设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(7),1196-1204
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.127131
˜
a
o
š
‚
5
>
Š
¯
K
õ
‡
)
•
3
5
xxx
hhhhhh
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
6
14
F
¶
¹
^
F
Ï
µ
2022
c
7
15
F
¶
u
Ù
F
Ï
µ
2022
c
7
22
F
Á
‡
©
$
^
I
þ
Ø
Ä:½
n
ï
Ä
o
š
‚
5
>
Š
¯
K
ρ
4
(
ρ
3
(
ρ
2
(
ρ
1
(
ρ
0
u
)
0
)
0
)
0
)
0
=
λa
(
t
)
f
(
u
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,u
0
(0) =
u
0
(1) = 0
õ
‡
)
•
3
5
,
Ù
¥
λ>
0
´
ë
ê
,
ρ
i
∈
C
4
−
i
([0
,
1]
,
(0
,
∞
))
,i
= 0
,
1
,
2
,
3
,
4
,f
∈
C
([0
,
∞
)
,
[0
,
∞
))
,
a
∈
C
([0
,
1]
,
[0
,
∞
))
…
3
[0,1]
?
Û
f
«
m
þ
Ø
ð
•
"
"
'
…
c
o
§
Ø
Ä:½
n
§
š
Ý
§
[
ê
ExistenceofMultiplePositive
SolutionsforaClassofNonlinear
Fourth-OrderBoundaryValueProblems
CongcongKang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jun.14
th
,2022;accepted:Jul.15
th
,2022;published:Jul.22
nd
,2022
©
Ù
Ú
^
:
x
hh
.
˜
a
o
š
‚
5
>
Š
¯
K
õ
‡
)
•
3
5
[J].
n
Ø
ê
Æ
,2022,12(7):1196-1204.
DOI:10.12677/pm.2022.127131
x
hh
Abstract
Thispaperconsiderswiththeexistenceofmultiplepositivesolutionsfornonlinear
fourth-orderboundaryvalueproblems
ρ
4
(
ρ
3
(
ρ
2
(
ρ
1
(
ρ
0
u
)
0
)
0
)
0
)
0
=
λa
(
t
)
f
(
u
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,u
0
(0) =
u
0
(1) = 0
byusingfixedpointtheoremincones.Where
λ>
0
isaparameter,
ρ
i
∈
C
4
−
i
([0
,
1]
,
(0
,
∞
))
,
i
=0
,
1
,
2
,
3
,
4
,f
∈
C
([0
,
∞
)
,
[0
,
∞
))
,a
∈
C
([0
,
1]
,
[0
,
∞
))
anddoesnotvanishidenticallyon
anysubintervalof[0,1].
Keywords
Fourth-Order,FixedPointTheorem,Disconjugacy,Quasi-Derivatives
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
o
ü
:
>
Š
¯
K
Œ
±
£
ã
Ø
Ó
É
å
^
‡
e
5
ù
/
C
,
du
Ù
-
‡
A^
µ
,
Æ
ö
‚
é
Ù
ï
Ä
l
™
Ê
Ž
,
¿
…
¼
˜
-
‡
´
L
(
J
[1–10].
Š
5
¿
´
,
ü
à
{
ü
|
Ú
½
|
5
ù
•
§
u
0000
(
t
) =
λa
(
t
)
f
(
u
(
t
))
)
•
3
5
®
é
õ
Æ
ö
ï
Ä
[1,5–10],
'
u
˜
„
/
ª
•
§
é
k
<
ï
Ä
[2–4].
©
Ä
k
0
[
ê
Ž
f
½
Â
.
b
é
z
‡
i
=0
,
1
,
2
,
3
,
4,
¼
ê
ρ
i
∈
C
4
−
i
([0
,
1]
,
(0
,
∞
)),
é
?
¿
u
∈
C
4
[0
,
1],
-
L
0
u
=
ρ
0
u,
L
i
u
=
ρ
i
(
L
i
−
1
u
)
0
,i
= 1
,
2
,
3
,
4
,
DOI:10.12677/pm.2022.1271311197
n
Ø
ê
Æ
x
hh
K
¼
ê
L
i
u,i
= 1
,
2
,
3
,
4
¡
•
u
[
ê
.
e
•
Ä
>
.
^
‡
(
L
t
)
u
(0) = 0
, t
∈{
i
1
,i
2
}
,
(
L
t
)
u
(1) = 0
, t
∈{
j
1
,j
2
}
,
Ù
¥
{
i
1
,i
2
}
,
{
j
1
,j
2
}
´
{
0
,
1
,
2
,
3
}
f
8
.
A
O
/
,
-
i
r
=
j
r
=
r
−
1
,r
=1
,
2,
K
þ
ã
>
.
^
‡
Œ
±
=
z
•
½
ù
|
u
(0) =
u
(1) =
u
0
(0) =
u
0
(1) = 0
.
(1
.
1)
Ï
d
©
•
Ä
o
š
‚
5
>
Š
¯
K
(
ρ
4
(
ρ
3
(
ρ
2
(
ρ
1
(
ρ
0
u
)
0
)
0
)
0
)
0
=
λa
(
t
)
f
(
u
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,u
0
(0) =
u
0
(1) = 0
(1
.
2)
õ
‡
)
•
3
5
,
Ù
¥
λ>
0
,ρ
i
∈
C
4
−
i
([0
,
1]
,
(0
,
∞
))
,a
∈
C
([0
,
1]
,
[0
,
∞
))
…
3
[0,1]
?
Û
f
«
m
þ
Ø
ð
•
"
,
f
∈
C
([0
,
∞
)
,
[0
,
∞
)).
A
O
/
,
ρ
i
= 1
,i
=1
,
2
,
3
,
4
ž
,
ρ
4
(
ρ
3
(
ρ
2
(
ρ
1
(
ρ
0
u
)
0
)
0
)
0
)
0
=
u
0000
,
a
q
¯
K
3
Bai[10]
¥
?
Ø
,
Š
ö$
^
I
þ
Ø
Ä:½
n
ï
Ä
o
>
Š
¯
K
u
(4)
(
t
) =
λf
(
u
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
, u
00
(0) =
u
00
(1) = 0
õ
‡
)
•
3
5
,
Ù
¥
,
λ>
0
´
~
ê
,
f
∈
C
([0
,
∞
)
,
[0
,
∞
))
…
f
0
:=lim
u
→
0
+
f
(
u
)
u
,f
∞
:=lim
u
→∞
f
(
u
)
u
6∈
{
0
,
∞}
.
g
,
,
/
,
·
‚
•
Ä
U
Ä
3
ρ
i
6
= 1
,i
= 1
,
2
,
3
,
4
,a
∈
C
([0
,
1]
,
[0
,
∞
))
…
3
[0,1]
?
Û
f
«
m
þ
Ø
ð
•
"
,
f
0
,f
∞
∈{
0
,
∞}
œ
/
e
¯
K
(1.2)
õ
‡
)
•
3
5
?
3ù
p
,
·
‚
o
b
:
(A1)
ρ
i
∈
C
4
−
i
([0
,
1]
,
(0
,
∞
))
,i
= 0
,
1
,
2
,
3
,
4,
f
∈
C
([0
,
∞
)
,
[0
,
∞
));
(A2)
a
∈
C
([0
,
1]
,
[0
,
∞
))
…
3
[0,1]
?
Û
f
«
m
þ
Ø
ð
•
"
;
(A3)
f
0
=
∞
,f
∞
= +
∞
(
f
0
= 0
,f
∞
= 0);
(A4)
•
3
h>
0
¦
f
(
u
)
≤
γh,
0
≤
u
≤
h
(
f
(
u
)
≥
ηh,
m
M
h
≤
u
≤
h
)
,
γ
= (
λM
Z
1
0
a
(
s
)
ds
)
−
1
(
η
= (
λm
Z
1
0
a
(
s
)
ds
)
−
1
)
,
(1
.
3)
Ù
¥
G
(
t,s
)
´
¯
K
(1.2)
é
A
à
g
¯
K
‚
¼
ê
,
m
= min
G
(
t,s
)
,M
= max
G
(
t,s
).
¿
X
e
(
J
:
½
n
1.1
b
(A1)-(A4)
¤
á
.
K
¯
K
(1
.
2)
–
k
ü
‡
)
u
1
,u
2
¦
0
<
k
u
1
k
<h<
k
u
2
k
.
DOI:10.12677/pm.2022.1271311198
n
Ø
ê
Æ
x
hh
2.
ý
•
£
½
Â
2.1[11]
Ω
´
R
n
¥
,
k
.
m
8
,
f
: Ω
→
R
n
,
f
´
C
2
N
”
(
=
f
= (
f
1
,
···
,f
n
),
f
i
(
x
1
,
··
·
,x
n
)
3
Ω
þ
ä
k
ë
Y
ˆ
ê
,
i
= 1
,
2
,
···
,n
),
p
∈
R
n
\
f
(
∂
Ω),
u
´
τ
=inf
x
∈
∂
Ω
k
f
(
x
)
−
p
k
>
0.
Š
ë
Y
¼
ê
Φ : [0
,
+
∞
)
→
R
1
,
¦
§
÷
v
e
¡
ü
‡
^
‡
:
(1)
•
3
σ,τ
∗
÷
v
0
<σ<τ
∗
≤
τ
,
…
r
6∈
(
σ,τ
∗
)
ž
ð
k
Φ(
r
) = 0;
(2)
R
R
n
Φ(
k
z
k
)
dz
= 1.
½
Â
ÿ
À
Ý
deg(
f,
Ω
,p
) =
Z
Ω
Φ(
k
f
(
x
)
−
p
k
)
J
f
(
x
)
dx,
Ù
¥
,
J
f
(
x
)
L
«
f
3
:
x
Jacobi
1
ª
J
f
(
x
) =
D
(
f
1
,f
2
,
···
,f
n
)
D
(
x
1
,x
2
,
···
,x
n
)
=
|
∂f
i
∂x
j
|
.
½
Â
2.2[11]
X
•
Banach
˜
m
,
K
⊂
X
•
4
à
8
,
D
⊂
K
k
.
…
•
ƒ
é
m
8
,
F
:
D
→
K
•
ë
Y
N
.
k
.
m
8
Ω
⊂
X
÷
v
D
= Ω
∩
K,∂D
=
∂
Ω
∩
K
,
F
ë
Yò
ÿ
F
∗
: Ω
→
K
,
-
f
∗
=
I
−
F
∗
,
½
Â
i
(
F,D,K
) = deg(
f
∗
,
Ω
,θ
)
•
F
3
D
þ
'
u
K
Ø
Ä:
•
ê
.
Ú
n
2.1[10]
X
´
˜
‡
Banach
˜
m
,
K
⊆
X
´
˜
‡
I
,
é
p>
0,
½
Â
K
p
=
{
u
∈
K
:
k
u
k≤
p
}
.
b
T
:
K
p
→
K
´
˜
‡
ë
Y
Ž
f
,
é
?
¿
u
∈
∂K
p
=
{
u
∈
K
:
k
u
k
=
p
}
,
k
Tu
6
=
u
,
K
(1)
e
k
Tu
k≥k
u
k
,u
∈
∂K
p
,
K
i
(
T,K
p
,K
) = 0;
(2)
e
k
Tu
k≤k
u
k
,u
∈
∂K
p
,
K
i
(
T,K
p
,K
) = 1
.
½
Â
2.3[2]
p
k
∈
C
[
a,b
]
,k
= 1
,
···
,n
.
e
‚
5
n
‡
©•
§
Ly
≡
y
n
+
p
1
(
x
)
y
n
−
1
+
···
+
p
n
(
x
)
y
= 0(2
.
1)
z
‡
š
²
…
)
"
:
3
«
m
[
a,b
]
þ
Ñ
u
n
‡
,
K
¡
•
§
(2.1)
3
«
m
[
a,b
]
þ
š
Ý
,
Ù
¥-
Š
U
-
ê
O
Ž
.
½
Â
2.4[2]
e
¼
ê
y
1
,
···
,y
n
∈
C
n
[
a,b
]
÷
v
n
K
d
Ä
1
ª
W
k
:=
W
[
y
1
,
···
,y
k
] =
y
1
···
y
k
·········
y
(
k
−
1)
1
···
y
(
k
−
1)
k
,
(
k
= 1
,
···
,n
)
3
«
m
[
a,b
]
þ
ð
•
,
K
¡
¼
ê
y
1
,
···
,y
n
¤
˜
‡
ê
Œ
Å
X
Ú
.
DOI:10.12677/pm.2022.1271311199
n
Ø
ê
Æ
x
hh
Ú
n
2.2[2]
•
§
(2
.
1)
3
«
m
[
a,b
]
þ
•
3
˜
‡
ê
Œ
Å
)
X
…
=
Ù
3
[
a,b
]
þ
š
Ý
.
Ú
n
2.3[2]
•
§
(2
.
1)
3
«
m
[
a,b
]
þ
š
Ý
…
=
L
Œ
±
L
«
•
Ly
≡
v
1
v
2
···
v
n
D
1
v
n
D
···
D
1
v
1
y,
Ù
¥
D
=
d/dt
,
…
1 =
W
0
, v
1
=
W
1
, v
k
=
W
k
W
k
−
2
/W
2
k
−
1
,
(
k
= 2
,
···
,n
)
.
Ú
n
2.4[2]
b
•
§
(2
.
1)
3
[
a,b
]
þ
´
š
Ý
,
K
(
−
1)
n
−
k
G
(
t,s
)
>
0
,a<s<b,a<t<b.
5
©
•
Ä
o
ü
:
>
Š
¯
K
,
Ï
d
n
= 4
,k
= 2,
w
,
¯
K
(1.2)
é
A
à
g
¯
K
‚
¼
ê
G
(
t,s
)
>
0.
-
X
=
{
u
∈
C
4
[0
,
1]
,u
÷
v
ª
(1
.
1)
}
,Y
=
C
[0
,
1]
,
K
X
3
‰
ê
k·k
4
e
¤
Banach
˜
m
,
Y
3
‰
ê
|·|
∞
e
¤
Banach
˜
m
,
•
•
B
å
„
,
k·k
4
Ú
|·|
∞
þ
{P
•
k·k
.
½
Â
X
þ
I
K
:
K
=
{
u
∈
X
:
u
≥
0
,
min
0
≤
t
≤
1
u
(
t
)
≥
m
M
k
u
k}
.
½
Â
Ž
f
T
:
X
→
Y
,
ä
N
/
ª
•
:
Tu
=
Z
1
0
G
(
t,s
)
λa
(
s
)
f
(
u
(
s
))
ds.
3.
½
n
1.1
y
²
Ú
n
3.1
é
?
¿
u
∈
K
,
K
Ž
f
T
:
K
→
K
,
…
T
ë
Y
.
y
²
du
max
G
(
t,s
) =
M,
min
G
(
t,s
) =
m,
0
≤
t
≤
1
,
0
≤
s
≤
1,
é
?
¿
u
∈
K
,
K
min
0
≤
t
≤
1
(
Tu
)(
t
) =min
0
≤
t
≤
1
Z
1
0
G
(
t,s
)
λa
(
s
)
f
(
u
(
s
))
ds
≥
λm
Z
1
0
a
(
s
)
f
(
u
(
s
))
ds
=
λ
·
m
M
Z
1
0
Ma
(
s
)
f
(
u
(
s
))
ds
≥
λ
m
M
max
0
≤
t
≤
1
Z
1
0
G
(
t,s
)
a
(
s
)
f
(
u
(
s
))
ds
≥
m
M
k
Tu
k
.
DOI:10.12677/pm.2022.1271311200
n
Ø
ê
Æ
x
hh
Tu
∈
K
.
d
,
d
Ascoli-Arzeia
½
n
´
Ž
f
T
:
K
→
K
´
ë
Y
.
½
n
1.1
y
²
k
y
²
f
0
=
∞
,f
∞
=
∞
œ
/
.
Q>
0
¦
λQ
Z
1
0
G
(
1
2
,s
)
a
(
s
)
ds>
1
.
(3
.
1)
d
f
0
=
∞
,
•
3
0
<R
1
<h
¦
f
(
u
)
≥
Qu,
0
≤
u
≤
R
1
.
e
y
k
Tu
k
>
k
u
k
,u
∈
∂K
R
1
.
¯¢
þ
,
u
∈
∂K
R
1
ž
,
Tu
(
1
2
) =
Z
1
0
G
(
1
2
,s
)
λa
(
s
)
f
(
u
(
s
))
ds
≥
λQ
Z
1
0
G
(
1
2
,s
)
a
(
s
)
k
u
k
ds
>
k
u
k
.
(3.2)
Ï
d
,
d
Ú
n
2.1
i
(
T,K
R
1
,K
) = 0
.
(3
.
3)
2
d
f
∞
=
∞
,
•
3
R>
0
¦
f
(
u
)
≥
Qu,u
≥
R
.
R
2
>
max
{
h,
MR
m
}
,t
∈
[0
,
1],
K
min
0
≤
t
≤
1
u
(
t
)
≥
m
M
k
u
k
>R
,
u
∈
∂K
R
2
,
Ó
ª
(3.2),
d
Ú
n
2.1
Œ
i
(
T,K
R
2
,K
) = 0
.
(3
.
4)
,
˜
•
¡
,
d
(A4)
Œ
•
,
é
u
∈
∂K
h
,
k
Tu
k
=max
0
≤
t
≤
1
Z
1
0
G
(
t,s
)
λa
(
s
)
f
(
u
(
s
))
ds
≤
λM
Z
1
0
a
(
s
)
f
(
u
(
s
))
ds
≤
λM
Z
1
0
a
(
s
)
γ
k
u
k
ds
=
k
u
k
(
d
ª
(1.3))
.
Ï
d
,
k
Tu
k≤k
u
k
,u
∈
∂K
h
.
w
,
Tu
6
=
u,u
∈
∂K
h
,
K
d
Ú
n
2.1
i
(
T,K
h
,K
) = 1
.
(3
.
5)
d
Ø
Ä:
•
ê
Œ
\
5
9
ª
(3.3), (3.4),(3.5)
Œ
i
(
T,K
R
2
\
◦
K
h
,K
) =
−
1
,i
(
T,K
h
\
◦
K
R
1
,K
) = 1
.
Ï
d
,
T
3
K
R
2
\
◦
K
h
þ
k
˜
‡
Ø
Ä:
P
•
u
1
(
t
),
3
K
h
\
◦
K
R
1
þ
k
˜
‡
Ø
Ä:
P
•
u
2
(
t
),
K
DOI:10.12677/pm.2022.1271311201
n
Ø
ê
Æ
x
hh
u
1
(
t
),
u
2
(
t
)
Ñ
´
¯
K
(1.2)
)
,
…
÷
v
0
<
k
u
1
k
<h<
k
u
2
k
.
2
y
f
0
= 0
,f
∞
= 0
œ
/
.
é
?
¿
ε>
0,
•
3
R
1
>
0
¦
f
(
u
)
<εu,
0
<u<R
1
.
(3
.
6)
ε
= (
λM
R
1
0
a
(
s
)
ds
)
−
1
…
R
1
<h
,
K
é
u
∈
∂K
R
1
,
k
Tu
k
=max
0
≤
t
≤
1
Z
1
0
G
(
t,s
)
λa
(
s
)
f
(
u
(
s
))
ds
≤
λM
Z
1
0
a
(
s
)
f
(
u
(
s
))
ds
<ελM
Z
1
0
a
(
s
)
k
u
k
ds
=
k
u
k
.
(3.7)
Ï
d
,
d
Ú
n
2.1
,
i
(
T,K
R
1
,K
) = 1
.
(3
.
8)
a
q
/
,
R
2
>h>
0
v
Œ
,
¦
f
(
u
)
<εu,u>R
2
.
Ó
ª
(3.7),
d
Ú
n
2.1
Œ
,
i
(
T,K
R
2
,K
) = 1
.
(3
.
9)
,
˜
•
¡
,
d
(A4)
Œ
,
é
u
∈
∂K
h
,
k
Tu
k
=max
0
≤
t
≤
1
Z
1
0
G
(
t,s
)
λa
(
s
)
f
(
u
(
s
))
ds
≥
λ
Z
1
0
G
(
t,s
)
a
(
s
)
ηhds
≥
ληm
Z
1
0
a
(
s
)
k
u
k
ds
=
k
u
k
(
d
ª
(1.3))
.
Ï
d
,
k
Tu
k≥k
u
k
,u
∈
∂K
h
.
w
,
,
Tu
6
=
u,u
∈
∂K
h
.
K
d
Ú
n
2.1
i
(
T,K
h
,K
) = 0
.
(3
.
10)
d
Ø
Ä:
•
ê
Œ
\
5
9
(3.8), (3.9),(3.10)
ª
Œ
i
(
T,K
R
2
\
◦
K
h
,K
) = 1
,i
(
T,K
h
\
◦
K
R
1
,K
) =
−
1
.
Ï
d
,
T
3
K
R
2
\
◦
K
h
Ú
K
h
\
◦
K
R
1
þ
ˆ
k
˜
‡
Ø
Ä:
P
•
u
1
(
t
)
Ú
u
2
(
t
),
…
u
1
(
t
)
,u
2
(
t
)
Ñ
´
¯
K
(1.2)
)
,
¿
÷
v
0
<
k
u
1
k
<h<
k
u
2
k
.
½
n
1.1
y
.
.
DOI:10.12677/pm.2022.1271311202
n
Ø
ê
Æ
x
hh
4.
~
f
~
1
•
Ä
>
Š
¯
K
u
0000
(
t
)
−
l
4
u
(
t
) =
u
2
+
u
1
2
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
, u
0
(0) =
u
0
(1) = 0
,
(4
.
1)
Ù
¥
l
∈
[0
,l
1
)
,l
1
≈
4
.
73
´
•
§
cos(
l
)cosh(
l
) = 1
1
˜
‡
Š
,
d
ž
¯
K
(4.1)
k
š
²
…
)
.
é
z
‡
½
i
∈{
1
,
2
,
3
,
4
}
,
-
u
i
´
Ð
Š
¯
K
u
0000
(
t
)
−
l
4
u
(
t
) = 0
,
u
(
j
)
(0) = 0
, j
6
= 4
−
i,
u
(4
−
i
)
(0) =
l
4
−
i
•
˜
)
,
K
u
1
(
t
) =
1
2
[sinh(
lt
)
−
sin(
lt
)]
,u
2
(
t
) =
1
2
[cosh(
lt
)
−
cos(
lt
)]
,
u
3
(
t
) =
1
2
[sinh(
lt
)+sin(
lt
)]
,u
4
(
t
) =
1
2
[cosh(
lt
)+cos(
lt
)]
.
-
y
1
(
t
)=
u
1
(
t
+
σ
)
,y
2
(
t
)=
u
2
(
t
+
σ
)
,y
3
(
t
)=
−
u
3
(
t
+
σ
)
,y
4
(
t
)=
u
4
(
t
+
σ
)
,
Ù
¥
σ
∈
(0
,
1)
v
.
K
,
W
1
[
y
1
](
t
) =
1
2
[sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
))]
,
W
2
[
y
1
,y
2
](
t
) =
l
2
[cosh(
l
(
t
+
σ
))cos(
l
(
t
+
σ
))
−
1]
,
W
3
[
y
1
,y
2
,y
3
](
t
) =
1
4
l
3
[sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
))]
,
W
4
[
y
1
,y
2
,y
3
,y
4
](
t
) =
W
4
[
y
1
,y
2
,y
3
,y
4
](0) =
l
6
,
w
,
,
W
i
>
0
,i
=1
,
2
,
3
,
4,
K
¼
ê
{
y
1
,y
2
,y
3
,y
4
}
´
•
§
u
0000
(
t
)
−
l
4
u
(
t
)=0
3
«
m
[0
,
1]
þ
˜
‡
ê
Œ
Å
)
X
,
Ï
L
{
ü
/
O
Ž
,
u
0000
(
t
)
−
l
4
u
(
t
) =
4
l
3
sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
))
(
(sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
)))
2
8
l
(cosh(
l
(
t
+
σ
))cos(
l
(
t
+
σ
))
−
1)
(
2(cosh(
l
(
t
+
σ
))cos(
l
(
t
+
σ
))
−
1)
2
l
(sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
)))
2
(
(sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
)))
2
2
l
(cosh(
l
(
t
+
σ
))cos(
l
(
t
+
σ
))
−
1)
(
2
sinh(
l
(
t
+
σ
))
−
sin(
l
(
t
+
σ
))
u
)
0
)
0
)
0
)
0
.
Š
â
Ú
n
2.3
9
Ú
n
2.4
•
,
Ž
f
u
0000
(
t
)
−
l
4
u
(
t
)
š
Ý
,
…
3
>
.
^
‡
u
(0)=
u
(1)=
u
0
(0)=
u
0
(1) = 0
e
é
A
‚
¼
ê
•
.
,
˜
•
¡
,
w
,
u
2
+
u
1
2
÷
v
^
‡
(A3)-(A4),
K
¯
K
(4.1)
–
•
3
ü
‡
)
.
DOI:10.12677/pm.2022.1271311203
n
Ø
ê
Æ
x
hh
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(
1
O
Ò
:12061064)
"
ë
•
©
z
[1]Yan,D.L.,Ma,R.Y. andWei, L.P. (2021)Global Structureof Positive Solutions of Fourth-Order Problems
withClampedBeamBoundaryConditions.
MathematicalNotes
,
109
,962-970.
https://doi.org/10.1134/S0001434621050308
[2]Ma,R.Y.,Wang,H.Y.andElsanosi,M.(2013)SpectrumofaLinearFourth-OrderDifferentialOperator
andItsApplications.
MathematischeNachrichten
,
286
,1805-1819.
https://doi.org/10.1002/mana.201200288
[3]Cabada,A.andEnguica,R.R.(2011)PositiveSolutionsofFourthOrderProblemswithClampedBeam
BoundaryConditions.
NonlinearAnalysis:Theory,MethodsandApplications
,
74
,3112-3122.
https://doi.org/10.1016/j.na.2011.01.027
[4]Shen,W.G.(2012)GlobalStructureofNodalSolutionsforaFourth-OrderTwo-PointBoundaryValue
Problem.
AppliedMathematicsandComputation
,
219
,88-98.https://doi.org/10.1016/j.amc.2011.12.080
[5]Bouteraa,N.,Benaicha,S.,Djourdem,H.andBenattia,M.E.(2018)PositiveSolutionsofNonlinear
Fourth-OrderTwo-PointBoundaryValueProblemwithaParameter.
RomanianJournalofMathematics
andComputerScience
,
8
,17-30.
[6]Zou,Y.M.(2017)OntheExistenceofPositiveSolutionsforaFourth-OrderBoundaryValueProblem.
JournalofFunctionSpaces
,
2017
,ArticleID:4946198.https://doi.org/10.1155/2017/4946198
[7]Cabada,A.,Precup,R.,Saavedra,L.andTersian,S.(2016)MultiplePositive SolutionstoaFourth-Order
Boundary-ValueProblem.
ElectronicJournalofDifferentialEquations
,
2016
,1-18.
[8]Benaicha,S.andHaddouchi,F.(2016)PositiveSolutionsofaNonlinearFourth-OrderIntegralBoundary
ValueProblem.
MathematicsandComputerScience
,
54
,73-86. https://doi.org/10.1515/awutm-2016-0005
[9]Feng,X.F.andFeng,H.Y.(2013)ExistenceofPositiveSolutionsforFourth-OrderBoundaryValue
ProblemswithSign-ChangingNonlinearTerms.
ISRNMathematicalAnalysis
,
2013
,ArticleID:349624.
https://doi.org/10.1155/2013/349624
[10]Bai,Z.B.andWang,H.Y.(2002)OnPositive SolutionsofSomeNonlinearFourth-OrderBeamEquations.
JournalofMathematicalAnalysisandApplications
,
270
,357-368.
https://doi.org/10.1016/S0022-247X(02)00071-9
[11]
H
Œ
.
š
‚
5
•
¼
©
Û
[M].
®
:
p
˜
Ñ
‡
,2015.
DOI:10.12677/pm.2022.1271311204
n
Ø
ê
Æ