设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(8),1346-1359
PublishedOnlineAugust2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.128148
n‘‘Å•§|3Fourier-Besov˜m¥
)N•35
ooowww
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c718F¶¹^Fϵ2022c818F¶uÙFϵ2022c830F
Á‡
¯¤±•§n‘‘Å•§|´£ãŒíÚ°ÄåÆ1•Ä•§|§©ò̇ïÄÙ
Њ¯K)N•35nØ"Äk§$^Littlewood-PaleynØÚBony•È©)E|§ïá
Stokes-Coriolis-StratificationŒ+#V‚5O",§ÏLïáƒA‘Å‚5Њ¯K
) k .5O§(ÜU\ n±9ØÄ:½n§3ЊÚ‘Ååb^‡e§y²
n‘‘Å•§|3Fourier-Besov˜m¥§Ú)N•35Ú•˜5"©̇(J´
é²;n‘•§|Њ¯K)N•35nØ3‘Åœ/eí2"
'…c
n‘‘Å•§|§Littlewood-PaleynاBony•È©)E|§Itˆoúª§N)
GlobalExistenceofThree-Dimensional
StochasticPrimitiveEquations
inFourier-BesovSpaces
NingLi
CollegeofMathematicsandStatistics,NorthwestNormalUniversity, LanzhouGansu
Received:Jul.18
th
,2022;accepted:Aug.18
th
,2022;published:Aug.30
th
,2022
©ÙÚ^:ow.n‘‘Å•§|3Fourier-Besov˜m¥)N•35[J].nØêÆ, 2022,12(8):1346-1359.
DOI:10.12677/pm.2022.128148
ow
Abstract
Thispaperisdevotedtostudyingtheglobalexistenceofsolutionstoinitialvalue
problem ofthethree-dimensionalstochasticprimitiveequations, which are abasicsys-
temthatisusually usedtodescribe thedynamicbehavior oftheatmosphericandthe
oceanicflows.Firstly,byusingthe Littlewood-Paley theoryandBonypara-productde-
compositiontechnique,weestablishanewbilinearestimationfortheStokes-Coriolis-
Stratificationsemigroup.Then,byestablishingtheboundednessestimationsforsolu-
tionsofthecorrespondingstochasticlinearinitialvalueproblem,andcombiningthe
superpositionprincipleandBanach’sfixedpointtheorem,weprovetheglobalexis-
tenceanduniquenessofmildsolutionstothethree-dimensionalstochasticprimitive
equationswithsmallinitialvaluesandsmallrandomexternalforcesintheFourier-
Besov spaceframe. Ourmainresultisageneralizationoftheglobalexistenceofthe
solutionsfortheinitialvalueproblemoftheclassicalthree-dimensionalprimitivee-
quationsunderthestochasticcase.
Keywords
Three-DimensionalStochasticPrimitiveEquations,Littlewood-PaleyTheory,Bony
ParaproductDecompositionTechnique,ItˆoFormula,GlobalSolutions
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
©Ì‡ïÄXen‘‘Å•§|Њ¯K§Ú)N•35:











du+(Ke
3
×u−ν∆u+(u·∇)u+∇p)dt= gθe
3
dt+hdW,(x,t,ω) ∈R
3
×(0,∞)×Ω,
dθ+((u·∇)θ−µ∆θ)dt= −N
2
u
3
dt+ldW,(x,t,ω) ∈R
3
×(0,∞)×Ω,
divu= 0,(x,t,ω) ∈R
3
×(0,∞)×Ω,
u|
t=0
= u
0
,θ|
t=0
= θ
0
,(x,ω) ∈R
3
×Ω,
(1.1)
DOI:10.12677/pm.2022.1281481347nØêÆ
ow
Ù ¥™•¼êu=(u
1
,u
2
,u
3
), p†θ©OL«6N„Ý|, ØåÚ§Ý(—Ý), ~êν,µÚg
©OL«Ê5Xê,*ÑXêÚ-å. K∈R´Coriolis ëê,Ù•7R
3
¥ü •þe
3
= (0,0,1)^
=„Ý, Ke
3
×u=•¤¢Coriolis å; N>0 ´(ëê, ½L«Brunt-V¨ais¨al¨aÅ
ª, Ù•x©Ar f. ‘gθe
3
“LBoussinesq CqeCÄ’2å.W´½Â3Vǘm
(Ω,F,(F
t
)
t≥0
,P) ¥Œ©FËA˜mHþÕ‘Î.Wiener L§, ¿…bWŒL«•
W=
P
j≥1
f
j
W
j
(t), Ù¥{W
j
}
j≥1
´˜xƒpÕá¢ŠBrownian $Ä, {f
j
}
j≥1
´H˜|
Ä.hdWÚldW©OL«‘Åå,Ï~^u)ºêб9²Ø(½5.u
0
Úθ
0
©OL«‰
½Щ„ÝÚЩ§Ý.•§|(1.1)Ï~^5£ãŒíÚ°/¥Ôn6NŒºÝ6Ä.
N=0,K=0 …θ≡0 ž, •§|(1.1) òz•n‘‘ÅNavier-Stokes •§|, ÙÏ~
^5£ã6Në6y–, Œë©z[1–3]. â·‚¤•, 'un‘‘ÅNavier-Stokes •§|1
˜‡ïÄ(JŒJˆBensoussanÚTemam 3©z[4] ¥mM5óŠ. ‘, HolzÚZiane 3©
z[5] ¥y²¦5D(ek.«•þ‘Ún‘‘ÅNavier-Stokes•§|'uH
1
Њr)½
´»)ÛÜ•3•˜5,¿y²‘œ/e)N•35.•C, Ú|~ÇÚÜÍÇ3©
z[6] ¥¼‘9•p‘Ý‘ÅNavier-Stokes •§|'u.˜m
˙
B
d
p
−1
p,r
(R
d
)¥ЊÛ
Ür)•3•˜5.
N= 0 …θ≡0ž, •§|(1.1)òz•n‘ØŒØ ‘ÅNavier-Stokes-Coriolis•§|. •
C, •uÇ3ЊÚ‘Ååb^‡e, ©O3Besov ˜mÚFourier-Besov ˜mµ
ee¼n‘‘ÅNavier-Stokes-Coriolis•§|Њ¯K§Ú)N•35, äNŒ„©
z[7,8]. Dong3©z[9] ¥y²-½L´evyD(e‘^=ü ¥¡þ‘ÅNavier-Stokes•§
|r)•35Ú•˜5.
N= 0…K= 0ž, •§|(1.1)òz•n‘‘ÅBoussinesq •§|.Ferrario 3©z[10]¥
ÄgïÄ\5D(=Š^u„Ý|‘‘ÅBoussinesq•§|,¿ÙÐ>.¯K)•
35Ú•˜5, ±9ƒAŒ+ØCÿÝ. ÆÆ‰ÇÚHy(¬3©z[11] ¥ïÄ\5D(
eäÜ©Ê5‘‘ÅBoussinesq •§|Њ¯KN·½5. •C,Ú|~ÇÚÜÍÇ
3©z[12]¥•Ä¦5D(eT
d
þBoussinesq•§|Њ¯K´»)ÛÜ•35. ¿…,3
˜½K5b^‡e,?˜Ú¼šòzD(e•§|(1.1)´»)N•35.
Éþã©zéu, ©ò3Fourier-Besov˜m¥ïÄn‘‘Å•§|Њ¯K(1.1) )
N•35.3‰Ñ̇(Jƒc, ·‚k50˜ÄVg.
½Â1.1éu‰½Vǘm(Ω,F,P,(F
t
)
t≥0
),¡¼êf: Ω →R
3
´F
t
(t≥0) Œÿ,X
J
f
−1
(U) := {ω∈Ω;f(ω) ∈U}∈F
t
é¤km8U∈R
3
(½d/,é¤kBorel8U∈R
3
)¤á.
½Â1.2([13])éu‰½Vǘm(Ω,F,P,(F
t
)
t≥0
), ¡[0,T]×R
3
×Ω þF
t
·A©
ÙL§f´ÌSŒÿ, XJé?¿t∈[0,T],f(w,t,·) ∈F
t
×B[0,t].
½Â1.3éu‰½Vǘm(Ω,F,P,(F
t
)
t≥0
), M
t
•F
t
•σ“ê, eé∀t≥0,
DOI:10.12677/pm.2022.1281481348nØêÆ
ow
v(·,·,w) ∈L
4
(0,T;F
˙
B
−
1
2
+
3
p
0
p,r
)
T
M
t
…
v(t) = T
K,N
(t)v
0
−
R
t
0
T
K,N
(t−τ)P
e
∇·(v(τ)⊗v(τ))dτ+
R
t
0
T
K,N
(t−τ)PGdW.
(1.2)
K¡v´•§|(1.1)§Ú), Ù¥ŽfPÚ
e
∇±9Œ+{T
K,N
(t)}
t≥0
½Â„1!ý•£.
$^Littlewood-PaleynØÚBony•È©)E|,ÏLïá'uStokes-Coriolis-Stratification
Œ+#V‚5O, ±9ïáƒA‘Å‚5Њ¯K)k.5O, (ÜU\n±9ØÄ
:½n,·‚3ЊÚ‘Ååb^‡e, y²n‘‘Å•§|Њ¯K(1.1) 3
Fourier-Besov˜m¥§Ú)N•35Ú•˜5. ©̇(JXe:
½n1.4éu‰½VÇÄ(Ω,F,P,(F
t
)
0≤t≤T
,W),-ÙþÏ"•E.r ∈[2,∞],
(u
0
,θ
0
) ∈
˜
L
4
(Ω;F
˙
B
1
2
2,r
(R
3
))´F
0
Œÿ,¿…é?¿T>0,(h,l) ∈
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
T
M
T
.
K•3~ê>0 ±9VÇ‘ÅCþ8
e
Ω,¦
(1+T)k(h,l)k
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
+k(u
0
,θ
0
)k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
≤
ž,é?¿ω∈
e
Ω,•§|(1.1)•3•˜§Ú)(u,θ)(ω,·,·) ∈
˜
L
4
(0,T;F
˙
B
1
2,r
(R
3
)).
5º1.5½n1.4 ´é©z[14] ¥'u²;•§|)N•35(J3‘Åœ/e
í2.©Ù{Ü©SüXe:31!¥,·‚ò‰ÑLittlewood-Paleynر9†Fourier-Besov
˜mƒ'¼ê˜m½Â, ¿‰ÑStokes-Coriolis-Stratification Œ +{T
K,N
(t)}
t≥0
½Â.31
n!¥,$^Littlewood-Paley nر9Bony •È©)E|, ïáStokes-Stratification Œ+3
Fourier-Besov˜mþV‚5O,±9ƒA‘Å‚5¯Kk.5O.3•˜!·‚‰Ñ½
n1.4 y².
3©¥,F(f) Ú
ˆ
fþL«f'u˜mCþFp“C†, F
−1
L«ƒAFp“_C†.
2.ý•£
Äk, 0Littlewood-PaleynØÚBony•È©)nر9†àgFourier-Besov˜mƒ'
¼ê˜m½Â.äNŒë„;Í[15,16].
S(R
3
)•Schwartz˜m, S
0
(R
3
)•…O2¼ê˜m, ψ,ϕ∈S(R
3
)´»•¼ê,9
ˆ
ψÚ
ˆϕ÷ve5Ÿ:
suppˆϕ⊂B:= {ξ∈R
3
: |ξ|≤
4
3
},
supp
ˆ
ψ⊂C:= {ξ∈R
3
:
3
4
≤|ξ|≤
8
3
},
…
X
j∈Z
ˆϕ(2
−j
ξ) = 1,∀ξ∈R
3
\{0}.
DOI:10.12677/pm.2022.1281481349nØêÆ
ow
-ψ
j
(x) :=2
3j
ψ(2
j
x), ϕ
j
(x) :=2
3j
ϕ(2
j
x), KàgªÇÛÜzŽf∆
j
Úàg$ªäŽfS
j
fŒ
©O½Â•
∆
j
f:= ϕ
j
∗f,S
j
f= ψ
j
∗f∀j∈Z,f∈S
0
(R
3
).
-S
0
h
(R
3
) := S
0
(R
3
)/P[R
3
],Ù¥P[R
3
]•½Â3R
3
þNõ‘ª¤¤‚5˜m.
¯¤±•,3S
0
h
(R
3
)¥kXe©)¤á:
f=
X
j∈Z
∆
j
f,S
j
f=
X
j
0
≤j−1
∆
j
0
f,
¿…ªÇÛÜzŽf∆
j
Ú$ªäŽfS
j
þ•L
p
L
p
‚5Žf. d, Littlewood-Paley©
)÷v±eA5Ÿ:
∆
j
∆
k
f= 0,|j−k|≥2,
Ú
∆
j
(S
k−1
f∆
k
f) = 0,|j−k|≥5.
Ún2.1([16])1≤p≤q≤∞,r∈(0,R),j∈Z. Ké?¿õ•Iγ∈Z
3
+
S
{0}, ±e
O¤á:
(1)esupp
ˆ
f⊂{ξ∈R
3
: |ξ|≤R2
j
},Kk(iξ)
γ
ˆ
fk
L
q
≤C2
j|γ|+3j(
1
q
−
1
p
)
k
ˆ
fk
L
p
;
(2)esupp
ˆ
f⊂{ξ∈R
3
: r2
j
≤|ξ|≤R2
j
},Kk
ˆ
fk
L
p
≤C2
−j|γ|
sup
|α|=|γ|
k(iξ)
α
ˆ
fk
L
p
.
½Â2.2(1) s∈R,1 ≤p,r≤∞, àgFouier-Besov˜mF
˙
B
s
p,r
(R
3
)½Â•
F
˙
B
s
p,r
(R
3
) :=
n
f∈S
0
h
(R
3
) : kfk
F
˙
B
s
p,r
=



n
2
js
k
d
∆
j
fk
L
p
ξ
o
j∈Z



l
r
<∞
o
.
(2) é?¿0<T≤∞, s∈R,1 ≤δ,p,r≤∞, Chemin-Lerner.˜m
˜
L
δ
(0,T;F
˙
B
s
p,r
(R
3
))
½Â•˜mC((0,T];F
˙
B
s
p,r
(R
3
))3‰ê
kfk
˜
L
δ
(0,T;F
˙
B
s
p,r
)
:=



n
2
js
k
d
∆
j
fk
L
δ
(0,T;L
p
ξ
(R
3
))
o
j∈Z



l
r
ez˜m.
½Â2.3é?¿0<T≤∞, s∈R,1≤p,r,δ,ρ≤∞, Bochner .Chemin-Lerner
.˜m
˜
L
ρ
(Ω;
˜
L
δ
(0,T;F
˙
B
s
p,r
(R
3
)))½Â•
˜
L
ρ
(Ω;
˜
L
δ
(0,T;F
˙
B
s
p,r
(R
3
))) :=
n
f∈M
T
: f(ω,t) ∈S
0
h
(R
3
),P−a.s,…
kfk
˜
L
ρ
(Ω;
˜
L
δ
(0,T;F
˙
B
s
p,r
))
=



n
2
js
[E(k
d
∆
j
fk
L
δ
(0,T;L
p
ξ
(R
3
))
)
ρ
]
1
ρ
o
j∈Z



l
r
<∞
o
.
•, ‰Ñ•§|(1.1)dÈ©•§ÚStokes-Coriolis-Stratification Œ+{T
K,N
}
t≥0
½
DOI:10.12677/pm.2022.1281481350nØêÆ
ow
Â.
µ=ν=1,v:=(u
1
,u
2
,u
3
,
√
gθ/N),v
0
:=(u
0
1
,u
0
2
,u
0
3
,
√
gθ
0
/N),
e
∇:=(∂
1
,∂
2
,∂
3
,0),
N:= N
√
g,Њ¯K(1.1)Œ=†•Xed¯K:



dv+(Qv+Sv+
e
∇p)dt= −(v·
e
∇)vdt+GdW,(x,t,ω) ∈R
3
×(0,∞)×Ω,
e
∇·v=0,(x,t,ω) ∈R
3
×(0,∞)×Ω,
v|
t=0
= v
0
,(x,ω) ∈R
3
×Ω,
(2.1)
Ù¥G:= (h,
√
gl/N),
Q:=






−∆000
0−∆00
00−∆0
000−∆






,S:=






0−K00
K000
000−N
00N0






.(2.2)
d[17]Œ•, ¯K(2.1) ‚5z¯K¤)¤Stokes-Coriolis-StratificationŒ+{T
K,N
(t)}
t≥0
ŒäNLˆ•:
T
K,N
(t)f:= F
−1

cos(
|ξ|
0
|ξ|
t)e
−|ξ|
2
t
M
1
(ξ)
ˆ
f+sin(
|ξ|
0
|ξ|
t)e
−|ξ|
2
t
M
2
(ξ)
ˆ
f+e
−|ξ|
2
t
M
3
(ξ)
ˆ
f

,(2.3)
Ù¥ξ= (ξ
1
,ξ
2
,ξ
3
) ∈R
3
,|ξ|=
p
ξ
2
1
+ξ
2
2
+ξ
2
3
,|ξ|
0
=
p
N
2
ξ
2
1
+N
2
ξ
2
2
+K
2
ξ
2
3
,
M
1
(ξ) =




K
2
ξ
2
3
|ξ|
02
0−
N
2
ξ
1
ξ
3
|ξ|
02
KNξ
2
ξ
3
|ξ|
02
0
K
2
ξ
2
3
|ξ|
02
−
N
2
ξ
2
ξ
3
|ξ|
02
−
KNξ
1
ξ
3
|ξ|
02
−
K
2
ξ
1
ξ
3
|ξ|
02
−
K
2
ξ
2
ξ
3
|ξ|
02
N
2
(ξ
2
1
+ξ
2
2
)
|ξ|
02
0
KNξ
2
ξ
3
|ξ|
02
−
KNξ
1
ξ
3
|ξ|
02
0
N
2
(ξ
2
1
+ξ
2
2
)
|ξ|
02




,(2.4)
M
2
(ξ) =




0−
Kξ
2
3
|ξ||ξ|
0
Kξ
2
ξ
3
|ξ||ξ|
0
Nξ
1
ξ
3
|ξ||ξ|
0
Kξ
2
3
|ξ||ξ|
0
0−
Kξ
1
ξ
3
|ξ||ξ|
0
Nξ
2
ξ
3
|ξ||ξ|
0
−
Kξ
2
ξ
3
|ξ||ξ|
0
Kξ
1
ξ
3
|ξ||ξ|
0
0−
N(ξ
2
1
+ξ
2
3
)
|ξ||ξ|
0
−
Nξ
1
ξ
3
|ξ||ξ|
0
−
Nξ
2
ξ
3
|ξ||ξ|
0
N(ξ
2
1
+ξ
2
3
)
|ξ||ξ|
0
0




,(2.5)
M
3
(ξ) =






N
2
ξ
2
2
|ξ|
02
−
N
2
ξ
1
ξ
2
|ξ|
02
0−
KNξ
2
ξ
3
|ξ|
02
−
N
2
ξ
1
ξ
2
|ξ|
02
N
2
ξ
2
1
|ξ|
02
0
KNξ
1
ξ
3
|ξ|
02
0000
−
KNξ
2
ξ
3
|ξ|
02
KNξ
1
ξ
3
|ξ|
02
0
K
2
ξ
2
3
|ξ|
02






.(2.6)
Š˜J´, N´y, éξ∈R
3
, M
l
(ξ) (l=1,2,3) z‡š"©þM
l
jk
(ξ) (j,k=1,2,3,4) ÷
v|M
l
jk
(ξ)|≤max{2,
|K|
N
,
N
|K|
}(j,k= 1,2,3,4).
½ÂHelmholtz ÝKŽfP:= (P
jk
)
4×4
,Ù¥
P
jk
:=

δ
jk
+R
j
R
k
,1 ≤j,k≤3,
δ
jk
,Ù¦,
DOI:10.12677/pm.2022.1281481351nØêÆ
ow
Ù¥δ
jk
L«KroneckerÎÒ,{R
j
}
1≤j≤3
L«Riesz C†.dDuhameln, •§|(1.1) duX
eÈ©•§:
v(t) = T
K,N
(t)v
0
−
R
t
0
T
K,N
(t−τ)P
e
∇·(v(τ)⊗v(τ))dτ+
R
t
0
T
K,N
(t−τ)PGdW.
(2.7)
3.V‚5OÚ‘ÅO
•?n•§|¥é6‘,·‚I‡3ƒA¼ê˜m¥ïá'uStokes-Coriolis-
StratificationŒ+V‚5O. •d,·‚k5ïáƒA¦È{K.
Ún3.1[¦È{K]2 ≤p≤∞,1 ≤r≤∞, K•3~êC
1
>0 ¦
kv
1
v
2
k
e
L
2
(0,∞;F
˙
B
−1+
3
p
0
p,r
)
≤C
1
kv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
.
y²d½Â2.2 ±9Bony•È©)E|Œ, ¤á
kv
1
v
2
k
e
L
2
(0,∞;F
˙
B
−1+
3
p
0
p,r
)
=



n
2
j(−1+
3
p
0
)
kϕ
j
F(v
1
v
2
)k
L
2
(0,∞;L
p
ξ
)
o
j∈Z



l
r
≤





2
j(−1+
3
p
0
)




X
|k−j|≤4
ϕ
j
(ψ
k
ˆv
1
∗ϕ
k
ˆv
2
)




L
2
(0,∞;L
p
ξ
)

j∈Z




l
r
+





2
j(−1+
3
p
0
)




X
|k−j|≤4
ϕ
j
(ψ
k
ˆv
2
∗ϕ
k
ˆv
1
)




L
2
(0,∞;L
p
ξ
)

j∈Z




l
r
+





2
j(−1+
3
p
0
)




X
k≥j−2
X
|k−k
0
|≤1
ϕ
j
(ϕ
k
ˆv
1
∗ϕ
k
0
ˆv
2
)




L
2
(0,∞;L
p
ξ
)

j∈Z




l
r
=: I
1
+I
2
+I
3
.
éuI
1
,½j, (ÜÚn2.1,Œ
2
j(−1+
3
p
0
)




X
|k−j|≤4
ϕ
j
(ψ
k
ˆv
1
∗ϕ
k
ˆv
2
)




L
2
(0,∞;L
p
ξ
)
≤C2
j(−1+
3
p
0
)
X
|k−j|≤4


kψ
k
ˆv
1
k
L
1
ξ
kϕ
k
ˆv
2
k
L
p
ξ


L
2
(0,∞)
≤C2
j(−1+
3
p
0
)
X
|k−j|≤4




X
k
0
≤k−2
2
3k
0
(1−
1
p
)
kϕ
k
0
ˆv
1
k
L
p
ξ
kϕ
k
ˆv
2
k
L
p
ξ




L
2
(0,∞)
≤C2
j(−1+
3
p
0
)
X
|k−j|≤4
X
k
0
≤k−2
2
3k
0
(1−
1
p
)
kϕ
k
0
ˆv
1
k
L
4
(0,∞;L
p
ξ
)
kϕ
k
ˆv
2
k
L
4
(0,∞;L
p
ξ
)
≤C2
j(−1+
3
p
0
)
X
|k−j|≤4




2
k
0
(−
1
2
+
3
p
0
)
kϕ
k
0
ˆv
1
k
L
4
(0,∞;L
p
ξ
)




l
r
(k
0
≤k−2)



2
1
2
k
0



l
r
0
(k
0
≤k−2)
kϕ
k
ˆv
2
k
L
4
(0,∞;L
p
ξ
)
≤Ckv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
X
|k−j|≤4
2
k(−
1
2
+
3
p
0
)
kϕ
k
ˆv
2
k
L
4
(0,∞;L
p
ξ
)
2
(j−k)(−1+
3
p
0
)
.
DOI:10.12677/pm.2022.1281481352nØêÆ
ow
3dÄ:þ,2$^Young Øª,Œ
I
1
≤Ckv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
.
ÓnŒ,¤á
I
2
≤Ckv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
.
e¡OI
3
,éu½j, Œ
2
j(−1+
3
p
0
)




X
k≥j−2
X
|k−k
0
|≤1
ϕ
j
(ϕ
k
ˆv
1
∗ϕ
k
0
ˆv
2
)




L
2
(0,∞;L
p
ξ
)
≤C2
j(−1+
3
p
0
)
X
k≥j−2
X
|k−k
0
|≤1


ϕ
j
(ϕ
k
ˆv
1
∗ϕ
k
0
ˆv
2
)


L
2
(0,∞;L
p
ξ
)
≤C2
j(−1+
3
p
0
)
X
k≥j−2
X
|k−k
0
|≤1


kϕ
k
0
ˆv
2
k
L
1
ξ
kϕ
k
ˆv
1
k
L
p
ξ


L
2
(0,∞)
≤C2
j(−1+
3
p
0
)
X
k≥j−2
X
|k−k
0
|≤1


2
3k
0
(1−
1
p
)
kϕ
k
0
ˆv
2
k
L
p
ξ
kϕ
k
ˆv
1
k
L
p
ξ


L
2
(0,∞)
≤C2
j(−1+
3
p
0
)
X
k≥j−2
X
|k−k
0
|≤1
2
3k
0
(1−
1
p
)
kϕ
k
0
ˆv
2
k
L
4
(0,∞;L
p
ξ
)
kϕ
k
ˆv
1
k
L
4
(0,∞;L
p
ξ
)
≤C2
j(−1+
3
p
0
)
X
k≥j−2



2
k
0
(−
1
2
+
3
p
0
)
kϕ
k
0
ˆv
2
k
L
4
(0,∞;L
p
ξ
)



l
r
(|k−k
0
|≤1)



2
1
2
k
0



l
r
0
(|k−k
0
|≤1)
kϕ
k
ˆv
1
k
L
4
(0,∞;L
p
ξ
)
≤Ckv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
X
k≥j−2
2
k(−
1
2
+
3
p
)
kϕ
k
ˆv
1
k
L
4
(0,∞;L
p
ξ
)
2
(j−k)(−1+
3
p
0
)
.
3dÄ:þ,$^Young Øª,Œ
I
3
≤Ckv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
.
nþŒ,•3C
1
>0 ¦
kv
1
v
2
k
e
L
2
(0,∞;F
˙
B
−1+
3
p
0
p,r
)
≤C
1
kv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
,
=(Øy.
Ún3.2[V‚5O]2 ≤p≤∞,1 ≤r≤∞, K•3~êC
2
>0, ¦




Z
t
0
T
K,N
(t−τ)P
e
∇(v
1
⊗v
2
)(τ)dτ




e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
≤C
2
kv
1
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
kv
2
k
e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
.
DOI:10.12677/pm.2022.1281481353nØêÆ
ow
y²dÚn2.1 ÚÚn3.1, Œ




Z
t
0
T
K,N
(t−τ)P
e
∇(v
1
⊗v
2
)(τ)dτ




e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
=





2
j(−
1
2
+
3
p
0
)




Z
t
0
ϕ
j
F[T
K,N
(t−τ)P
e
∇(v
1
⊗v
2
)(τ)]dτ




L
4
(0,∞;L
p
ξ
)

j∈Z




l
r
≤C





2
j(−
1
2
+
3
p
0
)




Z
t
0
ϕ
j
e
−(t−τ)2
2k
F[
e
∇(v
1
⊗v
2
)(τ)]dτ




L
4
(0,∞;L
p
ξ
)

j∈Z




l
r
≤C





2
j(−
1
2
+
3
p
0
)


e
−(t−τ)2
2k


L
4
3
(0,∞)


ϕ
j
F[
e
∇(v
1
⊗v
2
)(t)]


L
2
(0,∞;L
p
ξ
)

j∈Z




l
r
≤C





2
j(−2+
3
p
0
)
kϕ
j
F[
e
∇(v
1
⊗v
2
)(t)]k
L
2
(0,∞;L
p
ξ
)

j∈Z




l
r
)
≤C


e
∇(v
1
⊗v
2
)


L
2
(0,∞;F
˙
B
−2+
3
p
0
p,r
)
≤C


(v
1
⊗v
2
)


L
2
(0,∞;F
˙
B
−1+
3
p
0
p,r
)
≤C


v
1


e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)


v
2


e
L
4
(0,∞;F
˙
B
−
1
2
+
3
p
0
p,r
)
,
=(Øy.
,˜•¡,•¯K(1.1))N•35, dU\n,·‚•ÄXe‘Å‚5Њ¯K

dβ+Qβdt+Sβdt= GdW,(x,t,ω) ∈R
3
×(0,∞)×Ω,
β|
t=0
= v
0
,(x,ω) ∈R
3
×Ω.
(3.1)
w,, ‚5¯K(3.1) )N•3…•˜.¯¢þ,ÏLé¯K(3.1) ÒüàÓž'u˜mCþ
‰FourierC†, Œ†)äNLˆ/ª.
e¡,·‚ïá‘Å‚5¯K(3.1) 3Fourier-Besov˜mµeek.5O.
Ún3.3-r∈[2,+∞]. v
0
´F
0
Œÿ, …v
0
∈
˜
L
4
(Ω;F
˙
B
1
2
2,r
(R
3
)),©ÙL§G´ÌSŒ
ÿ,…G∈
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
(R
3
))).K¯K(3.1))β∈
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2,r
(R
3
))),…÷v
kβk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2,r
))
≤C
3
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
.(3.2)
y²é¯K(3.1) ü>Óž'u˜mCþ‰Fourier C†,,Ó¦ϕ
j
,Œ
d(ϕ
j
ˆ
β) = −[|ξ|
2
(ϕ
j
ˆ
β)+S(ϕ
j
ˆ
β)]dt+(ϕ
j
ˆ
G)dW.(3.3)
Äk,ékϕ
j
ˆ
βk
2
L
2
¦^Itˆo úª,Œ
dkϕ
j
ˆ
βk
2
L
2
= dhϕ
j
ˆ
β,ϕ
j
ˆ
βi
= 2hd(ϕ
j
ˆ
β),ϕ
j
ˆ
βi+hd(ϕ
j
ˆ
β),d(ϕ
j
ˆ
β)i
= 2hϕ
j
ˆ
β,−[|ξ|
2
(ϕ
j
ˆ
β)+S(ϕ
j
ˆ
β)]dt+(ϕ
j
ˆ
G)dWi+kϕ
j
ˆ
Gk
2
L
2
dt
= (−2k|·|ϕ
j
ˆ
βk
2
L
2
+kϕ
j
ˆ
Gk
2
L
2
)dt+2hϕ
j
ˆ
β,ϕ
j
ˆ
GidW,(3.4)
DOI:10.12677/pm.2022.1281481354nØêÆ
ow
Ù¥h·,·iL«L
2
(R
3
)SÈ.
,,é(kϕ
j
ˆ
βk
2
L
2
+)
2
¦^Itˆo úª,Ù¥>0, ¿(Ü(3.4) ª,Œ
d(kϕ
j
ˆ
βk
2
L
2
+)
2
= 2(kϕ
j
ˆ
βk
2
L
2
+)[(−2k|·|ϕ
j
ˆ
βk
2
L
2
+kϕ
j
ˆ
Gk
2
L
2
)dt+2hϕ
j
ˆ
β,ϕ
j
ˆ
GidW]
+4hϕ
j
ˆ
β,ϕ
j
ˆ
Gi
2
dt.(3.5)
•ÄÊžS
τ
n
=

inf{t≥0 : kϕ
j
ˆ
βk
L
2
>n},{t: kϕ
j
ˆ
βk
L
2
>n}6= Ø,
T,{t: kϕ
j
ˆ
βk
L
2
>n}= Ø,
Ù¥n= 1,2,3,···.3[0,t] (t≤min{T,τ
n
})þé(3.5)ªÈ©, ,é¤(JÏ",Œ
E(kϕ
j
ˆ
βk
2
L
2
+)
2
−E(kϕ
j
ˆv
0
k
2
L
2
+)
2
= 2E
Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)kϕ
j
ˆ
Gk
2
L
2
dτ−4E
Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)k|·|ϕ
j
ˆ
βk
2
L
2
dτ
+4E
Z
t
0
hϕ
j
ˆ
G,ϕ
j
ˆ
βi
2
dτ+4E
Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)hϕ
j
ˆ
β,ϕ
j
ˆ
GidW
=: J
1
+J
2
+J
3
+J
4
.
e5•gOJ
1
,J
2
,J
3
,J
4
.¯¢þ, •IOJ
1
,J
3
,J
4
,ϕJ
2
´·‚¤I‡/ª.
J
1
= 2E
Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)kϕ
j
ˆ
Gk
2
L
2
dτ
≤C2Esup
τ∈[0,t]
(kϕ
j
ˆ
βk
2
L
2
+)
Z
t
0
kϕ
j
ˆ
Gk
2
L
2
dτ
≤CEsup
τ∈[0,t]
(kϕ
j
ˆ
βk
2
L
2
+)
2
+C

tE
Z
t
0
kϕ
j
ˆ
Gk
4
L
2
dτ.
¿…,
J
3
≤CEsup
τ∈[0,t]
kϕ
j
ˆ
βk
4
L
2
+C

tE
Z
t
0
kϕ
j
ˆ
Gk
4
L
2
dτ.
d,dBurkholder-Davis-GundyØªÚYoung Øª,Œ
J
4
= 4E
Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)hϕ
j
ˆ
β,ϕ
j
ˆ
GidW
≤CEsup
τ
0
∈[0,t]




Z
τ
0
0
(kϕ
j
ˆ
βk
2
L
2
+)hϕ
j
ˆ
β,ϕ
j
ˆ
GidW




≤CE

Z
t
0
|(kϕ
j
ˆ
βk
2
L
2
+)hϕ
j
ˆ
β,ϕ
j
ˆ
Gi|
2
dτ

1
2
≤CE

Z
t
0
(kϕ
j
ˆ
βk
2
L
2
+)
2
kϕ
j
ˆ
βk
2
L
2
kϕ
j
ˆ
Gk
2
L
2
dτ

1
2
≤CEsup
τ∈[0,t]
(kϕ
j
ˆ
βk
2
L
2
+)kϕ
j
ˆ
βk
L
2

Z
t
0
kϕ
j
ˆ
Gk
2
L
2
dτ

1
2
≤CEsup
τ∈[0,t]
[(kϕ
j
ˆ
βk
2
L
2
+)kϕ
j
ˆ
βk
L
2
]
4
3
+C

tE
Z
t
0
kϕ
j
ˆ
Gk
4
L
2
dτ.
DOI:10.12677/pm.2022.1281481355nØêÆ
ow
(ÜJ
1
,J
2
,J
3
ÚJ
4
O,ÏL'u→0 4•,Œ
Esup
t∈[0,T∧τ
n
]
kϕ
j
ˆ
βk
4
L
2
+E
Z
T∧τ
n
0
k|·|ϕ
j
ˆ
βk
2
L
2
kϕ
j
ˆ
βk
2
L
2
dτ
≤CEkϕ
j
ˆv
0
k
4
L
2
+C(1+(T∧τ
n
))E
Z
T∧τ
n
0
kϕ
j
ˆ
Gk
4
L
2
dτ.(3.6)
?˜Ú, dv
0
ÚGb^‡Œ(3.6) ª¥Esup
t∈[0,T∧τ
n
]
kϕ
j
ˆ
βk
4
L
2
Œ˜‡†nÃ'~ê
››.Ïd, -n→∞,Œlim
n→∞
τ
n
= T,P−a.s.. 2ŠâÚn2.1, ¤á
Esup
t∈[0,T]
kϕ
j
ˆ
βk
4
L
2
+2
2j
E
Z
T
0
kϕ
j
ˆ
βk
4
L
2
dτ≤CEkϕ
j
ˆv
0
k
4
L
2
+C(1+T)E
Z
T
0
kϕ
j
ˆ
Gk
4
L
2
dτ.(3.7)
Ïd,
2
2j
E
Z
T
0
kϕ
j
ˆ
βk
4
L
2
dτ≤CEkϕ
j
ˆv
0
k
4
L
2
+C(1+T)E
Z
T
0
kϕ
j
ˆ
Gk
4
L
2
dτ.
éþªü>Ó¦2
1
2
j
,,l
r
‰ê,¤á
kβk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2,r
))
≤C
3
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
,
=y(ؤá.
5º3.4d(3.7)ª•Œ
Esup
t∈[0,T]
kϕ
j
ˆ
βk
4
L
2
≤CEkϕ
j
ˆv
0
k
4
L
2
+C(1+T)E
Z
T
0
kϕ
j
ˆ
Gk
4
L
2
dτ.
éþªü>Ó¦2
1
2
j
, ,l
r
‰ê, Œ¼¯K(3.1) )β∈
˜
L
4
(Ω;
˜
L
∞
(0,T;F
˙
B
1
2
2,r
(R
3
))), ¿…
3Ún3.3 ^‡e,¤á
kβk
˜
L
4
(Ω;
˜
L
∞
(0,T;F
˙
B
1
2
2,r
))
≤C
4
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
.
Ún3.53Ún3.3 b^‡e, K•3˜‡VÇ8Ü
e
Ω ¦¯K(3.1) )β(ω,·,·)∈
˜
L
4
(0,T;F
˙
B
1
2,r
(R
3
)),¿…é?¿ω∈
e
Ω,¤á
kβ(ω,·,·)k
˜
L
4
(0,T;F
˙
B
1
2,r
)
≤C
5
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
,
Ù¥~êC
5
>0.
y²•Ä8Ü
Ω
0
:=
n
ω: kβ(ω,·,·)k
˜
L
4
(0,T;F
˙
B
1
2,r
)
>C
5
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
io
,(3.8)
DOI:10.12677/pm.2022.1281481356nØêÆ
ow
Ù¥~êC
5
>0 –½.dÚn3.3 ÚTchebychevØª, Œ•
P(Ω
0
) ≤Ekβ(ω,·,·)k
4
˜
L
4
(0,T;F
˙
B
1
2,r
)
C
−4
5
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
−4
≤(C
3
C
−1
5
)
4
.

˜
Ω = Ω\Ω
0
…C
5
>C
3
,KŒ
P(
˜
Ω) = 1−P(Ω
0
) ≥1−(C
3
C
−1
5
)
4
>0.
K(Øy.
4.½n1.4y²
½n1.4 y²½Â)NΨ Ú)˜mZ©O•
Ψ(v)(t) := β−B(v,v)
Ú
Z:=
n
v∈
˜
L
4
(0,T;F
˙
B
1
2,r
(R
3
)) : kvk
˜
L
4
(0,T;F
˙
B
1
2,r
)
≤2
o
,
Ù¥>0 –½,
β= T
K,N
(t)v
0
+
Z
t
0
T
K,N
(t−τ)PGdW,
±9
B(v,v) =
Z
t
0
T
K,N
(t−τ)P
e
∇·(v(τ)⊗v(τ))dτ.
Kò¦)¯K(1.1)=†•ÏéNΨ(v)ØÄ:.•d,·‚òy•3>0,¦Ψ ´r
Banach˜mZNZØ N.
Äk,dÚn3.2Œ, ¤á
kB(v,v)k
Z
≤C
3
kvk
Z
kvk
Z
.(4.1)
qdÚn3.5 Œ•,•3VÇ‘Å8Ü
˜
Ω,¦é?¿ω∈
˜
Ω,¤á
kβk
Z
≤C
5
h
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
i
.
Ïd,é?¿v∈Z,¤á
kΨ(v)k
Z
≤



T
K,N
(t)v
0
+
Z
t
0
T
K,N
(t−τ)PGdW



Z
+kB(v,v)k
Z
≤C
5

kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))

+C
2
kvk
2
Z
.
DOI:10.12677/pm.2022.1281481357nØêÆ
ow
,,daqL§Œ, éu?¿v
1
,v
2
∈Z,¤á
kΨ(v
1
)−Ψ(v
2
)k
Z
=



Z
t
0
T
K,N
(t−τ)P
e
∇·

[v
1
(τ)⊗(v
1
−v
2
)(τ)]+[(v
1
−v
2
)⊗v
2
(τ)]

dτ



Z
≤C
2
(kv
1
k
Z
+kv
2
k
Z
)kv
1
−v
2
k
Z
.
yv, ¦
0 <<min

1
4C
2
,1

,
¿…bé?¿T>0, v
0
∈L
4
(Ω;F
˙
B
1
2
2,r
(R
3
))ÚG∈L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
(R
3
)))…÷v
kv
0
k
˜
L
4
(Ω;F
˙
B
1
2
2,r
)
+(1+T)kGk
˜
L
4
(Ω;
˜
L
4
(0,T;F
˙
B
1
2
2,r
))
≤

C
5
.
KŒ
kΨ(v)k
Z
≤+4C
2
·min

1
4C
2
,1

≤2,
¿…
kΨ(v
1
)−Ψ(v
2
)k
Z
≤
1
2
kv
1
−v
2
k
Z
.
KdBanachØ NnŒ,¯K(1.1)•3•˜N§Ú)(u,θ)(ω,·,·) ∈
˜
L
4
(0,T;F
˙
B
1
2,r
(R
3
)),
…÷v
k(u,θ)k
˜
L
4
(0,T;F
˙
B
1
2,r
)
≤2.

ë•©z
[1]Chow,P.(1978)SPDEsinTurbulence. In:Bharucha-Reid, A.T.,Ed.,SPDEs inTurbulence, in Probabilistic
AnalysisandRelatedTopics,Vol.1,AcademicPress,Cambridge,MA,1-43.
[2]Flandoli, F. (2008) AnIntroduction to3D Stochastic FluidDynamics. In:SPDEinHydrodynamics:Recent
ProgressandProspects,Springer,Berlin,51-150.https://doi.org/10.1007/978-3-540-78493-72
[3]Mikulevicius,R.andRozovskii,B.(2004)StochasticNavierStokesEquationsforTurbulentFlows.SIAM
JournalonMathematicalAnalysis,35,1250-1310.https://doi.org/10.1137/S0036141002409167
[4]Bensoussan,A.andTemam,R.(1973)EquationsstochastiquesdutypeNavier-Stokes.JournalofFunc-
tionalAnalysis,13,195-222.https://doi.org/10.1016/0022-1236(73)90045-1
[5]Glatt-Holtz,N.andZiane,M.(2009)StrongPathwiseSolutionsoftheStochasticNavier-StokesSystem.
AdvancesinDifferentialEquations,14,567-600.
[6]Du,L.andZhang,T.(2020)LocalandGlobalStrongSolutionstotheStochasticIncompressibleNavier-
Stokes Equationsin CriticalBesov Space. JournalofMathematicalAnalysisandApplications, 481,Article
ID:123472.https://doi.org/10.1016/j.jmaa.2019.123472
DOI:10.12677/pm.2022.1281481358nØêÆ
ow
[7]Wang,W.(2020)GlobalExistenceandAnalyticityofMildSolutionsfortheStochasticNavier-Stokes-
CoriolisEquationsinBesovSpaces.NonlinearAnalysis:RealWorldApplications,52,ArticleID:103048.
https://doi.org/10.1016/j.nonrwa.2019.103048
[8]Wang, W. and Wu, G. (2018) Global Mild Solution of Stochastic Generalized Navier-Stokes Equations with
CoriolisForce.ActaMathematicaSinica,EnglishSeries,34,1635-1647.
https://doi.org/10.1007/s10114-018-7482-2
[9]Dong,L.(2020)StrongSolutionsfortheStochasticNavier-StokesEquationsonthe2DRotatingSphere
withStableL´evyNoise.JournalofMathematicalAnalysisandApplications,489,ArticleID:124182.
https://doi.org/10.1016/j.jmaa.2020.124182
[10]Ferrario, B.(1997)TheB´enard ProblemwithRandomPerturbations:DissipativityandInvariantMeasures.
NonlinearDifferentialEquationsandApplications,4,101-121.https://doi.org/10.1007/PL00001407
[11]Pu,X.andGuo,B.(2011)GlobalWell-PosednessoftheStochastic2DBoussinesqEquationswithPartial
Viscosity.ActaMathematicaScientia.SeriesB.EnglishEdition,31,1968-1984.
https://doi.org/10.1016/S0252-9602(11)60375-5
[12]Du, L. and Zhang, T. (2020) Local andGlobal Existence of Pathwise Solutionfor the Stochastic Boussinesq
EquationswithMultiplicativeNoises.StochasticProcessesandtheirApplications,130,1545-1567.
https://doi.org/10.1016/j.spa.2019.05.011
[13]Santo, M.andTegegn,T. (2016)HarmonicAnalysisToolsforStochasticMagnetohydrodynamicsEquations
inBesovSpaces.InternationalJournalofModernPhysics,30,ArticleID:1640025.
https://doi.org/10.1142/S0217979216400257
[14]Sun,J.andCui,S.(2019)SharpWell-Posedness andIll-Posedness inFourier-Besov SpacesfortheViscous
PrimitiveEquationsofGeophysics.NonlinearAnalysis:RealWorldApplications,48,445-465.
https://doi.org/10.1016/j.nonrwa.2019.02.003
[15]Bahouri,H.,Chemin,J.-Y.andDanchin,R.(2011)FourierAnalysisandNonlinearPartialDifferential
Equations.In:GrundlehrenderMathematischenWissenschaften,Vol.343,Springer-Verlag,Berlin,Hei-
delberg.https://doi.org/10.1007/978-3-642-16830-7
[16]Triebel,T.(1983)TheoryofFunctionSpaces,MonographsinMathematics.Birkh¨auserVerlag,Basel.
https://doi.org/10.1007/978-3-0346-0416-1
[17]Iwabuchi,T.,Mahalov,A.andTakada,R.(2017)GlobalSolutionsfortheIncompressibleRotatingStably
StratifiedFluids.MathematischeNachrichten,290,613-631.https://doi.org/10.1002/mana.201500385
DOI:10.12677/pm.2022.1281481359nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.