设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(7),1160-1168
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.127127
/ªnÝ‚þrGorenstein
FP-S
???
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c64F¶¹^Fϵ2022c77F¶uÙFϵ2022c714F
Á‡
©ïÄ/ªnÝ‚þrGorensteinFP-S"T=
A0
UB
!
´/ªnÝ
‚§Ù¥AÚB´‚§U´†B-mA-V"y²eT´†và‚§
B
U´k•L«
…pd(
B
U)<∞§M=
M
1
M
2
!
ϕ
M
´rGorensteinFP-S†T-§Kker
g
ϕ
M
´rGorenstein
FP-S†A-§M
2
´rGorensteinFP-S†B-§…
g
ϕ
M
´÷Ó"
'…c
/ªnÝ‚§FP-S§rGorensteinFP-S
StronglyGorensteinFP-InjectiveModules
overFormalTriangularMatrixRings
JinTan
CollegeofMathematicsandStatistics,NorthwestNormalUniversity, LanzhouGansu
Received:Jun.5
th
,2022;accepted:Jul.7
th
,2022;published:Jul.14
th
,2022
©ÙÚ^: ?./ªnÝ‚þrGorensteinFP-S[J].nØêÆ,2022,12(7):1160-1168.
DOI:10.12677/pm.2022.127127
?
Abstract
This paper considersstronglyGorensteinFP-injective modules over formal triangular
matrixrings.LetT=
A0
UB
!
beformaltriangularmatrixring,whereAandBare
tworingsandUisa(B,A)-bimodule.ItisprovedthatifTisaleftcoherentring,
B
U
is finitely presented and pd(
B
U) <∞, M=
M
1
M
2
!
ϕ
M
is strongly Gorenstein FP-injective
left T-modules,thenker
g
ϕ
M
isstronglyGorensteinFP-injectiveleftA-modules,M
2
is
stronglyGorensteinFP-injectiveleftB-modules,and
g
ϕ
M
isanepimorphism.
Keywords
FormalTriangularMatrixRing, FP-InjectiveModule,StronglyGorensteinFP-Injective
Module
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
AuslanderÚBridger31969c•k•)¤Ú\Gorenstein‘êVg.ù«‘ê´Ý‘
ê[ z.Enochs3©z[1]¥,òGorenstein‘ê•"k•)¤¡•GorensteinÝ,¿
…òGorensteinÝí2?¿‚œ/e.¡†R-M´FP-S,XJé?¿k•L«
†R-N,kExt
1
R
(N,M)=0.2008c,Mao3©z[2]¥ïÄGorensteinFP-S.2013c,
Gao3©z[3]¥Ú\rGorensteinFP-SVg.rGorensteinFP-S´Gorenstein
FP-S˜‡AÏœ¹;¿y²rGorensteinFP-S uFP-SÚGorensteinFP-S
ƒm.
3‚nØ¥,nÝ‚´˜a-‡š†‚,´‰ÆdnØ-‡óä,3ˆ‡“ê
©|Ñk-‡A^.2019c,Mao3©z[4]¥‰Ñ/ªnÝ‚þFP-Sd•x.
2022c,Yang3©z[5]¥ïÄ/ªnÝ‚þGorensteinFP-S.É±þ©zé
u,©Ì‡ïÄ/ªnÝ‚þrGorensteinFP-S.
DOI:10.12677/pm.2022.1271271161nØêÆ
?
2.ý•£
©¤k‚þ•kü (Ü‚.
T=
A0
UB
!
•˜‡nÝ‚,Ù¥A,B´‚,U´B-A-V.d©z[6]•,†T-‰
Ɔ‰ÆΩd.‰ÆΩ¥é–´n|M=
M
1
M
2
!
ϕ
M
§Ù¥M
1
∈A-Mod§M
2
∈B-Mod§
…ϕ
M
: U⊗
A
M
1
→M
2
´B-Ó.?¿ü‡é–M=
M
1
M
2
!
ϕ
M
†N=
N
1
N
2
!
ϕ
N
ƒm
´
f
1
f
2
!
§Ù¥f
1
∈Hom
A
(M
1
,N
1
)§f
2
∈Hom
B
(M
2
,N
2
)§…÷v±e†ãµ
U⊗
A
M
1
ϕ
M

1⊗f
1
//
U⊗
A
N
1
ϕ
N

M
2
f
2
//
N
2
‰½T-M=
M
1
M
2
!
ϕ
M
,k
g
ϕ
M
:M
1
→Hom
B
(U,M
2
),Ù¥
g
ϕ
M
(x)(u) = ϕ
M
(u⊗x), x∈M
1
,
u∈U.
†T-S
0
//
M
0
1
M
0
2
!
//
M
1
M
2
!
//
M
00
1
M
00
2
!
//
0
´Ü…=0
//
M
0
1
//
M
1
//
M
00
1
//
0Ú0
//
M
0
2
//
M
2
//
M
00
2
//
0ÑÜ.
3‰ÆT-ModÚȉÆA-Mod×B-Modƒm,·‚½Âeã¼fµ
(1)p:A-Mod×B-Mod→T-Mod,é?¿(M
1
,M
2
)∈A-Mod ×B-Mod,
p(M
1
,M
2
) =
M
1
(U⊗
A
M
1
)⊕M
2
!
.
éA-Mod ×B-Mod¥?¿(f
1
,f
2
)§p(f
1
,f
2
) =
f
1
(1⊗f
1
)⊕f
2
!
.
(2)h:A-Mod ×B-Mod→T-Mod,é?¿(M
1
,M
2
)∈A-Mod ×B-Mod,
h(M
1
,M
2
) =
M
1
⊕Hom
B
(U,M
2
)
M
2
!
.
éA-Mod ×B-Mod¥?¿(f
1
,f
2
),h(f
1
,f
2
) =
f
1
⊕Hom
B
(U,f
2
)
f
2
!
.
DOI:10.12677/pm.2022.1271271162nØêÆ
?
(3)q: T-Mod→A-Mod×B-Mod,é?¿
M
1
M
2
!
∈T-Mod,
q(
M
1
M
2
!
) = (M
1
,M
2
).
éT-Mod¥?¿
f
1
f
2
!
,q(
f
1
f
2
!
) = (f
1
,f
2
).
w,(p,q)Ú(q,h)Ñ´Š‘é,lp ±Ýé–,h±Sé–.
½Â2.1[3]¡†R-M´rGorensteinFP-S,XJ•3FP-S†R-ÜS
Λ : ···
f
//
E
f
//
E
f
//
E
f
//
···
¦M
∼
=
ker(f),¿…é?¿k•L«†R-P…pd(P) <∞,kHom
R
(P,Λ)Ü.
Ún2.2[6]M=
M
1
M
2
!
ϕ
M
´†T-.KM´Ý†T-…=M
1
´Ý†A-,
M
2
/Imϕ
M
´Ý†B-Úϕ
M
´ü.
Ún2.3[7]M=
M
1
M
2
!
ϕ
M
´†T-,pd(
B
U)<∞,KMÝ‘êk•…=M
1

Ý‘êk•ÚM
2
Ý‘êk•.
Ún2.4 [4]M=
M
1
M
2
!
ϕ
M
´†T-,
B
U´k•L«,KM´FP-S†T-…=
ker
g
ϕ
M
´FP-S†A-,M
2
´FP-S†B-,…
g
ϕ
M
´÷.
Ún2.5 [8]B´†và‚,
B
U´k•L«,KM=
M
1
M
2
!
ϕ
M
´k•L«…=M
1
´k•L«ÚM
2
´k•L«.
3.̇(J
e¡?ØnÝ‚þrGorensteinFP-S.
·K3.1M=
M
1
M
2
!
ϕ
M
´†T-.T´†và‚,
B
U´k•L«,…pd(
B
U)<∞,K±e
(ؤáµ
(1)XJM
1
´rGorensteinFP-S†A-,K
M
1
0
!
´rGorensteinFP-S†T-.
(2)XJM
2
´rGorensteinFP-S†B-,K
Hom
B
(U,M
2
)
M
2
!
´rGorensteinFP-S†
T-.
DOI:10.12677/pm.2022.1271271163nØêÆ
?
y²:(1)M
1
´rGorensteinFP-S†A-,K•3FP-S†A-ÜS
Λ : ···
f
//
E
f
//
E
f
//
E
f
//
···
¦M
1
∼
=
ker(f),¿…é?¿k•L«†A-P…pd(P) <∞,kHom
A
(P,Λ)Ü.d Ún2.4 Œ
FP-S†T-ÜS
···
//
E
0
!
ϕ
E

f
0

//
E
0
!
ϕ
E

f
0

//
E
0
!
ϕ
E

f
0

//
···
¦
M
1
0
!
∼
=
ker
f
0
!
.
P
1
P
2
!
ϕ
P
´?¿k•L«†T-,…pd(
P
1
P
2
!
)<∞.Ï•T´†và
‚,¤±d©z[9]Œ•B´†và‚.qdÚn2.3ÚÚn2.5Œ•P
1
´k•L«,…pd(P
1
)<∞.
dq,h¼fŠ‘5ŒHom
T
(
P
1
P
2
!
,
E
0
!
)
∼
=
Hom
A
(P
1
,E),¤±kE/Ó
Hom
T
(
P
1
P
2
!
,
Λ
0
!
)
∼
=
Hom
A
(P
1
,Λ)Ü,Ïd
M
1
0
!
´rGorensteinFP-S†T-.
(2)M
2
´rGorensteinFP-S†B-,K•3FP-S†B-ÜS
Φ : ···
g
//
Q
g
//
Q
g
//
Q
g
//
···
¦M
2
∼
=
ker(g),¿…é?¿k•L«†B-P…pd(P)<∞,kHom
B
(P,Φ)Ü.Ï•
B
U´k
•L«,…pd(
B
U) <∞,¤±Hom
B
(U,Φ)Ü,=k†AÜS
Hom
B
(U,Φ) : ···
g
∗
//
Hom
B
(U,Q)
g
∗
//
Hom
B
(U,Q)
g
∗
//
Hom
B
(U,Q)
//
···
.Ïd†T-ÜS
∆ : ···
//
Hom
B
(U,Q)
Q
!

g
∗
g

//
Hom
B
(U,Q)
Q
!

g
∗
g

//
Hom
B
(U,Q)
Q
!
//
···
¦
Hom
B
(U,M
2
)
M
2
!
∼
=
ker
g
∗
g
!
.?k•L«†T-
P
1
P
2
!
ϕ
P
,…pd(
P
1
P
2
!
) <∞.Ï•T´†
và‚,¤±d©z[9]Œ•B´†và‚.qdÚn2.3ÚÚn2.5Œ•P
2
´k•L«,…pd(P
2
) <
∞,¤±Hom
B
(P
2
,Φ)´Ü.dq,h¼fŠ‘5ŒHom
T
(
P
1
P
2
!
,
Hom
B
(U,Q)
Q
!
)
∼
=
Hom
B
(P
2
,Q),¤±kE/ÓHom
T
(
P
1
P
2
!
,∆)
∼
=
Hom
B
(P
2
,Φ)Ü,Ïd
Hom
B
(U,M
2
)
M
2
!
´rGorensteinFP-S†T-.

DOI:10.12677/pm.2022.1271271164nØêÆ
?
½n3.2M=
M
1
M
2
!
ϕ
M
´†T-.T´†và‚,
B
U´k•L«,…pd(
B
U)<∞.
XJM=
M
1
M
2
!
ϕ
M
´rGorensteinFP-S†T-,Kker
g
ϕ
M
´rGorensteinFP-S†A-,
M
2
´rGorensteinFP-S†B-,…
g
ϕ
M
´÷Ó.
y²:Ï•M=
M
1
M
2
!
ϕ
M
´rGorensteinFP-S†T-,¤±•3FP-S†T-ÜS
∆ : ···
//


E
Q


ϕ
E

f
g

//


E
Q


ϕ
E

f
g

//


E
Q


ϕ
E
//
···
¦M
∼
=
ker
f
g
!
.é?¿k•L«†T-
P
1
P
2
!
ϕ
P
,…pd(
P
1
P
2
!
) <∞,kHom
T
(
P
1
P
2
!
,∆)Ü.
dÚn2.4ŒFP-S†B-ÜS
∆
2
: ···
g
//
Q
g
//
Q
g
//
Q
g
//
···
…M
2
∼
=
ker(g).
H
2
´?¿k•L«†B-,…pd(H
2
) <∞,K•3†B-ÜS
0
//
L
//
K
//
H
2
//
0 ,
Ù¥L´k•)¤†B-,K´k•)¤Ý†B-,Œ†T-ÜS
0
//


0
L


//


0
K


//


0
H
2


//
0 .
Ï•
B
U´k•)¤,d©z[8]ÚÚn2.2Œ
0
L
!
´k•)¤†T-,
0
K
!
´k•)¤†
ÝT-,¤±
0
H
2
!
´k•L«†T-.2dpd(H
2
)<∞ÚÚn2.3•pd(
0
H
2
!
)<∞.^¼
fHom
T
(
0
H
2
!
,−)Š^Ü∆,Kk†T-ÜS
···
//
Hom
T
(


0
H
2


,


E
Q


)
//
Hom
T
(


0
H
2


,


E
Q


)
//
Hom
T
(


0
H
2


,


E
Q


)
//
···
DOI:10.12677/pm.2022.1271271165nØêÆ
?
qdp,q¼fŠ‘5Hom
T
(
0
H
2
!
,
E
Q
!
)
∼
=
Hom
B
(H
2
,Q),Ïd
Hom
T
(
0
H
2
!
,∆)
∼
=
Hom
B
(H
2
,∆
2
)Ü,¤±M
2
´rGorensteinFP-S†B-.
•Äe¡†ã
E
f
ϕ
E

α
//
M
1
g
ϕ
M

Hom
B
(U,Q)
β
//
Hom
B
(U,M
2
)
du
B
U´k•L«,…pd(
B
U)<∞,¤±Hom
B
(U,∆
2
)Ü,¤±β´÷.qÏ•
E
Q
!
´
FP-S,dÚn2.4•
f
ϕ
E
´÷,¤±
g
ϕ
M
´÷.
Ï•
E
Q
!
ϕ
E
´FP-S,dÚn2.4•
f
ϕ
E
´÷,¤±kÜ
0
//
ker
f
ϕ
E
//
E
//
Hom
B
(U,Q)
//
0 ,
Ù¥ker
f
ϕ
E
´FP-S†A-,Q´FP-S†B-.´±e1Ü†ã
.
.
.

.
.
.

.
.
.

0
//
ker
f
ϕ
E

//
E

//
Hom
B
(U,Q)
//

0
0
//
ker
f
ϕ
E

//
E

//
Hom
B
(U,Q)
//

0
0
//
ker
f
ϕ
E

//
E

//
Hom
B
(U,Q)
//

0
0
//
ker
f
ϕ
E

//
E

//
Hom
B
(U,Q)

//
0
.
.
.
.
.
.
.
.
.
Ï•1Ú1n´Ü,¤±1˜•´Ü,Ïdk†A-ÜS
∆
1
: ···
h
//
ker
f
ϕ
E
h
//
ker
f
ϕ
E
h
//
ker
f
ϕ
E
h
//
···,
DOI:10.12677/pm.2022.1271271166nØêÆ
?
¦ker
g
ϕ
M
∼
=
ker(h).e¡y²é?¿k•L«†A-H,…pd(H) <∞,kHom
A
(H,∆
1
)Ü.Ø
”pd(H) = m<∞,ém?18B.
em= 0,Kw,¤á.
em≥1,K•3†A-ÜS0
//
K
//
L
//
H
//
0 ,Ù¥L´k•)¤Ý†A-
…pd(K)≤m−1.qÏ•T´†và‚,d©z[9]•,A´†và‚,¤±K´k•L«†A-.
qϕker
f
ϕ
E
´FP-S,¤±Ext
1
A
(H,ker
f
ϕ
E
) = 0,k±e1Ü†ã
.
.
.

.
.
.

.
.
.

0
//
Hom
A
(H,ker
f
ϕ
E
)

//
Hom
A
(L,ker
f
ϕ
E
)

//
Hom
A
(K,ker
f
ϕ
E
)
//

0
0
//
Hom
A
(H,ker
f
ϕ
E
)

//
Hom
A
(L,ker
f
ϕ
E
)

//
Hom
A
(K,ker
f
ϕ
E
)
//

0
0
//
Hom
A
(H,ker
f
ϕ
E
)

//
Hom
A
(L,ker
f
ϕ
E
)

//
Hom
A
(K,ker
f
ϕ
E
)
//

0
0
//
Hom
A
(H,ker
f
ϕ
E
)

//
Hom
A
(L,ker
f
ϕ
E
)

//
Hom
A
(K,ker
f
ϕ
E
)

//
0
.
.
.
.
.
.
.
.
.
Ï•L´k•)¤Ý†A-,¤±1Ü.d8Bb•,1nÜ.d•ÜSÚn•,
1˜•Ü,=Hom
A
(H,∆
1
)Ü,nþŒker
g
ϕ
M
´rGorensteinFP-S†A-.

íØ3.3M=
M
1
M
2
!
ϕ
M
´†T-.T´†và‚,
B
U´k•L«,…pd(
B
U)<∞.X
JM´rGorensteinFP-S†T-,Hom
B
(U,M
2
)´k•L«,…pd(Hom
B
(U,M
2
))<∞,K
•3rGorensteinFP-S†A-EÚrGorensteinFP-S†B-Q,¦M
∼
=
h(E,Q).
y²:M=
M
1
M
2
!
ϕ
M
´rGorensteinFP-S†T-,d½n2.2•
g
ϕ
M
´÷,•3†A-
ÜS
0
//
ker
g
ϕ
M
//
M
1
//
Hom
B
(U,M
2
)
//
0 ,
Ù¥ker
g
ϕ
M
´rGorensteinFP-S†A-,M
2
´rGorensteinFP-S†B-.qÏ•Hom
B
(U,M
2
)´
k•L«,…pd(Hom
B
(U,M
2
)) <∞,¤±kExt
1
A
(Hom
B
(U,M
2
),ker
g
ϕ
M
) = 0.ÏdþãÜS
DOI:10.12677/pm.2022.1271271167nØêÆ
?
´Œ,=M
1
∼
=
ker
g
ϕ
M
⊕Hom
B
(U,M
2
).E= ker
g
ϕ
M
,Q= M
2
,Kk
M=
M
1
M
2
!
∼
=
ker
g
ϕ
M
⊕Hom
B
(U,M
2
)
M
2
!
=
E⊕Hom
B
(U,Q)
Q
!
= h(E,Q).

ë•©z
[1]Enochs,E.E.andJenda,O.M.G.(1995)GorensteinInjectiveandProjectiveModules.Mathematische
Zeitschrift,220,611-633.https://doi.org/10.1007/BF02572634
[2]Mao,L.X.andDing,N.Q.(2008)GorensteinFP-InjectiveandGorensteinFlatModules.JournalofAlgebra
andItsApplication,7,491-506.https://doi.org/10.1142/S0219498808002953
[3]Gao,Z.H.(2013)OnStronglyGorensteinFP-InjectiveModules.CommunicationsinAlgebra,41,3035-
3044.https://doi.org/10.1080/00927872.2012.672601
[4]Mao,L.X.(2020)DualityPairsandFP-InjectiveModulesoverFormalTriangularMatrixRings.Commu-
nicationsinAlgebra,48,5296-5310.https://doi.org/10.1080/00927872.2020.1786837
[5]ÕÕ,Ü}±./ªnÝ‚þGorensteinFP-S[J].ìÀŒÆÆ(nƇ),2022,57(2):38-44.
[6]Haghany,A.andVaradarajan,K.(2000)StudyofModulesoverFormalTriangularMatrixRings.Journal
ofPureandAppliedAlgebra,147,41-58.https://doi.org/10.1016/S0022-4049(98)00129-7
[7]Enochs,E.E.,Izurdiaga,M.C.andTorrecillas,B.(2014)GorensteinConditionsoverTriangularMatrix
Rings.JournalofPureandAppliedAlgebra,218,1544-1554.https://doi.org/10.1016/j.jpaa.2013.12.006
[8]gI|,•B./ªnÝ‚þPC-S[J].oA“‰ŒÆÆ(g,‰Æ‡),2018,41(1):39-43.
[9]Haghany,A.,Mazrooei,M.andVedadi,M.R.(2012)PureProjectivityandPureInjectivityoverFormal
TriangularMatrixRings.JournalofAlgebraandItsApplications,11,1-13.
https://doi.org/10.1142/S0219498812501071
DOI:10.12677/pm.2022.1271271168nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.