ª•,B
β,X
t
´φ.£D
β,X
t
áÂ8.
DOI:10.12677/aam.2022.1174834569A^êÆ?Ð
Xpõ§à
½n4b(1.2)-(1.8) ª¤á, K•§(1.1) )šg£ÄåXÚ(θ,φ) 3X
t
¥•3.£
D
β,X
t
áÂ8.
y²3kOÄ:þ,Œ±†Ñ•§(1.1))šg£ÄåXÚ(θ,φ) 3X
t
¥•3
.£D
β,X
t
áÂ8.
4..£áÚf
4.1.kO
Ún2b(1.2)-(1.8)¤á,½Â3X×Xþ¼êΦ(·,·) ´Â ¼ê.
y²é?¿t∈R,-y
i
=(u
i
(t),∂
t
u
i
)(i=1,2)••§(1.1)'uЊy
i
0
=(u
i
0
,v
i
0
)∈
˜
D
t−τ
×
˜
D
t−τ
),Ù¥τ>0.••BO, Pω(t) = u
1
(t)−u
2
(t),Kω(t) ÷v±e•§

















ε(t)ω
tt
−
δ
2
(k∇u
1
k
2
+k∇u
2
k
2
)∆ω−
δ
2
h∇(u
1
+u
2
),∇ωi∆(u
1
+u
2
)
−∆ω−∆ω
t
+h(u
1
t
)−h(u
2
t
)+g(u
1
)−g(u
2
) = 0,(x,t) ∈Ω×R
+
,
ω(x,t) = 0,x∈∂Ω,t∈R,
ω(x,0) = u
1
0
(x)−u
2
0
(x),ω
t
(x,0) = u
1
1
(x)−u
2
1
(x),x∈Ω.
(3.1)
-
K
ω
(t) =
1
2
e
γt
Z
Ω
[ε(t)|ω
t
(t)|
2
+
1
2
|∇ω(t)|
2
+
δ
4
(k∇u
1
k
2
+k∇u
2
k
2
)|∇ω(t)|
2
]dx.
‰(3.1)ª¦±e
γt
ω
t
(t),k
d
dt
[e
γt
K
ω
(t)]−
1
2
ε
0
(t)kω
t
(t)k
2
+hh(u
1t
)−h(u
2t
),e
γt
ω
t
(t)i
= −
δ
2
e
γt
h∇(u
1
+u
2
),∇ω(t)ih∇(u
1
+u
2
),∇ω
t
(t)i+γe
γt
K
ω
(t)
−e
γt
k∇ω
t
(t)k
2
−e
γt
hf(u
1
)−f(u
2
),ω
t
(t)i.(3.2)
3[s,t]×ΩþÈ©,¿dε
0
(t) <09h5Ÿ, k
e
γt
K
ω
(t)−e
γs
K
ω
(s)
6−
δ
2
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζ+γ
Z
t
s
e
γζ
K
ω
(ζ)dζ
−
Z
t
s
Z
Ω
e
γζ
|∇ω
t
(ζ)|
2
dxdζ−
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζ.(3.3)
DOI:10.12677/aam.2022.1174834570A^êÆ?Ð
Xpõ§à
2é(3.3)ª'us3[t−τ,t] þÈ©,k
τe
γt
K
ω
(t)−
Z
t
t−τ
e
γs
K
ω
(s)ds
6+γ
Z
t
t−τ
Z
t
s
e
γζ
K
ω
(ζ)dζds−
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζds
−
δ
2
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζds
−
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
k∇ω
t
(ζ)k
2
dxdζds.(3.4)
,,‰(3.1)ª¦±e
γt
ω(t),=
d
dt
[e
γt
(ε(t)kω
t
(t)k
2
+
1
2
k∇ω(t)k
2
)]+
δ
2
e
γt
(k∇u
1
k
2
+k∇u
1
k
2
)k∇ω(t)k
2
= −
δ
2
e
γt
h∇(u
1
+u
2
),∇ω(t)i
2
+ε
0
(t)ω
t
(t)ω(t)−hh(u
1t
)−h(u
2t
),e
γt
ω(t)i
−e
γt
hf(u
1
)−f(u
2
),ω(t)i+γe
γt
[ε(t)kω
t
(t)k
2
+
1
2
k∇ω(t)k
2
].(3.5)
éþª3[s,t]×ΩþÈ©,¿dh5Ÿ,k
δ
2
Z
t
s
Z
Ω
e
γζ
(k∇u
1
k
2
+k∇u
1
k
2
)|∇ω(ζ)|
2
dxdζ+
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζ
6−
Z
Ω
e
γt
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
Z
Ω
e
γs
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dx
−
δ
2
Z
t
s
Z
Ω
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dxdζ−
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζ
+γ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζ+
Z
t
s
Z
Ω
ε
0
(ζ)e
γζ
ω
t
(ζ)ω(ζ)dxdζ.(3.6)
é(3.6)ª'us3[t−τ,t] þÈ©¿¦±γ, k
Z
t
t−τ
Z
t
s
Z
Ω
(
γδ
2
e
γζ
(k∇u
1
k
2
+k∇u
1
k
2
)|∇ω(ζ)|
2
+γe
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
))dxdζds
6−
δγ
2
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dζds−γ
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζds
−γτ
Z
Ω
e
γζ
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+γ
Z
t
t−τ
Z
t
s
Z
Ω
ε
0
(ζ)ω
t
(ζ)ω(ζ)dxdζds
+γ
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζds
+γ
Z
t
t−τ
Z
Ω
e
γζ
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dxds.(3.7)
DOI:10.12677/aam.2022.1174834571A^êÆ?Ð
Xpõ§à
ò(3.7)ª“\(3.4)ª,k
e
γt
K
ω
(t)−
Z
t
t−τ
e
γs
K
ω
(s)ds
6−
δγ
4
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dζds−
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζ
−
γτ
2
Z
Ω
e
γζ
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
γ
2
Z
t
t−τ
Z
t
s
Z
Ω
ε
0
(ζ)ω
t
(ζ)ω(ζ)dxdζds
−
Z
t
s
Z
Ω
e
γζ
|∇ω
t
(ζ)|
2
dxdζ−
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζds
−
δ
2
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζ
+
γ
2
2
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζds
+
γ
2
Z
t
t−τ
Z
Ω
e
γζ
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dxds.(3.6)
3[t−τ,t] þÈ©(3.5) ª,¿dh5Ÿ, k
δ
2
Z
t
t−τ
Z
Ω
e
γs
(k∇u
1
k
2
+k∇u
2
k
2
)|∇ω(s)|
2
dxds
6−
δ
2
Z
t
t−τ
Z
Ω
e
γs
h∇(u
1
+u
2
),∇ωi
2
dxds−
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω(s)dxds
+γ
Z
t
t−τ
Z
Ω
e
γs
(ε(s)|ω
t
(s)|
2
+
1
2
|∇ω(s)|
2
)dxds−
Z
t
t−τ
Z
Ω
e
γs
ε(s)|ω
t
(s)|
2
dxds
−
Z
Ω
e
γt
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
Z
t
t−τ
Z
Ω
ε
0
(s)ω
t
(s)ω(s)dxds
+
Z
Ω
e
γ(t−τ)
(ε(t−τ)ω
t
(t−τ)ω(t−τ)+
1
2
|∇ω(t−τ)|
2
)dx.(3.7)
ò(3.7)ª“\(3.6)ª,k
e
γt
K
ω
(t)+
Z
t
t−τ
e
γs
K
ω
(s)ds
6−
γτ
2
Z
Ω
e
γζ
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
γ
2
Z
t
t−τ
Z
t
s
Z
Ω
ε
0
(ζ)ω
t
(ζ)ω(ζ)dxdζds
−
δγ
4
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dζds−
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζ
−
δ
2
Z
t
t−τ
Z
Ω
e
γs
h∇(u
1
+u
2
),∇ωi
2
dxds−
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω(s)dxds
+γ
Z
t
t−τ
Z
Ω
e
γs
(ε(s)|ω
t
(s)|
2
+
1
2
|∇ω(s)|
2
)dxds−
Z
t
t−τ
Z
Ω
e
γs
ε(s)|ω
t
(s)|
2
dxds
−
Z
t
s
Z
Ω
e
γζ
|∇ω
t
(ζ)|
2
dxdζ−
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζds
DOI:10.12677/aam.2022.1174834572A^êÆ?Ð
Xpõ§à
−
Z
Ω
e
γt
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
Z
t
t−τ
Z
Ω
ε
0
(s)ω
t
(s)ω(s)dxds
+
Z
Ω
e
γ(t−τ)
(ε(t−τ)ω
t
(t−τ)ω(t−τ)+
1
2
|∇ω(t−τ)|
2
)dx
−
δ
2
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζ
+
γ
2
2
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζds
+
γ
2
Z
t
t−τ
Z
Ω
e
γζ
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dxds.(3.8)
é(3.2)ª3[t−τ,t] þÈ©,¿dε(t),h(u
t
)5Ÿ,Œ
−
Z
t
t−τ
e
γs
K
ω
(s)ds
6−
1
γ
e
γt
K
ω
(t)+
1
γ
e
γ(t−τ)
K
ω
(t−τ)−
1
γ
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω
t
(s)dxds
−
δ
2γ
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇ω(s)ih∇(u
1
+u
2
),∇ω
t
(s)ids.(3.9)
ò(3.9)ª‘\(3.8)ª,k
τe
γt
K
ω
(t)6−
γτ
2
Z
Ω
e
γζ
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
γ
2
Z
t
t−τ
Z
t
s
Z
Ω
ε
0
(ζ)ω
t
(ζ)ω(ζ)dxdζds
−
δγ
4
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dζds−
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζ
−
δ
2
Z
t
t−τ
Z
Ω
e
γs
h∇(u
1
+u
2
),∇ωi
2
dxds−
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω(s)dxds
+γ
Z
t
t−τ
Z
Ω
e
γs
(ε(s)|ω
t
(s)|
2
+
1
2
|∇ω(s)|
2
)dxds−
Z
t
t−τ
Z
Ω
e
γs
ε(s)|ω
t
(s)|
2
dxds
−
1
γ
e
γt
K
ω
(t)+
1
γ
e
γ(t−τ)
K
ω
(t−τ)−
1
γ
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω
t
(s)dxds
−
Z
t
s
Z
Ω
e
γζ
|∇ω
t
(ζ)|
2
dxdζ−
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζds
−
Z
Ω
e
γt
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
Z
t
t−τ
Z
Ω
ε
0
(s)ω
t
(s)ω(s)dxds
+
Z
Ω
e
γ(t−τ)
(ε(t−τ)ω
t
(t−τ)ω(t−τ)+
1
2
|∇ω(t−τ)|
2
)dx
−
δ
2γ
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇ω(s)ih∇(u
1
+u
2
),∇ω
t
(s)ids
−
δ
2
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζ
+
γ
2
2
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζds
+
γ
2
Z
t
t−τ
Z
Ω
e
γζ
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dxds.(3.10)
DOI:10.12677/aam.2022.1174834573A^êÆ?Ð
Xpõ§à
(Ü(3.8)ª-(3.10)ª,Œ
Φ
t,τ
((u
1
0
,v
1
0
),(u
2
0
,v
2
0
))
= −(
γ
2τ
+
1
τ
)
Z
Ω
e
γζ
(ε(t)ω
t
(t)ω(t)+
1
2
|∇ω(t)|
2
)dx+
γ
2τ
Z
t
t−τ
Z
t
s
Z
Ω
ε
0
(ζ)ω
t
(ζ)ω(ζ)dxdζds
+
γ
2τ
Z
t
t−τ
Z
Ω
e
γζ
(ε(s)ω
t
(s)ω(s)+
1
2
|∇ω(s)|
2
)dxds+
1
τ
Z
t
t−τ
Z
Ω
ε
0
(s)ω
t
(s)ω(s)dxds
−
δγ
4τ
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ωi
2
dζds−
1
τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω
t
(ζ)dxdζ
+
γ
τ
Z
t
t−τ
Z
Ω
e
γs
(ε(s)|ω
t
(s)|
2
+
1
2
|∇ω(s)|
2
)dxds−
1
τ
Z
t
t−τ
Z
Ω
e
γs
ε(s)|ω
t
(s)|
2
dxds
−
1
τ
Z
t
s
Z
Ω
e
γζ
|∇ω
t
(ζ)|
2
dxdζ−
1
τ
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(f(u
1
)−f(u
2
))ω(ζ)dxdζds
−
δ
2τ
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇ωi
2
ds−
1
τ
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω(s)dxds
−
δ
2γτ
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇ω(s)ih∇(u
1
+u
2
),∇ω
t
(s)ids
−
δ
2τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇ω(ζ)ih∇(u
1
+u
2
),∇ω
t
(ζ)idζ
−
1
τγ
e
γt
K
ω
(t)−
1
γτ
Z
t
t−τ
Z
Ω
e
γs
(f(u
1
)−f(u
2
))ω
t
(s)dxds
+
γ
2
2τ
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(ε(t)|ω
t
(ζ)|
2
+
1
2
|∇ω(ζ)|
2
)dxdζds.(3.11)
l
K
0
ω
(t) 6C
e
−βτ
τ
˜
R
2
t−τ
+Φ
t,τ
((u
1
0
)(v
1
0
),(u
2
0
)(v
2
0
)),(3.12)
Ù¥
˜
R
2
t−τ
=
R
Ω
e
γ(t−τ)
(ε(t−τ)ω
t
(t−τ)ω(t−τ)+
1
2
|∇ω(t−τ)|
2
)dx+
1
γ
e
γ(t−τ)
K
ω
(t−τ).
-(u
n
,u
n
t
)•éAЩŠ(u
i
0
,u
i
1
0
) ∈
˜
D
t−τ
0
×
˜
D
t−τ
0
).®•k∇u
n
k
2
´k..d(1.2)-(1.3)
ª•:éu?¿½t−τ
0
,ζ∈[t−τ
0
,t],ε(ζ)k.,ε(ζ)ku
n
t
k
2
k..Ïdk∇u
n
k
2
+ε(ζ)ku
n
t
k
2
k..ŠâAlaoglu½n,k±e(J:
u
n
→u3L
∞
(τ,T;H
1
0
(Ω))¥f∗Âñ,(3.13)
u
n
t
→u
t
3L
∞
(τ,T;L
2
(Ω))¥f∗Âñ,(3.14)
u
n
→u3L
p+1
(τ,T;L
p+1
(Ω))¥rÂñ,(3.15)
u
n
→u3L
2
(τ,T;L
2
(Ω))¥rÂñ.(3.16)
e¡O(3.11)ª¥z˜‘.d(3.13)-(3.15)ª,k
lim
n→∞
lim
m→∞
Z
Ω
e
γζ
(ε(t)(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)+
1
2
|∇(u
n
−u
m
)|
2
)dx= 0.(3.17)
DOI:10.12677/aam.2022.1174834574A^êÆ?Ð
Xpõ§à
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
Ω
e
γζ
L(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)dxds= 0.(3.18)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
t
s
Z
Ω
L(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)dxdζds= 0.(3.19)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
Ω
e
γζ
(L(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)+
1
2
|∇(u
n
−u
m
)|
2
)dxds= 0.(3.20)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
t
s
Z
Ω
e
γζ
(L|∂
t
u
n
−∂
t
u
m
|
2
+
1
2
|∇ω(u
n
−u
m
)|
2
)dxdζds= 0.(3.21)
lim
n→∞
lim
m→∞
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇(u
n
−u
m
)i
2
ds= 0.(3.22)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇(u
n
−u
m
)i
2
dζds= 0.(3.23)
lim
n→∞
lim
m→∞
Z
t
s
e
γζ
h∇(u
1
+u
2
),∇(u
n
−u
m
)ih∇(u
1
+u
2
),∇(∂
t
u
n
−∂
t
u
m
)idζ= 0.(3.24)
lim
n→∞
lim
m→∞
Z
t
t−τ
e
γs
h∇(u
1
+u
2
),∇(u
n
−u
m
)ih∇(u
1
+u
2
),∇(∂
t
u
n
−∂
t
u
m
)ids= 0.(3.25)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
Ω
e
γs
(L|(∂
t
u
n
−∂
t
u
m
)|
2
+
1
2
|∇(u
n
−u
m
)|
2
)dxds= 0.(3.26)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
Ω
e
γζ
(f(u
n
)−f(u
m
))(u
n
−u
m
)dxdζ= 0.(3.27)
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
t
s
Z
Ω
e
βζ
(f(u
n
)−f(u
m
))(u
n
−u
m
)dxdζds= 0.(3.28)
d(2.8)ª±9H¨olderØª,k
|
Z
t
t−τ
Z
Ω
e
βζ
(f(u
n
)−f(u
m
))·(u
n
t
−u
m
t
)dxdζ|
6
Z
t
t−τ
Z
Ω
e
βζ
C(1+|u
n
|
p−1
+|u
m
|
p−1
)·|u
n
−u
m
|·|u
n
t
−u
m
t
|dxdζ
6
Z
t
t−τ
e
βζ
(C(1+ku
n
k
p−1
L
2(p+1)
(Ω)
+ku
m
k
p−1
L
2(p+1)
(Ω)
)
·ku
n
−u
m
k
L
p+1
(Ω)
·ku
n
t
−u
m
t
k
L
2
(Ω)
dζ
6
Z
t
t−τ
e
βξ
C(1+ku
n
(s)k
p−1
V
1
+ku
m
(s)k
p−1
V
1
)
·ku
n
(s)−u
m
(s)k
L
p+1
(Ω)
·ku
n
t
−u
m
t
k
L
2
(Ω)
dζ,

lim
n→∞
lim
m→∞
Z
t
t−τ
Z
Ω
e
βζ
(f(u
n
)−f(u
m
))(u
n
t
−u
m
t
)dxdζ= 0.(3.29)
DOI:10.12677/aam.2022.1174834575A^êÆ?Ð
Xpõ§à
aq/, éu½t, |
R
t
s
R
Ω
e
βζ
(f(u
n
(ξ)) −f(u
m
(ζ)))(u
n
t
(ζ) −u
m
t
(ζ))dxdζ|k., dV‚
››Âñ½nŒ
lim
n→∞
lim
m→∞
Z
t
t−τ
Z
t
s
Z
Ω
e
βζ
(f(u
n
(ζ))−f(u
m
(ζ)))(u
n
t
(ζ)−u
m
t
(ζ))dxdζds
=
Z
t
t−τ
0
( lim
n→∞
lim
m→∞
Z
t
s
Z
Ω
e
γζ
(f(u
n
(ζ))−f(u
m
(ζ)))(u
n
t
(ζ)−u
m
t
(ζ))dxdζ)ds
= 0.(3.30)
Ïd,Œ±Φ
t,τ
((u
1
0
,v
1
0
),(u
2
0
,v
2
0
))•
˜
D
t−τ
0
×
˜
D
t−τ
0
þ ¼ê.
½n53ª(1.2)-(1.9) 9(1.11) ¤ábe, d¯K(1.10) )šg£ÄåXÚ(θ,φ) 3
H
t
¥•3žm•6.£áÚf.
y²:dÚn2 •, (3.11) ª½Â¼êΦ
t,τ
0
´˜‡Â ¼ê, (ܽn2 Ú½n3Œ•¯K
(1.1))šg£ÄåXÚ(θ,φ) 3H
t
¥•3žm•6.£áÚf.
5.o(
Kirchhoff•§£ãÔnÆ¥Œ -î•ĤÚå•ÝCzy–. d•§˜†2•
A^uó§ÔnÆ¥ïþxùÄ!ÚîåÆ!°(Æ!‰»Ôn!)ÔÉó¯K+•.100õ
c5, ‘X‰E uÐ, <‚éKirchhoff •§A^+•Øä*Œ, Kirchhoff •§Lˆª•3Ø
ä/í2, 5õ'uKirchhoff•§êÆÔn.±ïá. ©ïÄ‘kr{ZÚš‚5
6Äšg £KirchhoffÅ•§, ÄkÏLIOFaedo−Galerkin •{)•3•˜5, Ù
gæ^kO•{)ûš‚5{Z‘!šg£å‘ÚKirchhoff.šÛÜ‘3yáÂ
8ž‘5 (J, •$^ ¼êÚìCkO•{y²žm•6.£áÚf•35.
ISNõͶÆöÑ—åuá‘ÄåXÚïÄ¿Œþ`D¤J, ¦‚ïá¿uÐáÚ
f•35nØ,¦á‘ÄåXÚnØ3êÆÔn•§ïÄ¥•2•A^.
Ä7‘8
I[g,‰ÆÄ7‘8(1OÒ:11761062;11961059;11661071).
ë•©z
[1]Kirchhoff,G.(1883)Vorlesungen¨uberMechanik.Teubner,Sluttgart.
[2]Yang,L.andZhong,C.K.(2008)GlobalAttractorforPlateEquationwithNonlinearDamping.
NonlinearAnalysis,69,3802-3810.https://doi.org/10.1016/j.na.2007.10.016
[3]Yang,L.(2008)UniformAttractorforNon-AutonomousPlateEquationwithaLocalized
DampingandaCriticalNonlinearity.JournalofMathematicalAnalysisApplications,338,
1243-1254.https://doi.org/10.1016/j.jmaa.2007.06.011
DOI:10.12677/aam.2022.1174834576A^êÆ?Ð
Xpõ§à
[4]Xiao,H.B.(2009)AsymptoticDynamicsofPlateEquationwithaCriticalExponentonUn-
boundedDomain.NonlinearAnalysis,70,1288-1301.
https://doi.org/10.1016/j.na.2008.02.012
[5]Wang,X.,Yang,L.U.andMa,Q.Z.(2014)UniformAttractorsforNon-AutonomousSuspen-
sionBridge-TypeEquations.BoundaryValueProblems,2014,ArticleNo.75.
https://doi.org/10.1186/1687-2770-2014-75
[6]M0,o¡.‘š‚5{Zšg£Å•§.£áÚf•35[J].ç9ôŒÆg,‰ÆÆ,
2014,31(3):306-314.
[7]Ma,H.L.,Wang,J.andXie,J.(2021)PullbackAttractorsforNonautonomousDegenerate
KirchhoffEquationswithStrongDamping.AdvancesinMathematicalPhysics,2021,Article
ID:7575078.https://doi.org/10.1155/2021/7575078
[8]Conti,M., Pata, V.andTemam, R.(2013)AttractorsforProcessesonTime-DependentSpaces.
ApplicationstoWaveEquations.JournalofDifferentialEquations,255,1254-1277.
https://doi.org/10.1016/j.jde.2013.05.013
[9]DiPlinio,F.,Duabe,G.S.andTemam,R.(2010)TimeDependentAttractorfortheOscillon
Equation.DiscreteandContinuousDynamicalSystems,29,141-167.
https://doi.org/10.3934/dcds.2011.29.141
[10]4ËË,ê|û.šg£Plate•§žm•6r.£áÚf•35[J].êÆcr:A6,2017,
38(2):125-144.
[11]Sun,C.Y.,Cao,D.M.andDuan,J.Q.(2006)Non-AutonomousDynamicsofWaveEquations
withNonlinearDampingandCriticalNonlinearity.Nonlinearity,19,2645-2665.
https://doi.org/10.1088/0951-7715/19/11/008
[12]Li, Y.J.andZhong,C.K.(2007)PullbackAttractorsfortheNorm-to-WeakContinuousProcess
andApplicationtotheNon-AutonomousReaction-DiffusionEquations.Computers Mathemat-
icswithApplications,190,1020-1029.https://doi.org/10.1016/j.amc.2006.11.187
DOI:10.12677/aam.2022.1174834577A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.