设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(7),4979-4989
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.117522
˜aÍÜk-HessianXÚš‚5»•k-à)
ìC1•
•••ÿÿÿ
∗
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c625F¶¹^Fϵ2022c720F¶uÙFϵ2022c727F
Á‡
ÄuIþØÄ:½n§©Ì‡ïĘaÍÜk-HessianXÚš‚5»•k-à)ìC1•"
'…c
ÍÜk-HessianXÚ§š‚5»•k-à)§ìC1•§ØÄ:½n
TheAsymptoticBehaviorofNontrivial
Radialk-ConvexSolutionsforaClassof
Coupledk-HessianSystem
CunyanYue
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jun.25
th
,2021;accepted:Jul.20
th
,2022;published:Jul.27
th
,2022
Abstract
Basedonthefixed-pointtheoremincone,westudytheasymptoticbehaviorofnon-
trivialradialk-convexsolutionsforaclassofcoupledk-Hessiansystem.
∗Email:yuecunyan@163.com
©ÙÚ^:•ÿ.˜aÍÜk-HessianXÚš‚5»•k-à)ìC1•[J].A^êÆ?Ð,2022,11(7):
4979-4989.DOI:10.12677/aam.2022.117522
•ÿ
Keywords
Coupledk-HessianSystem,NontrivialRadialk-ConvexSolution,Asymptotic
Behavior,Fixed-PointTheorem
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
©Ì‡•ĘaÍÜk-HessianXÚ

































S
k
(D
2
u
1
) = λ
1
f
1
(−u
2
)inΩ,
S
k
(D
2
u
2
) = λ
2
f
2
(−u
3
)inΩ,
.
.
.
S
k
(D
2
u
n
) = λ
n
f
n
(−u
1
)inΩ,
u
1
= u
2
= ···= u
n
= 0on∂Ω,
(1.1)
š‚5»•k-à)•35ÚìC1•,Ù¥λ
i
´ëê,f
i
∈C([0,+∞),[0,+∞)),Ω={x∈
R
N
:|x|≤1}(N≥2),u
i
∈C
2
(R
N
),D
2
u
i
´ëY‡©¼êu
i
HessianÝ,S
k
(λ(D
2
u
i
))
´1kÐé¡õ‘ª,´HessianÝD
2
u
i
¤kk×kÌfªÚ,i= 1,2,···,n.
˜„/,·‚½ÂXek-HessianŽf:
S
k
(λ(D
2
u)) =
X
1≤j
1
<...<j
k
≤N
λ
j
1
λ
j
2
...λ
j
k
,k= 1,2,···,N.
AO/,k=1ž,k-HessianŽfòz•LaplaceŽfS
1
(λ(D
2
u))=
N
P
i=1
λ
i
=∆u,•„[1,2];
k=Nž,k-HessianŽfòz•Monge-Amp`ereŽfS
N
(λ(D
2
u))=
N
Q
i=1
=det(λ(D
2
u)),•
„[3–7].
Cc5,Laplace¯KÚMonge-Amp`ere¯K®2•A^uêÆ†A^êÆ̇©|.
k'Laplace¯KÚMonge-Amp`ere¯K)•35!Ø•35!õ)5!•˜5ÚìC-
½5ƒ'(J•„©z[1–7].AO/,32021c,¾{r[7]¥$^IþØÄ:½n
DOI:10.12677/aam.2022.1175224980A^êÆ?Ð
•ÿ
Monge-Amp`ereXÚ



















det(D
2
u
1
) = λ
1
f
1
(−u
2
)inΩ,
det(D
2
u
2
) = λ
2
f
2
(−u
3
)inΩ,
.
.
.
det(D
2
u
n
) = λ
n
f
n
(−u
1
)inΩ,
u
1
= u
2
= ···= u
n
= 0on∂Ω,
š‚5»•à)•35ÚìC1•.
k-Hessian•§´˜aš‚5 ‡©•§,3AÛÆ!6NåÆÚÙ¦A^Ɖ¥k X-
‡A^.NõÆöÏLüNS“•{!þe)•{!C©•{!ØÄ:½n±9£Ä²¡•
{Ãõk'k-Hessian•¯K)•35!Ø•35!õ)5!•˜5ÚìC-½5`
D(J,•„©z[8–12].~X,32019c,¾{r[8]¥$^IþØÄ:½nk-Hessian
XÚ







S
k
(D
2
u
1
) = λ
1
f
1
(−u
2
)inΩ,
S
k
(D
2
u
2
) = λ
2
f
2
(−u
1
)inΩ,
u
1
= u
2
= 0on∂Ω,
š‚5»•à)•35ÚìC1•.
É©z[7]Ú[8]éu,©òÏLØÄ:½nïÄÍÜk-HessianXÚ(1.1)š‚5»•k-à
)•359ìC1•.©̇óŠ´é©z[7,8]í2.
2.ý•£
!‰Ñ˜7‡ÚnÚ̇óä.
é?¿k= 1,2,···,N,½Â8Ü
Γ
k
:= {ν∈R
N
: S
k
(ν) >0,1 ≤k≤N}⊂R
N
.
½Â1.1.([13])Ω´R
N
¥˜‡k.m8,eé?¿x∈Ω,HessianÝA•þ
ν
1
,ν
2
,···,ν
N
÷v^‡(ν
1
,ν
2
,···,ν
N
) ∈Γ
k
,K¡u(x) ∈C
2
(Ω)´k-à¼ê.
Ún2.1([14])v(r)∈C
2
[0,R)´˜‡»•顼ê…v
0
(0)= 0,K¼êu(|x|)= v(r)∈
C
2
(B
R
),r= |x|<R,…
λ(D
2
u) =





(v
00
(r),
v
0
(r)
r
,...,
v
0
(r)
r
,r∈(0,R),
(v
00
(0),v
00
(0),...,v
00
(0)),r= 0;
S
k
(λ(D
2
u)) =





C
k−1
N−1
v
00
(r)+

v
0
(r)
r

k−1
+C
k
N−1

v
0
(r)
r

k
,r∈(0,R),
C
k
N
(v
00
(0))
k
,r= 0,
DOI:10.12677/aam.2022.1175224981A^êÆ?Ð
•ÿ
Ù¥r= |x|=
s
N
P
i=1
x
2
i
,B
R
:= {x∈R
N
: |x|<R},C
k
N
=
N!
k!(N−k)!
.
ÏLÚn3.1,·‚Œ±òk-HessianXÚ(1.1)=z•Xe~‡©>НK




































r
N−k
k

u
0
1
(r)

k

0
= λ
1
(C
k−1
N−1
)
−1
r
N−1
f
1
(−u
2
(r)),0 <r<1,

r
N−k
k

u
0
2
(r)

k

0
= λ
2
(C
k−1
N−1
)
−1
r
N−1
f
2
(−u
3
(r)),0 <r<1,
.
.
.

r
N−k
k

u
0
n
(r)

k

0
= λ
n
(C
k−1
N−1
)
−1
r
N−1
f
n
(−u
1
(r)),0 <r<1,
u
0
i
(0) = u
i
(0) = 0,i= 1,2,···,n.
(2.1)
ŠC†v
i
= −u
i
(i= 1,2,···,n),KŒò~‡©XÚ(2.1)=z•Xe~‡©XÚ




































r
N−k
k

−v
0
1
(r)

k

0
= λ
1
(C
k−1
N−1
)
−1
r
N−1
f
1
(v
2
(r)),0 <r<1,

r
N−k
k

−v
0
2
(r)

k

0
= λ
2
(C
k−1
N−1
)
−1
r
N−1
f
2
(v
3
(r)),0 <r<1,
.
.
.

r
N−k
k

−v
0
n
(r)

k

0
= λ
n
(C
k−1
N−1
)
−1
r
N−1
f
n
(v
1
(r)),0 <r<1,
v
0
i
(0) = v
i
(0) = 0,i= 1,2,···,n.
(2.2)
K(u
1
,u
2
) = (−v
1
,−v
2
)´k-HesianXÚ(1.1)»•)…=(v
1
,v
2
)´È©XÚ

























v
1
(r) = λ
1
k
1
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτ,
v
2
(r) = λ
1
k
2
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v
3
(s))ds

1
k
dτ,
.
.
.
v
n
(r) = λ
1
k
n
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v
1
(s))ds

1
k
dτ.
(2.3)
˜‡).
½Â¼ê˜mE= C[0,1],KU‰êkxk=max
0≤t≤1
|x(t)|¤Banach˜m.½Â
P:=
n
x∈E: x(t) ≥0,t∈[0,1],x(t) ≥θkxk,t∈[θ,1−θ]
o
⊂E
´Eþ˜‡I,Ù¥θ∈(0,
1
2
).w,,P´Eþ˜‡5I.
DOI:10.12677/aam.2022.1175224982A^êÆ?Ð
•ÿ
é?¿v∈P,·‚½ÂŽfT
i
: P→E(i= 1,2,···,n)•
(T
1
v)(t) = λ
1
k
1
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v(s))ds

1
k
dτ,
(T
2
v)(t) = λ
1
k
2
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v(s))ds

1
k
dτ,
.
.
.
(T
n
v)(t) = λ
1
k
n
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v(s))ds

1
k
dτ.
(2.4)
½Â˜‡EÜŽf
f
T
1
= T
1
T
2
···T
n
.
Ún2.2([6])ŽfT
i
(i=1,2,,n)´šK à¼ê,ÏddArzel`a½nŒ•T
i
:P→E(i=
1,2,···,n)´ëYŽf.?˜Ú/,dT½ÂŒ•T•´˜‡ëYŽf.
d©z[5]Œ•,λ
1
= λ
1
= ···= λ
n
ž,(v
1
,v
2
,···,v
n
) ∈C
1
[0,1]×C
1
[0,1]×···×C
1
[0,1]
|{z}
n
´È©XÚ(2.3))…=(v
1
,v
2
,···,v
n
)∈P\{0}×P\{0}×···×P\{0}
|{z}
n
¿…÷v
v
1
=T
1
v
2
,v
2
=T
2
v
3
,···,v
n
=T
n
v
1
.ùL²ev
1
∈P\{0}´
f
T
1
˜‡ØÄ:,@o·‚½Â
v
2
= T
2
v
3
,···,v
n
= T
n
v
1
ž,(v
1
,v
2
,···,v
n
) ∈C
1
[0,1]×C
1
[0,1]×···×C
1
[0,1]
|
{z}
n
´È©XÚ(2.3)
˜‡).,˜•¡,e(v
1
,v
2
,···,v
n
) ∈C
1
[0,1]×C
1
[0,1]×···×C
1
[0,1]
|{z}
n
´È©XÚ(2.3)˜
‡),Kv
1
´ëYŽf
f
T
1
˜‡š"ØÄ:.
Ïd,‡yÈ©XÚ(2.3)k˜‡),·‚•IyëYŽf
f
T
1
k˜‡š"ØÄ:=Œ.
aq,·‚Œ±½ÂÙ¦EÜŽf,Xe:
f
T
2
= T
2
T
3
···T
n
T
1
,
f
T
3
= T
3
···T
n
T
1
T
2
,
.
.
.
f
T
n
= T
n
···T
1
T
2
T
3
.
e¡‰Ñ©̇ïÄóä.
Ún2.3([15])-Ω
1
ÚΩ
2
´Banach˜mEþü‡k.m8,…0∈Ω,
¯
Ω
1
⊂Ω
2
,-
P: P∩(
¯
Ω
2
\Ω
1
) →P´˜‡ëYŽf,Ù¥P´Eþ˜‡I.e
(i)kTxk≤kxk,∀x∈P∩∂Ω
1
,…kTxk≥kxk,∀x∈P∩∂Ω
2
;
½
(ii)kTxk≥kxk,∀x∈P∩∂Ω
1
,…kTxk≤kxk,∀x∈P∩∂Ω
2
.
KT3P∩(
¯
Ω
2
\Ω
1
)¥–k˜‡ØÄ:.
DOI:10.12677/aam.2022.1175224983A^êÆ?Ð
•ÿ
3.̇(J
Äk,éi= 1,2,···,n,·‚‰ÑXePÒ:
f
0
i
=lim
x→0
f(x)
x
k
,f
∞
i
=lim
x→∞
f(x)
x
k
.
½n3.1bf
i
∈C([0,+∞),[0,+∞)),…f
0
i
=0,f
∞
i
=∞,Kéλ
i
>0,k-HessianXÚ(1.1)
•3˜‡š‚5»•à)u= (u
λ
1
,u
λ
2
,···,u
λ
n
)÷vlim
λ
i
→0
+
ku
λ
i
k= ∞,Ù¥i= 1,2,···,n.
y²:éi= 1,2,···,n,·‚•Iy²éλ
i
>0,È©XÚ(2.3)•3˜‡)v= (v
λ
1
,v
λ
2
,···,v
λ
n
)
÷vlim
λ
i
→0
+
kv
λ
i
k= ∞=Œ.Ï•f
0
i
= 0,K•3˜‡~êr
1
>0¦é?¿ε>0,k
f
1
(v
2
) ≤εv
k
2
,∀0 ≤v
2
≤r
1
,
f
2
(v
3
) ≤εv
k
3
,∀0 ≤v
3
≤r
1
,
.
.
.
f
n
(v
1
) ≤εv
k
1
,∀0 ≤v
1
≤r
1
,
Ù¥ε÷v
(λ
1
λ
2
···λ
n
)
1
k
ε
n
k
≤1.
(3.1)
Ïd,év
i
∈P∩∂Ω
r
1
,i= 1,2,···,n,Ω
r
1
= {x∈R
N
: kxk≤r
1
},k
(T
1
v
2
)(t) = λ
1
k
1
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτ
≤λ
1
k
1
Z
1
0

Z
1
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτ
≤λ
1
k
1
Z
1
0

Z
1
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
εv
k
2
(s)ds

1
k
dτ
≤λ
1
k
1
ε
1
k

k
C
k−1
N−1

1
k
kv
2
k
Z
1
0

Z
1
0
τ
k−N
s
N−1
ds

1
k
dτ
≤λ
1
k
1
ε
1
k
kv
2
k,t∈[0,1],
ÓnŒ,
(T
2
v
3
)(t) = λ
1
k
2
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v
3
(s))ds

1
k
dτ
≤λ
1
k
2
ε
1
k
kv
3
k,t∈[0,1],
.
.
.
(T
n
v
1
)(t) = λ
1
k
n
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v
1
(s))ds

1
k
dτ
≤λ
1
k
n
ε
1
k
kv
1
k,t∈[0,1].
DOI:10.12677/aam.2022.1175224984A^êÆ?Ð
•ÿ
d
f
T
1
½ÂÚ(3.1)Œ•,
k
f
T
1
v
1
k= kT
1
T
2
···T
n
v
1
k
≤λ
1
k
1
ε
1
k
kT
2
···T
n
v
1
k
≤(λ
1
λ
2
)
1
k
ε
2
k
kT
3
···T
n
v
1
k
.
.
.
≤(λ
1
λ
2
···λ
n
)
1
k
ε
n
k
kv
1
k
≤kv
1
k,v
1
∈P∩∂Ω
r
1
.
(3.2)
ϕf
∞
i
= ∞,K•3˜‡~êR
0
(0 <r
1
<R
0
)¦é?¿~êη>0,k
f
1
(v
2
) ≥ηv
k
2
,∀v
2
≥R
0
,
f
2
(v
3
) ≥ηv
k
3
,∀v
3
≥R
0
,
.
.
.
f
n
(v
1
) ≥ηv
k
1
,∀v
1
≥R
0
,
Ù¥η÷v
(λ
1
λ
2
···λ
n
)
1
k

ηk
C
k−1
N−1

n
k
(1−θ)
n(k−N)
k
θ
n(2k+N−1)
k
≥1.
(3.3)
-R
1
>max{R
0
,
R
0
θ
},Kév
i
∈P∩∂Ω
R
1
,i= 1,2,···,n,Ω
R
1
= {x∈R
N
: kxk≤R
1
},k
v
i
(t) ≥θkv
i
k= θR
1
≥R
0
,t∈[θ,1−θ].
Ïd,év
i
∈P∩∂Ω
R
1
,k
(T
1
v
2
)(t) = λ
1
k
1
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτ
≥λ
1
k
1
Z
1
1−θ
Z
1−θ
θ
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds
!
1
k
dτ
≥λ
1
k
1
Z
1
1−θ
Z
1−θ
θ
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
ηv
k
2
(s)ds
!
1
k
dτ
≥λ
1
k
1
Z
1
1−θ
Z
1−θ
θ
k(1−θ)
k−N
θ
N−1
(C
k−1
N−1
)
−1
η(θkv
2
k)
k
ds
!
1
k
dτ
=

λ
1
ηk
C
k−1
N−1

1
k
(1−θ)
k−N
k
θ
2k+N−1
k
kv
2
k,t∈[0,1],
DOI:10.12677/aam.2022.1175224985A^êÆ?Ð
•ÿ
ÓnŒ,
(T
2
v
3
)(t) = λ
1
k
2
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v
3
(s))ds

1
k
dτ
≥

λ
2
ηk
C
k−1
N−1

1
k
(1−θ)
k−N
k
θ
2k+N−1
k
kv
3
k,t∈[0,1],
.
.
.
(T
n
v
1
)(t) = λ
1
k
n
Z
1
t

Z
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v
1
(s))ds

1
k
dτ
≥

λ
n
ηk
C
k−1
N−1

1
k
(1−θ)
k−N
k
θ
2k+N−1
k
kv
1
k,t∈[0,1].
d
f
T
1
½ÂÚ(3.3)Œ•,
k
f
T
1
v
1
k=kT
1
T
2
···T
n
v
1
k
≥

λ
1
ηk
C
k−1
N−1

1
k
(1−θ)
k−N
k
θ
2k+N−1
k
kT
2
···T
n
v
1
k
≥(λ
1
λ
2
)
1
k

ηk
C
k−1
N−1

2
k
(1−θ)
2(k−N)
k
θ
2(2k+N−1)
k
kT
3
···T
n
v
1
k
.
.
.
≥(λ
1
λ
2
···λ
n
)
1
k

ηk
C
k−1
N−1

n
k
(1−θ)
n(k−N)
k
θ
n(2k+N−1)
k
kv
1
k
≥kv
1
k,v
1
∈P∩∂Ω
R
1
.
(3.4)
(ÜÚn2.3Œ•,Žf
f
T
1
k˜‡ØÄ:v
1
∈P∩(
¯
Ω
R
1
\Ω
r
1
).½ÂT
2
v
3
= v
2
,···,T
n
v
1
= v
n
,K
(v
1
,v
2
,···,v
n
)´~‡©XÚ(2.2)˜‡š‚5»•]).
Ón,·‚•Œ±ÑŽf
f
T
2
k˜‡ØÄ:v
2
∈P∩(
¯
Ω
R
1
\Ω
r
1
),···,Žf
f
T
n
k˜‡ØÄ:
v
n
∈P∩(
¯
Ω
R
1
\Ω
r
1
).
e5,·‚y²λ
i
→0
+
ž,kv
λ
i
k→+∞,i=1,2,···,n.b•3~êβ
i
>0ÚS
λ
im
→0
+
¦
kv
λ
im
k≤β
i
(m= 1,2,···).
KS{kv
λ
im
k}•3˜‡Âñu~êα
i
(0≤α
i
≤β
i
)fS,•{Bå„,·‚b{kv
λ
im
k}
Âñuα
i
.
(i)eα
i
>0,Kéu¿©Œm(m>k),k{kv
iλ
im
k}>
α
i
2
.-
F
1
= max{f
1
(v
2
),r
1
≤kv
2
k≤R
1
},
F
1
= max{f
2
(v
3
),r
1
≤kv
3
k≤R
1
},
.
.
.
F
1
= max{f
n
(v
1
),r
1
≤kv
1
k≤R
1
}.
DOI:10.12677/aam.2022.1175224986A^êÆ?Ð
•ÿ
dT
1
v
2
= v
1
,T
2
v
3
= v
2
,···,T
n
v
1
= v
1
Υ
1
λ
1
k
1m
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτk
kv
1λ
1m
k
≤
k
R
1
0

R
1
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
F
1
ds

1
k
k
kv
1λ
1m
k
≤
F
1
k
1
|
k
2k−N
|
kv
1λ
1m
k
≤
2kF
1
k
1
|2k−N|α
1
,
1
λ
1
k
2m
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v
3
(s))ds

1
k
dτk
kv
2λ
2m
k
≤
2kF
1
k
2
|2k−N|α
2
,
.
.
.
1
λ
1
k
nm
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v
1
(s))ds

1
k
dτk
kv
nλ
nm
k
≤
2kF
1
k
n
|2k−N|α
n
.
(3.5)
(3.5)L²λ
im
→+∞(m→+∞),ù†λ
im
→0
+
gñ,i= 1,2,···,n.
(ii)eα
i
= 0,Kéu¿©Œm(m>k),k{kv
iλ
im
k}→0.df
0
i
= 0Œ•,é?¿δ>0,
•3˜‡~êr
0
>0,¦
f
1
(v
2λ
2m
) ≤δv
k
2λ
2m
,∀0 ≤v
2λ
2m
≤r
0
,
f
2
(v
3λ
3m
) ≤δv
k
3λ
3m
,∀0 ≤v
3λ
3m
≤r
0
,
.
.
.
f
n
(v
1λ
1m
) ≤δv
k
1λ
1m
,∀0 ≤v
1λ
1m
≤r
0
.
Ïd,év
iλ
im
∈P∩∂Ω
r
0
,kv
iλ
im
k= r
0
,k
1
λ
1
k
1m
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
1
(v
2
(s))ds

1
k
dτk
kv
1λ
1m
k
≤
k
R
1
0

R
1
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
δv
k
2λ
2m
ds

1
k
k
kv
1λ
1m
k
≤
kδ
1
k
kv
2
k
|2k−N|r
0
,
1
λ
1
k
2m
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
2
(v
3
(s))ds

1
k
dτk
kv
2λ
2m
k
≤
kδ
1
k
kv
3
k
|2k−N|r
0
,
.
.
.
(3.6)
DOI:10.12677/aam.2022.1175224987A^êÆ?Ð
•ÿ
1
λ
1
k
nm
=
k
R
1
t

R
τ
0
kτ
k−N
s
N−1
(C
k−1
N−1
)
−1
f
n
(v
1
(s))ds

1
k
dτk
kv
nλ
nm
k
≤
kδ
1
k
kv
1
k
|2k−N|r
0
.
(3.6)L²λ
im
→+∞(m→+∞),ù†λ
im
→0
+
gñ,i= 1,2,···,n.
nþŒ•,λ
i
→0
+
ž,kv
λ
i
k→+∞,i= 1,2,···,n.
aqu½n3.1y²,·‚kXe½n.
½n3.2bf
i
∈C([0,+∞),[0,+∞)),…f
0
i
=∞, f
∞
i
=0,Ké¤kλ
i
>0,k-
Hessian•§(1.1)•3˜‡š‚5»•à)u=(u
λ
1
,u
λ
2
,···,u
λ
n
)÷vlim
λ
i
→0
+
ku
λ
i
k=0,Ù¥
i= 1,2,···,n.
ë•©z
[1]Trudinger,N.andWang,X.(2008)TheMonge-Amp`ereEquationsandItsGeometricAppli-
cations.HandbookofGeometricAnalysis,1,467-524.
[2]Shivaji,R.,Sim,I.andSon,B.(2017)AUniquenessResultforaSemipositonep-Laplacian
ProblemontheExteriorofaBall.JournalofMathematicalAnalysisandApplications,445,
459-475.https://doi.org/10.1016/j.jmaa.2016.07.029
[3]Zhang, Z. (2015)BoundaryBehavior of Large Solutionstothe Monge-Amp`ereEquations with
Weight.JournalofDifferentialEquations,259,2080-2100.
https://doi.org/10.1016/j.jde.2015.03.040
[4]Zhang,Z.(2018)LargeSolutionstotheMonge-Amp`ereEquationswithNonlinearGradient
Terms:ExistenceandBoundaryBehavior.JournalofDifferentialEquations,264,263-296.
https://doi.org/10.1016/j.jde.2017.09.010
[5]Zhang, Z.andQi, Z.(2015)OnaPower-TypeCoupledofMonge-Amp`ere Equations.Topolog-
icalMethodsinNonlinearAnalysis,46,717-729.
[6]Lazer,A.andMcKenna,P.(1996)OnSingularBoundaryValueProblemsfortheMonge
Amp`ereOperator.JournalofMathematicalAnalysisandApplications,197,342-362.
https://doi.org/10.1006/jmaa.1996.0024
[7]Feng,M.(2021)ConvexSolutionsofMonge-Amp`ereEquationsandSystems:Existence,U-
niquenessandAsymptoticBehavior.AdvancesinNonlinearAnalysis,10,371-399.
https://doi.org/10.1515/anona-2020-0139
[8]Feng,M.andZhang,X.(2021)ACoupledSystemofk-HessianEquations.Mathematical
MethodsintheAppliedSciences,44,7377-7394.https://doi.org/10.1002/mma.6053
[9]Gao, C.,He, X.andRan, M.(2021)On aPower-Type CoupledSystem ofk-HessianEquations.
QuaestionesMathematicae,44,1593-1612.https://doi.org/10.2989/16073606.2020.1816586
[10]Zhang, X. and Feng, M. (2019) TheExistence and Asymptotic Behavior of Boundary Blow-Up
Solutionstothek-HessianEquation.JournalofDifferentialEquations,267,4626-4672.
https://doi.org/10.1016/j.jde.2019.05.004
DOI:10.12677/aam.2022.1175224988A^êÆ?Ð
•ÿ
[11]Wan,H.,Shi,Y.andQiao,X.(2021)EntireLargeSolutionstothek-HessianEquationswith
Weights:Existence,UniquenessandAsymptoticBehavior.JournalofMathematicalAnalysis
andApplications,503,ArticleID:125301.https://doi.org/10.1016/j.jmaa.2021.125301
[12]Sun, H.andFeng,M. (2018) BoundaryBehavior ofk-ConvexSolutionsforSingulark-Hessian
Equations.NonlinearAnalysis,176,141-156.https://doi.org/10.1016/j.na.2018.06.010
[13]Trudinger, N. (1995)On the Dirichlet Problem for HessianEquations. ActaMathematica, 175,
151-164.https://doi.org/10.1007/BF02393303
[14]Ji, X.and Bao, J.(2010) Necessaryand Sufficient Condition onSolvabilityforHessian Inequal-
ities.ProceedingsoftheAMS,138,175-188.https://doi.org/10.1090/S0002-9939-09-10032-1
[15]Guo,D.andLakshmikantham,V.(1988)NonlinearProblemsinAbstractCones.Academic
Press,Inc.,Cambridge,MA.
DOI:10.12677/aam.2022.1175224989A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.