设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(7),1196-1204
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.127131
˜aoš‚5>НKõ‡)•35
xxxhhhhhh
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c614F¶¹^Fϵ2022c715F¶uÙFϵ2022c722F
Á‡
©$^IþØÄ:½nïÄoš‚5>НK





ρ
4
(ρ
3
(ρ
2
(ρ
1
(ρ
0
u)
0
)
0
)
0
)
0
= λa(t)f(u(t)),t∈(0,1),
u(0) = u(1) = 0,u
0
(0) = u
0
(1) = 0
õ‡)•35,Ù¥λ>0´ëê,ρ
i
∈C
4−i
([0,1],(0,∞)),i= 0,1,2,3,4,f∈C([0,∞),[0,∞)),
a∈C([0,1],[0,∞)) …3[0,1]?Ûf«mþØð•""
'…c
o§ØÄ:½n§šݧ[ê
ExistenceofMultiplePositive
SolutionsforaClassofNonlinear
Fourth-OrderBoundaryValueProblems
CongcongKang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jun.14
th
,2022;accepted:Jul.15
th
,2022;published:Jul.22
nd
,2022
©ÙÚ^:xhh.˜aoš‚5>НKõ‡)•35[J].nØêÆ,2022,12(7):1196-1204.
DOI:10.12677/pm.2022.127131
xhh
Abstract
Thispaperconsiderswiththeexistenceofmultiplepositivesolutionsfornonlinear
fourth-orderboundaryvalueproblems





ρ
4
(ρ
3
(ρ
2
(ρ
1
(ρ
0
u)
0
)
0
)
0
)
0
= λa(t)f(u(t)),t∈(0,1),
u(0) = u(1) = 0,u
0
(0) = u
0
(1) = 0
byusingfixedpointtheoremincones.Whereλ>0isaparameter,ρ
i
∈C
4−i
([0,1],(0,∞)),
i=0,1,2,3,4,f∈C([0,∞),[0,∞)),a∈C([0,1],[0,∞))anddoesnotvanishidenticallyon
anysubintervalof[0,1].
Keywords
Fourth-Order,FixedPointTheorem,Disconjugacy,Quasi-Derivatives
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
oü:>НKŒ±£ãØÓÉå^‡e5ù/C,duÙ-‡A^µ,Æö‚é
ÙïÄl™ÊŽ,¿…¼˜-‡´L(J[1–10].Š5¿´, üà{ü| Ú½|
5ù•§
u
0000
(t) = λa(t)f(u(t))
)•35®éõÆöïÄ[1,5–10], 'u˜„/ª•§ék<ïÄ[2–4].
©Äk0[êŽf½Â.béz‡i=0,1,2,3,4, ¼êρ
i
∈C
4−i
([0,1],(0,∞)), é
?¿u∈C
4
[0,1],-
L
0
u= ρ
0
u,
L
i
u= ρ
i
(L
i−1
u)
0
,i= 1,2,3,4,
DOI:10.12677/pm.2022.1271311197nØêÆ
xhh
K¼êL
i
u,i= 1,2,3,4 ¡•u[ê.e•Ä>.^‡
(L
t
)u(0) = 0, t∈{i
1
,i
2
},
(L
t
)u(1) = 0, t∈{j
1
,j
2
},
Ù¥{i
1
,i
2
},{j
1
,j
2
}´{0,1,2,3}f8.AO/, -i
r
=j
r
=r−1,r=1,2,Kþã>.^‡Œ
±=z•½ù|
u(0) = u(1) = u
0
(0) = u
0
(1) = 0.(1.1)
Ïd©•Äoš‚5>НK
(
ρ
4
(ρ
3
(ρ
2
(ρ
1
(ρ
0
u)
0
)
0
)
0
)
0
= λa(t)f(u(t)),t∈(0,1),
u(0) = u(1) = 0,u
0
(0) = u
0
(1) = 0
(1.2)
õ‡)•35,Ù¥λ>0,ρ
i
∈C
4−i
([0,1],(0,∞)),a∈C([0,1],[0,∞))…3[0,1]?Ûf«m
þØð•",f∈C([0,∞),[0,∞)). AO/, ρ
i
= 1,i=1,2,3,4 ž, ρ
4
(ρ
3
(ρ
2
(ρ
1
(ρ
0
u)
0
)
0
)
0
)
0
= u
0000
,
aq¯K3Bai[10]¥?Ø, Šö$^IþØÄ:½nïÄo>НK



u
(4)
(t) = λf(u(t)),t∈(0,1),
u(0) = u(1) = 0, u
00
(0) = u
00
(1) = 0
õ‡ )•35,Ù¥,λ>0´~ê, f∈C([0,∞),[0,∞)) …f
0
:=lim
u→0
+
f(u)
u
,f
∞
:=lim
u→∞
f(u)
u
6∈
{0,∞}.
g,,/, ·‚•ÄUÄ3ρ
i
6= 1,i= 1,2,3,4,a∈C([0,1],[0,∞))…3[0,1] ?Ûf«m
þØð•",f
0
,f
∞
∈{0,∞}œ/e¯K(1.2) õ‡)•35?3ùp, ·‚ob:
(A1)ρ
i
∈C
4−i
([0,1],(0,∞)),i= 0,1,2,3,4, f∈C([0,∞),[0,∞));
(A2)a∈C([0,1],[0,∞)) …3[0,1] ?Ûf«mþØð•";
(A3)f
0
= ∞,f
∞
= +∞(f
0
= 0,f
∞
= 0);
(A4)•3h>0¦
f(u) ≤γh,0 ≤u≤h(f(u) ≥ηh,
m
M
h≤u≤h),
γ= (λM
Z
1
0
a(s)ds)
−1
(η= (λm
Z
1
0
a(s)ds)
−1
),(1.3)
Ù¥G(t,s) ´¯K(1.2) éAàg¯K‚¼ê, m= minG(t,s),M= maxG(t,s). ¿Xe
(J:
½n1.1b(A1)-(A4) ¤á.K¯K(1.2) –kü‡)u
1
,u
2
¦
0 <ku
1
k<h<ku
2
k.
DOI:10.12677/pm.2022.1271311198nØêÆ
xhh
2.ý•£
½Â2.1[11]Ω´R
n
¥,k.m8,f: Ω →R
n
,f´C
2
N”(=f= (f
1
,···,f
n
),f
i
(x
1
,··
·,x
n
)3ΩþäkëYˆ ê, i= 1,2,···,n), p∈R
n
\f(∂Ω),u´τ=inf
x∈∂Ω
kf(x)−pk>0.
ŠëY¼êΦ : [0,+∞) →R
1
,¦§÷ve¡ü‡^‡:
(1)•3σ,τ
∗
÷v0 <σ<τ
∗
≤τ, …r6∈(σ,τ
∗
)žðkΦ(r) = 0;
(2)
R
R
n
Φ(kzk)dz= 1.
½ÂÿÀÝ
deg(f,Ω,p) =
Z
Ω
Φ(kf(x)−pk)J
f
(x)dx,
Ù¥,J
f
(x)L«f3:xJacobi 1ª
J
f
(x) =
D(f
1
,f
2
,···,f
n
)
D(x
1
,x
2
,···,x
n
)
= |
∂f
i
∂x
j
|.
½Â2.2[11]X•Banach˜m,K⊂X•4à8,D⊂Kk.…•ƒém8,
F: D→K•ëYN.k.m8Ω ⊂X÷vD= Ω∩K,∂D= ∂Ω∩K, FëYòÿ
F
∗
: Ω →K, -f
∗
= I−F
∗
,½Âi(F,D,K) = deg(f
∗
,Ω,θ)•F3Dþ'uKØÄ:•ê.
Ún2.1[10]X´˜‡Banach ˜m,K⊆X´˜‡I,ép>0,½ÂK
p
={u∈K:
kuk≤p}. bT: K
p
→K´˜‡ë YŽf,é?¿u∈∂K
p
= {u∈K:kuk=p}, kTu6=u,
K
(1)ekTuk≥kuk,u∈∂K
p
,K
i(T,K
p
,K) = 0;
(2)ekTuk≤kuk,u∈∂K
p
,K
i(T,K
p
,K) = 1.
½Â2.3[2]p
k
∈C[a,b],k= 1,···,n.e‚5n‡©•§
Ly≡y
n
+p
1
(x)y
n−1
+···+p
n
(x)y= 0(2.1)
z‡š²…)":3«m[a,b] þÑun‡, K¡•§(2.1) 3«m[a,b] þšÝ, Ù¥-ŠU
-êOŽ.
½Â2.4[2]e¼êy
1
,···,y
n
∈C
n
[a,b]÷vnKdÄ1ª
W
k
:= W[y
1
,···,y
k
] =






y
1
···y
k
·········
y
(k−1)
1
···y
(k−1)
k






,(k= 1,···,n)
3«m[a,b] þð•,K¡¼êy
1
,···,y
n
¤˜‡êŒÅXÚ.
DOI:10.12677/pm.2022.1271311199nØêÆ
xhh
Ún2.2[2]•§(2.1)3«m[a,b] þ•3˜‡êŒÅ)X…=Ù3[a,b]þšÝ.
Ún2.3[2]•§(2.1)3«m[a,b] þšÝ…=LŒ±L«•
Ly≡v
1
v
2
···v
n
D
1
v
n
D···D
1
v
1
y,
Ù¥D= d/dt,…
1 = W
0
, v
1
= W
1
, v
k
= W
k
W
k−2
/W
2
k−1
, (k= 2,···,n).
Ún2.4[2]b•§(2.1)3[a,b] þ´šÝ,K
(−1)
n−k
G(t,s) >0,a<s<b,a<t<b.
5©•Äoü:>НK, Ïdn= 4,k= 2, w,¯K(1.2)éAàg¯K‚¼ê
G(t,s) >0.
-
X= {u∈C
4
[0,1],u÷vª(1.1)},Y= C[0,1],
KX3‰êk·k
4
e¤Banach˜m, Y3‰ê|·|
∞
e¤Banach˜m, ••Bå„,k·k
4
Ú
|·|
∞
þ{P•k·k.
½ÂXþIK:
K= {u∈X:u≥0,min
0≤t≤1
u(t) ≥
m
M
kuk}.
½ÂŽfT: X→Y, äN/ª•:
Tu=
Z
1
0
G(t,s)λa(s)f(u(s))ds.
3.½n1.1y²
Ún3.1é?¿u∈K, KŽfT: K→K, …TëY.
y²dumaxG(t,s) = M,minG(t,s) = m,0 ≤t≤1,0 ≤s≤1,é?¿u∈K,K
min
0≤t≤1
(Tu)(t) =min
0≤t≤1
Z
1
0
G(t,s)λa(s)f(u(s))ds
≥λm
Z
1
0
a(s)f(u(s))ds
= λ·
m
M
Z
1
0
Ma(s)f(u(s))ds
≥λ
m
M
max
0≤t≤1
Z
1
0
G(t,s)a(s)f(u(s))ds
≥
m
M
kTuk.
DOI:10.12677/pm.2022.1271311200nØêÆ
xhh
Tu∈K. d,dAscoli-Arzeia½n´ŽfT: K→K´ëY.
½n1.1y²ky²f
0
= ∞,f
∞
= ∞œ/.
Q>0 ¦
λQ
Z
1
0
G(
1
2
,s)a(s)ds>1.(3.1)
df
0
= ∞, •30 <R
1
<h¦f(u) ≥Qu,0 ≤u≤R
1
.eykTuk>kuk,u∈∂K
R
1
.
¯¢þ,u∈∂K
R
1
ž,
Tu(
1
2
) =
Z
1
0
G(
1
2
,s)λa(s)f(u(s))ds
≥λQ
Z
1
0
G(
1
2
,s)a(s)kukds
>kuk.(3.2)
Ïd,dÚn2.1
i(T,K
R
1
,K) = 0.(3.3)
2df
∞
=∞,•3R>0¦f(u)≥Qu,u≥R.R
2
>max{h,
MR
m
},t∈[0,1],K
min
0≤t≤1
u(t) ≥
m
M
kuk>R, u∈∂K
R
2
,Óª(3.2),dÚn2.1 Œ
i(T,K
R
2
,K) = 0.(3.4)
,˜•¡,d(A4)Œ•,éu∈∂K
h
,
kTuk=max
0≤t≤1
Z
1
0
G(t,s)λa(s)f(u(s))ds
≤λM
Z
1
0
a(s)f(u(s))ds
≤λM
Z
1
0
a(s)γkukds
= kuk(dª(1.3)).
Ïd,kTuk≤kuk,u∈∂K
h
.w,Tu6= u,u∈∂K
h
,KdÚn2.1
i(T,K
h
,K) = 1.(3.5)
dØÄ:•êŒ\59ª(3.3), (3.4),(3.5) Œ
i(T,K
R
2
\
◦
K
h
,K) = −1,i(T,K
h
\
◦
K
R
1
,K) = 1.
Ïd,T3K
R
2
\
◦
K
h
þk˜‡ØÄ:P•u
1
(t),3K
h
\
◦
K
R
1
þk˜‡ØÄ:P•u
2
(t),K
DOI:10.12677/pm.2022.1271311201nØêÆ
xhh
u
1
(t),u
2
(t)Ñ´¯K(1.2)), …÷v0 <ku
1
k<h<ku
2
k.
2yf
0
= 0,f
∞
= 0œ/. é?¿ε>0, •3R
1
>0 ¦
f(u) <εu,0 <u<R
1
.(3.6)
ε= (λM
R
1
0
a(s)ds)
−1
…R
1
<h, Kéu∈∂K
R
1
,
kTuk=max
0≤t≤1
Z
1
0
G(t,s)λa(s)f(u(s))ds
≤λM
Z
1
0
a(s)f(u(s))ds
<ελM
Z
1
0
a(s)kukds
= kuk.(3.7)
Ïd,dÚn2.1,
i(T,K
R
1
,K) = 1.(3.8)
aq/,R
2
>h>0 vŒ,¦f(u) <εu,u>R
2
.Óª(3.7),dÚn2.1 Œ,
i(T,K
R
2
,K) = 1.(3.9)
,˜•¡,d(A4)Œ, éu∈∂K
h
,
kTuk=max
0≤t≤1
Z
1
0
G(t,s)λa(s)f(u(s))ds
≥λ
Z
1
0
G(t,s)a(s)ηhds
≥ληm
Z
1
0
a(s)kukds
= kuk(dª(1.3)).
Ïd,kTuk≥kuk,u∈∂K
h
.w,, Tu6= u,u∈∂K
h
.KdÚn2.1
i(T,K
h
,K) = 0.(3.10)
dØÄ:•êŒ\59(3.8), (3.9),(3.10) ªŒ
i(T,K
R
2
\
◦
K
h
,K) = 1,i(T,K
h
\
◦
K
R
1
,K) = −1.
Ïd,T3K
R
2
\
◦
K
h
ÚK
h
\
◦
K
R
1
þˆk˜‡ØÄ:P•u
1
(t)Úu
2
(t),…u
1
(t),u
2
(t)Ñ´¯K
(1.2)), ¿÷v0 <ku
1
k<h<ku
2
k.½n1.1y..
DOI:10.12677/pm.2022.1271311202nØêÆ
xhh
4.~f
~1 •Ä>НK



u
0000
(t)−l
4
u(t) = u
2
+u
1
2
,t∈(0,1),
u(0) = u(1) = 0, u
0
(0) = u
0
(1) = 0,
(4.1)
Ù¥l∈[0,l
1
),l
1
≈4.73´•§
cos(l)cosh(l) = 1
1˜‡Š,dž¯K(4.1)kš²…).
éz‡½i∈{1,2,3,4}, -u
i
´ÐНK
u
0000
(t)−l
4
u(t) = 0,
u
(j)
(0) = 0, j6= 4−i,
u
(4−i)
(0) = l
4−i
•˜),K
u
1
(t) =
1
2
[sinh(lt)−sin(lt)],u
2
(t) =
1
2
[cosh(lt)−cos(lt)],
u
3
(t) =
1
2
[sinh(lt)+sin(lt)],u
4
(t) =
1
2
[cosh(lt)+cos(lt)].
-y
1
(t)=u
1
(t+σ),y
2
(t)=u
2
(t+σ),y
3
(t)=−u
3
(t+σ),y
4
(t)=u
4
(t+σ),Ù¥σ∈(0,1) v
.K,
W
1
[y
1
](t) =
1
2
[sinh(l(t+σ))−sin(l(t+σ))],
W
2
[y
1
,y
2
](t) =
l
2
[cosh(l(t+σ))cos(l(t+σ))−1],
W
3
[y
1
,y
2
,y
3
](t) =
1
4
l
3
[sinh(l(t+σ))−sin(l(t+σ))],
W
4
[y
1
,y
2
,y
3
,y
4
](t) = W
4
[y
1
,y
2
,y
3
,y
4
](0) = l
6
,
w,, W
i
>0,i=1,2,3,4, K¼ê{y
1
,y
2
,y
3
,y
4
}´•§u
0000
(t)−l
4
u(t)=0 3«m[0,1] þ˜‡
êŒÅ)X,ÏL{ü/OŽ,
u
0000
(t)−l
4
u(t) =
4l
3
sinh(l(t+σ))−sin(l(t+σ))
(
(sinh(l(t+σ))−sin(l(t+σ)))
2
8l(cosh(l(t+σ))cos(l(t+σ))−1)
(
2(cosh(l(t+σ))cos(l(t+σ))−1)
2
l(sinh(l(t+σ))−sin(l(t+σ)))
2
(
(sinh(l(t+σ))−sin(l(t+σ)))
2
2l(cosh(l(t+σ))cos(l(t+σ))−1)
(
2
sinh(l(t+σ))−sin(l(t+σ))
u)
0
)
0
)
0
)
0
.
ŠâÚn2.39Ún2.4•,Žfu
0000
(t) −l
4
u(t)šÝ,…3>.^‡u(0)=u(1)=u
0
(0)=
u
0
(1) = 0eéA‚¼ê•. ,˜•¡,w,u
2
+u
1
2
÷v^‡(A3)-(A4), K¯K(4.1)–•
3ü‡).
DOI:10.12677/pm.2022.1271311203nØêÆ
xhh
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(1OÒ:12061064)"
ë•©z
[1]Yan,D.L.,Ma,R.Y. andWei, L.P. (2021)Global Structureof Positive Solutions of Fourth-Order Problems
withClampedBeamBoundaryConditions.MathematicalNotes,109,962-970.
https://doi.org/10.1134/S0001434621050308
[2]Ma,R.Y.,Wang,H.Y.andElsanosi,M.(2013)SpectrumofaLinearFourth-OrderDifferentialOperator
andItsApplications.MathematischeNachrichten,286,1805-1819.
https://doi.org/10.1002/mana.201200288
[3]Cabada,A.andEnguica,R.R.(2011)PositiveSolutionsofFourthOrderProblemswithClampedBeam
BoundaryConditions.NonlinearAnalysis:Theory,MethodsandApplications,74,3112-3122.
https://doi.org/10.1016/j.na.2011.01.027
[4]Shen,W.G.(2012)GlobalStructureofNodalSolutionsforaFourth-OrderTwo-PointBoundaryValue
Problem.AppliedMathematicsandComputation,219,88-98.https://doi.org/10.1016/j.amc.2011.12.080
[5]Bouteraa,N.,Benaicha,S.,Djourdem,H.andBenattia,M.E.(2018)PositiveSolutionsofNonlinear
Fourth-OrderTwo-PointBoundaryValueProblemwithaParameter.RomanianJournalofMathematics
andComputerScience,8,17-30.
[6]Zou,Y.M.(2017)OntheExistenceofPositiveSolutionsforaFourth-OrderBoundaryValueProblem.
JournalofFunctionSpaces,2017,ArticleID:4946198.https://doi.org/10.1155/2017/4946198
[7]Cabada,A.,Precup,R.,Saavedra,L.andTersian,S.(2016)MultiplePositive SolutionstoaFourth-Order
Boundary-ValueProblem.ElectronicJournalofDifferentialEquations,2016,1-18.
[8]Benaicha,S.andHaddouchi,F.(2016)PositiveSolutionsofaNonlinearFourth-OrderIntegralBoundary
ValueProblem.MathematicsandComputerScience,54,73-86. https://doi.org/10.1515/awutm-2016-0005
[9]Feng,X.F.andFeng,H.Y.(2013)ExistenceofPositiveSolutionsforFourth-OrderBoundaryValue
ProblemswithSign-ChangingNonlinearTerms.ISRNMathematicalAnalysis,2013,ArticleID:349624.
https://doi.org/10.1155/2013/349624
[10]Bai,Z.B.andWang,H.Y.(2002)OnPositive SolutionsofSomeNonlinearFourth-OrderBeamEquations.
JournalofMathematicalAnalysisandApplications,270,357-368.
https://doi.org/10.1016/S0022-247X(02)00071-9
[11]HŒ.š‚5•¼©Û[M].®:p˜Ñ‡,2015.
DOI:10.12677/pm.2022.1271311204nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.