设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(8),1360-1369
PublishedOnlineAugust2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.128149
Ý
•
§
AXB
=
C
Ó
†
4
‰
ê
•
¦
)
ùùù
øøø
)))
§§§
¸¸¸
•••
∗
Ê
µ
Œ
Æ
ê
Æ
†
O
Ž
‰
ÆÆ
§
2
À
ô
€
Â
v
F
Ï
µ
2022
c
7
19
F
¶
¹
^
F
Ï
µ
2022
c
8
19
F
¶
u
Ù
F
Ï
µ
2022
c
8
30
F
Á
‡
Ì
‚
Ý
ka
È
{
¤
¿
…
3
¯
õ
‰
Æ
+
•
2
•
A^
"
Ý
•
§
AXB
=
C
3
A
½
8
Ü
a
¦
)
Ú
•
z
¯
K
3
ó
§
+
•k
-
‡
A^
"
©
Ï
L
Ý
Kronecker
È
Ú
Moore-
Penrose
2
Â
_
Ý
•
§
AXB
=
C
k
Ó
†
)
¿
‡
^
‡
Ú
)
L
ˆ
ª
"
3
v
k
Ó
†
)
ž
§
‰
Ñ
•
§
Ó
†
4
‰
ê
•
¦
)
"
3
Ø
©
"
!
§
‰
Ñ
•
§
¦
)
ê
Š
Ž
{
†
ê
Š
~
f
"
'
…
c
Ó
†
Ý
§
4
‰
ê
)
§
•
¦
)
§
Moore-Penrose
2
Â
_
§
Kronecker
È
LeastSquaresCirculantSolution
oftheMatrixEqaution
AXB
=
C
withtheLeastNorm
YuzheCao,ShifangYuan
∗
SchoolofMathematicsandComputationScience,WuyiUniversity,JiangmenGuangdong
Received:Jul.19
th
,2022;accepted:Aug.19
th
,2022;published:Aug.30
th
,2022
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
ù
ø
)
,
¸
•
.
Ý
•
§
AXB
=
C
Ó
†
4
‰
ê
¦
)
[J].
A^
ê
Æ
?
Ð
,2022,12(8):1360-1369.
DOI:10.12677/pm.2022.128149
ù
ø
)
§
¸
•
Abstract
Circulant matrices have been aroundfora longtimeand have been extensively usedin
many scientificareas.Theproblemofsolvingandminimizing thematrix
AXB
=
C
in a
specific setclass hasimportant applications inengineering andotherrelatedfields.In
thispaper,by usingKroneckerproductandMoore-Penrose generalizedinverseofthe
matrices, thenecessaryand sufficientconditionsfor
AXB
=
C
having circulant solution
areobtained.Wederivetheexpressionoftheleastsquarescirculantsolutionofthe
matrixequation
AXB
=
C
withtheleastnormwhenthereisnocirculantsolution.In
thelastsection,thenumericalalgorithmandnumericalexamplesarealsogiven.
Keywords
CirculantMatrix,LeastNormSolution,LeastSquaresSolution,Moore-PenroseIn-
verse, TheKroneckerProduct
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
‚
5
Ý
•
§
¦
)
¯
K
9
ƒ
A
•
¦
¯
K
´
C
c
5
ê
Š
“
ê
+
•
¥
ï
Ä
Ú
?
Ø
-
‡
‘
K
ƒ
˜
,
§
3
(
O
,
X
Ú
£
O
,
g
Ä
›
›
n
+
•
¥
k
X
2
•
A^
.
C
c
5
,
Ý
•
§
AXB
=
C
(1)
9
ƒ
'
•
§
3
é
¡
§
‡
é
¡
§
V
é
¡
õ
«
Ý
a
¥
)
Ú
Ù
•
¦
)
ï
Ä
Ø
?
Ð
[1–8].
‚
5
Ý
•
§
•
¦
)
˜
„
5
`
Ø
´
•
˜
,
§
4
‰
ê
•
¦
)
˜
„
5
`
´
•
˜
.
•
•
B
£
ã
¯
K
§
©
^
C
m
×
n
L
«
m
×
n
E
ê
Ý
8
Ü
.
A
T
L
«
Ý
A
=
˜
,
A
∗
L
«
Ý
A
Ý
=
˜
,
A
+
L
«
Ý
A
Moore-Penrose
2
Â
_
,
I
n
L
«
n
ü
Ý
.
DOI:10.12677/pm.2022.1281491361
n
Ø
ê
Æ
ù
ø
)
§
¸
•
½
Â
1.1.
c
= (
c
0
,c
1
,
···
,c
n
−
1
)
T
´
n
‘
E
ê
•
þ
,
¡
X
e
Ý
C
=
c
0
c
1
c
2
···
c
n
−
1
c
n
−
1
c
0
c
1
···
c
n
−
2
c
n
−
2
c
n
−
1
c
0
···
c
n
−
3
···············
c
1
c
2
c
3
···
c
0
(2)
´
c
Ó
†
Ý
§
¿
P
•
C
=
circ
(
c
) =
circ
(
c
0
,c
1
,
···
,c
n
−
1
)
.
(3)
·
‚
^
cir
(
n
)
L
«
N
n
Ó
†
Ý
8
Ü
.
Ó
†
Ý
Ä
g
Ñ
y
1846
c
Catalan
˜
Ÿ
ê
Æ
Ø
©
¥
,
†
Ó
†
Ý
—
ƒ
ƒ
'
´
Toeplitz
Ý
.
8
c
Ó
†
Ý
3
—
è
Æ
,
Ô
n
9
V
-
A
Û
¥
k
X
-
‡
A^
.
'
u
Ó
†
Ý
?
˜
Ú
5
Ÿ
,
ë
„
©
z
[9–11].
½
Â
1.2.
A
=(
a
ij
)
∈
C
m
×
n
.
P
a
i
=(
a
1
i
,a
2
i
,
···
,a
mi
)
,i
=1
,
2
,
···
,n.
r
A
À
Š
•
þ
.
†
Ž
f
P
•
vec(
A
) = (
a
1
,a
2
,
···
,a
n
)
T
.
(4)
é
•
þ
x
= (
x
1
,
···
,x
n
)
T
∈
C
n
×
1
,
k
x
k
2
=
p
P
n
i
=1
|
x
i
|
2
L
«
•
þ
2-
‰
ê
.
d
•
þ
2-
‰
ê
p
X
e
Ý
Frobenius
‰
ê
k
A
k
=
k
vec(
A
)
k
2
.
(5)
‰
½
Ý
A
∈
C
m
×
n
,B
∈
C
n
×
s
,C
∈
C
m
×
s
.
(6)
©
ò
3
Ó
†
Ý
a
¥
•
Ä
Ý
•
§
AXB
=
C
X
e
¯
K
µ
¯
K
I:
¦
X
e
8
Ü
T
s
=
n
X
∈
C
n
×
n
:
AXB
=
C
o
.
(7)
¯
K
II:
e
¯
K
I
¥
T
s
=
∅
(
˜
8
),
¦
X
e
8
Ü
T
l
=
n
X
∈
C
n
×
n
:
||
AXB
−
C
||
= min
o
.
(8)
¯
K
III:
e
¯
K
I
¥
T
s
=
∅
,
¦
b
X
∈
T
l
¦
k
b
X
k
2
=min
X
∈
T
l
k
X
k
2
.
(9)
©
ò
3
1
2
!
‰
Ñ
Ó
†
Ý
e
Z
5
Ÿ
Ú'
u
Ý
Kronecker
È
Ú
Moore-Penrose
2
Â
_
A
K
Ú
n
.
3
1
3
!
¥
§
·
‚
ò
|
^
1
2
!
ƒ
'
(
Ø
‰
Ñ
Ý
•
§
AXB
=
C
'
u
±
þn
‡
¯
K
¥
)
DOI:10.12677/pm.2022.1281491362
n
Ø
ê
Æ
ù
ø
)
§
¸
•
L
ˆ
ª
.
3
1
4
!
¥
,
ò
‰
Ñ
¦
)
ê
Š
Ž
{
†
ê
Š
~
f
5
`
²
·
‚
Ž
{
Œ
15
.
2.
Ó
†
Ý
5
Ÿ
Ú
A
K
Ú
n
d
½
Â
1.1
•˜
†
Ý
P
=
010
···
0
001
···
0
000
···
0
.
.
.
.
.
.
.
.
.
.
.
.
100
···
0
=
circ
(
p
)
,
(10)
Ù
¥
p
=(0
,
1
,
0
,
···
,
0)
T
.P
´
A
Ï
Ó
†
Ý
§
·
‚
¡
ƒ
•
£
Ý
.
d
Ý
3
©
¥
k
X
-
‡
Š
^
.
·
‚
ò
|
^
P
9
•
þ
c
5
L
«
Ó
†
Ý
C
.
·
K
2.1.
•
•
B
O
,
5
½
P
0
=
I
n
.
C
=
cir c
(
c
) =
circ
(
c
0
,c
1
,
···
,c
n
−
1
)
.
K
C
=
circ
(
c
) =
n
−
1
X
k
=0
c
k
P
k
.
(11)
y
²
w
,
·
‚
k
P
2
=
circ
(0
,
0
,
1
,
0
,
···
,
0)
,P
3
=
circ
(0
,
0
,
0
,
1
,
0
,
···
,
0)
,
···
,P
n
=
circ
(1
,
0
,
···
,
0) =
I
n
.
(12)
d
½
Â
1.1
•
C
=
circ
(
c
) =
P
n
−
1
k
=0
c
k
P
k
.
·
K
2.2.
A
=
circ
(
a
) =
circ
(
a
0
,a
1
,
···
,a
n
−
1
)
Ú
B
=
circ
(
b
) =
circ
(
b
0
,b
1
,
···
,b
n
−
1
)
.
K
AB
´
Ó
†
Ý
…
AB
=
BA
=
C
=
circ
(
c
0
,c
1
,
···
,c
n
−
1
)
,
(13)
Ù
¥
c
k
=
X
(
i,j
)
∈
S
k
a
i
b
j
,k
= 0
,
1
,
···
,n
−
1
,S
k
=
{
(
i,j
) :
i
+
j
=
k
mod
n
}
.
(14)
y
²
d
·
K
2.1
•
A
=
P
n
−
1
i
=0
a
i
P
i
=
a
0
P
0
+
a
1
P
1
+
···
+
a
n
−
1
P
n
−
1
Ú
B
=
P
n
−
1
j
=0
b
j
P
j
=
b
0
P
0
+
b
1
P
1
+
···
+
b
n
−
1
P
n
−
1
•
AB
=
BA
¿
…
C
=
AB
= (
a
0
P
0
+
a
1
P
1
+
···
+
a
n
−
1
P
n
−
1
)(
b
0
P
0
+
b
1
P
1
+
···
+
b
n
−
1
P
n
−
1
) =
n
−
1
X
k
=0
c
k
P
k
,
Ù
¥
c
k
=
a
0
b
k
+
a
1
b
k
−
1
+
···
+
a
n
−
1
b
k
+1
,k
= 0
,
1
,
···
,n
−
1
.
d
ª
(12)
•
c
k
=
X
(
i,j
)
∈
S
k
a
i
b
j
,k
= 0
,
1
,
···
,n
−
1
,
DOI:10.12677/pm.2022.1281491363
n
Ø
ê
Æ
ù
ø
)
§
¸
•
Ù
¥
S
k
=
{
(
i,j
) :
i
+
j
=
k
mod
n
}
.
ü
Ó
†
Ý
Ú
´
Ó
†
Ý
,
˜
‡E
ê
¦
˜
‡
Ó
†
Ý
E
´
˜
‡
Ó
†
Ý
.
d
d
•
,
l
•
þ
Ý
5
w
Ó
†
Ý
8
Ü
´
˜
‡
‚
5
˜
m
.
½
Â
2.1.
é
n
≥
2
,
P
M
n
=
vec(
P
0
)
,
vec(
P
1
)
,
vec(
P
2
)
,
···
,
vec(
P
n
−
1
)
∈
R
n
2
×
n
.
(15)
Ú
n
2.1.
C
=
circ
(
c
) =
circ
(
c
0
,c
1
,
···
,c
n
−
1
)
.
K
vec(
C
) =
M
n
c.
(16)
y
²
d
C
=
circ
(
c
) =
P
n
−
1
k
=0
c
k
P
k
=
c
0
P
0
+
c
1
P
1
+
···
+
c
n
−
1
P
n
−
1
Œ
vec(
C
) = vec(
P
0
)
c
0
+vec(
P
1
)
c
1
+
···
+vec(
P
n
−
1
)
c
n
−
1
=
M
n
c.
Ú
n
2.1
•
x
Ó
†
Ý
8
Ü
´
˜
‡
‚
5
˜
m
A
,
•·
‚
ï
Ä
Ó
†
Ý
J
ø
ó
ä
.
Ý
•
§
AXB
=
C
3
Ó
†
Ý
a
)
,
Ù
¢
Ÿ
´
¦
)
¤
X
•
þ
x
.
•
d
,
·
‚
ò
r
Ý
•
§
AXB
=
C
=
z
•·
‚
š
~
Ù
G
‚
5
•
§
.
•
=
z
Ú
¦
)
ƒ
A
•
§
,
·
‚
I
‡
e
¡
½
Â
9
Ú
n
.
Ú
n
2.2.
[12]
A
∈
C
m
×
n
,b
∈
C
m
,
‚
5
•
§
Ax
=
b
k
)
¿
©
7
‡
^
‡
´
AA
+
b
=
b
.
k
)
ž
•
§
Ï
)
•
x
=
A
+
b
+(
I
n
−
A
+
A
)
z,
∀
z
∈
C
n
.
Ú
n
2.3.
[12]
A
∈
C
m
×
n
,b
∈
C
m
,
K
Ø
ƒ
N
‚
5
•
§
Ax
=
b
•
¦
)
{
x
∈
C
n
:
k
Ax
−
b
k
2
=
min
}
•
x
=
A
+
b
+(
I
n
−
A
+
A
)
z,
∀
z
∈
C
n
.
½
Â
2.2.
A
= (
a
ij
)
∈
C
m
×
n
,
B
= (
b
ij
)
∈
C
p
×
q
.
¡
A
⊗
B
=
a
11
Ba
12
B
···
a
1
n
B
a
21
Ba
22
B
···
a
2
n
B
············
a
m
1
Ba
m
2
B
···
a
mn
B
∈
C
mp
×
nq
(17)
•
A
Ú
B
Kronecker
È
.
Ú
n
2.4.
[12]
é
Ý
A
∈
C
m
×
n
,X
∈
C
n
×
n
,B
∈
C
n
×
s
k
vec(
AXB
) = (
B
T
⊗
A
)vec(
X
)
.
(18)
3.
Ì
‡
(
Ø
e
¡
·
‚
‰
Ñ
Ý
•
§
AXB
=
C
3
Ó
†
Ý
a
k
)
¿
‡
^
‡
,
¿
‰
Ñ
)
L
ˆ
ª
.
DOI:10.12677/pm.2022.1281491364
n
Ø
ê
Æ
ù
ø
)
§
¸
•
½
n
3.1.
‰
½
Ý
A
∈
C
m
×
n
,B
∈
C
n
×
s
,C
∈
C
m
×
s
.
-
R
= (
B
T
⊗
A
)
M
n
.
(19)
P
X
=
circ
(
x
) =
circ
(
x
0
,x
1
,
···
,x
n
−
1
)
.
K
Ý
•
§
AXB
=
C
k
)
¿
©
7
‡
^
‡
´
RR
+
vec(
C
) = vec(
C
)
.
(20)
•
§
k
)
ž
,
•
§
Ï
)
•
T
s
=
n
X
=
circ
(
x
) :
x
=
R
+
vec(
C
)+
I
n
−
R
+
R
z,
∀
z
∈
C
n
o
.
(21)
y
²
e
AXB
=
C
,
K
k
vec(
AXB
) = vec(
C
)
.
d
Ú
n
2.4
Ú
2.1
•
(
B
T
⊗
A
)
M
n
x
= vec(
C
)
.
=
Rx
= vec(
C
)
.
(22)
Ý
•
§
AXB
=
C
d
u
•
§
(22).
d
Ú
n
2.2
Ý
•
§
AXB
=
C
k
)
¿
©
7
‡
^
‡
´
RR
+
vec(
C
) = vec(
C
)
.
•
§
k
)
ž
,
Ù
Ï
)
•
x
=
R
+
vec(
C
)+
I
n
−
R
+
R
z,
∀
z
∈
C
n
.
Ý
•
§
AXB
=
C
3
Ó
†
Ý
a
¥
Ã
)
ž
,
·
‚
Œ
d
X
e
½
n
¦
Ù
•
¦
)
.
½
n
3.2.
^
‡
Ú
Î
Ò
Ó
½
n
3.1
.
RR
+
vec(
C
)
6
=vec(
C
)
ž
,
Ý
•
§
AXB
=
C
3
Ó
†
Ý
a
•
¦
)
8
T
l
Œ
L
«
•
T
l
=
n
X
=
circ
(
x
) :
x
=
R
+
vec(
C
)+
I
n
−
R
+
R
z,
∀
z
∈
C
n
o
.
(23)
y
²
d
Ú
n
2.1
Ú
2.4
•
||
AXB
−
C
||
=
||
vec(
AXB
)
−
vec(
C
)
||
2
=
||
(
B
T
⊗
A
)vec(
X
)
−
vec(
C
)
||
2
=
||
(
B
T
⊗
A
)
M
n
x
−
vec(
C
)
||
2
=
||
Rx
−
vec(
C
)
||
2
.
DOI:10.12677/pm.2022.1281491365
n
Ø
ê
Æ
ù
ø
)
§
¸
•
d
Ú
n
2.3
•
µ
k
AXB
−
C
k
= min
…
=
x
=
R
+
vec(
C
)+
I
n
−
R
+
R
z,
∀
z
∈
C
n
.
(24)
Ý
•
§
AXB
=
C
3
Ó
†
Ý
a
¥
Ã
)
ž
,
·
‚
Œ
d
X
e
½
n
3
þ
¡
‰
Ñ
•
¦
)
8
é
ä
k
4
‰
ê
)
.
½
n
3.3.
^
‡
Ú
Î
Ò
Ó
½
n
3.2
,
¿
-
K
=
I
n
−
R
+
R.
(25)
K
Ý
•
§
AXB
=
C
•
3
•
˜
4
‰
ê
•
¦
)
b
X
∈
T
l
.
P
b
X
=
circ
(ˆ
x
)
.
K
b
X
Œ
L
«
•
vec(
b
X
) =
M
n
R
+
vec(
C
)
−
M
n
K
(
M
n
K
)
+
M
n
R
+
vec(
C
)
.
(26)
y
²
d
Ú
n
2.1
•
vec(
X
) =
M
n
x.
d
½
n
3.2
•
k
b
X
k
2
=min
X
∈
T
l
k
X
k
2
=min
X
∈
T
l
vec(
X
)
2
2
=min
z
M
n
(
I
n
−
R
+
R
)
z
−
(
−
M
n
R
+
vec(
C
))
2
2
=min
z
M
n
Kz
−
(
−
M
n
R
+
vec(
C
))
2
2
.
d
Ú
n
2.3
•
min
z
M
n
Kz
−
(
−
M
n
R
+
vec(
C
))
2
2
)
•
z
=
−
(
M
n
K
)
+
M
n
R
+
vec(
C
)+[
I
n
−
(
M
n
K
)
+
M
n
K
]
u,
∀
u
∈
C
n
.
(27)
ò
þ
ª
“
\
ª
(24)
ˆ
x
=
R
+
vec(
C
)
−
K
(
M
n
K
)
+
M
n
R
+
vec(
C
)+
K
(
I
n
−
(
M
n
K
)
+
M
n
K
)
u,
∀
u
∈
C
n
.
(28)
k
vec(
b
X
) =
M
n
ˆ
x
=
M
n
R
+
vec(
C
)
−
M
n
K
(
M
n
K
)
+
M
n
R
+
vec(
C
)
.
DOI:10.12677/pm.2022.1281491366
n
Ø
ê
Æ
ù
ø
)
§
¸
•
4.
ê
Š
Ž
{
Ú
ê
Š
~
f
Š
â
½
n
3.1
Ú
½
n
3.2,3.3,
y
‰
Ñ
¯
K
I
¯
K
III
X
e
Ž
{
.
Ž
{
:
(1)
Ñ
\
A
∈
C
m
×
n
,B
∈
C
n
×
s
,C
∈
C
m
×
s
9
M
n
;
(2)
O
Ž
Ñ
R
= (
B
T
⊗
A
)
M
n
;
(3)
e
RR
+
Vec
(
C
) =
Vec
(
C
)
¤
á
§
K
¯
K
I
k
)
;
O
Ž
Ñ
K
=
I
n
−
R
+
R
Ú
x
=
R
+
Vec
(
C
)+
Kz,
∀
z
∈
C
n
,
Œ
¯
K
I
Ï
)
•
X
=
circ
(
x
);
(4)
e
RR
+
Vec
(
C
)
6
=
Vec
(
C
)
§
K
¦
¯
K
II
)
.
O
Ž
Ñ
x
=
R
+
Vec
(
C
)+
Kz,
∀
z
∈
C
n
,
Œ
¯
K
II
Ï
)
•
X
=
circ
(
x
);
(5)
O
Ž
Ñ
ˆ
x
=
R
+
vec(
C
)
−
K
(
M
n
K
)
+
M
n
R
+
vec(
C
)
,
¯
K
III
•
˜
)
b
X
=
circ
(ˆ
x
)
.
~
4.1.
A
=
23
−
6
854
713
1211
−
15
,B
=
45
−
78
12
9
C
1
=
219
−
49
71119
6632
705
−
91
,C
2
=
140
−
89
i
−
65+60
i
2
−
50
i
3+250
i
−
10
−
50
i
160+180
i
400
−
300
i
−
5+200
i
.
DOI:10.12677/pm.2022.1281491367
n
Ø
ê
Æ
ù
ø
)
§
¸
•
(1)
C
=
C
1
ž
§
d
O
Ž
•
R
=
−
19
−
3556
1
−
350
24
−
36
−
10
−
44
−
133161
22
−
8
−
29
889473
497343
11843
−
41
,
RR
+
Vec
(
C
) =
Vec
(
C
)
,
K
=
I
3
−
R
+
R
= 0
…
R
+
Vec
(
E
) = (1
,
−
2
,
3)
T
.
¯
K
I
)
•
X
=
circ
(1
,
−
2
,
3)
.
(2)
C
=
C
2
ž
§
RR
+
Vec
(
C
)
6
=
Vec
(
C
)
…
R
+
Vec
(
C
) =
x,
Ù
¥
x
= (0
.
4595+1
.
0952
i
,
−
0
.
7605+1
.
7234
i
,
1
.
8766
−
0
.
1500
i
)
.
Ï
•
K
= 0,
¯
K
II
Ú
¯
K
III
)
ƒ
Ó
,
Ù
•
X
=
circ
(0
.
4595+1
.
0952
i
,
−
0
.
7605+1
.
7234
i
,
1
.
8766
−
0
.
1500
i
)
.
Ä
7
‘
8
2
À
Ž
p
g
,
‰
Æ
Ä
7
-
:
‘
8
(2019KZDXM025),
Ê
µ
Œ
Æ
l
e
é
Ü
ï
u
Ä
7
]
Ï
‘
8
(
2019WGALH20).
ë
•
©
z
[1]Hu,X.Y.andDeng,Y.B.(2003)OntheSolutionsOptimalApproximationoftheEquation
A
T
XB
=
C
over
ASR
m
×
m
.
NumericalMathematics
,
5
,59-62.
[2]Liao, A.P., Bai, Z.Z.andLei, Y.(2006)BestApproximate SolutionofMatrixEquation
AXB
+
CXD
=
E
.
SIAMJournalonMatrixAnalysisandApplications
,
27
,675-688.
https://doi.org/10.1137/040615791
DOI:10.12677/pm.2022.1281491368
n
Ø
ê
Æ
ù
ø
)
§
¸
•
[3]
¸
•
,
S
²
,
X
.
Ý
•
§
AXB+CYD=E
é
¡
4
‰
ê
•
¦
)
[J].
O
Ž
ê
Æ
,
2007,29(2):203-216.
[4]Yuan,S. andLiao,A.(2014)LeastSquaresHermitianSolution oftheComplexMatrixEqua-
tion AXB +CXD =E with theLeast Norm.
JournaloftheFranklinInstitute
,
351
, 4978-4997.
https://doi.org/10.1016/j.jfranklin.2014.08.003
[5]Liu,Z.,Zhou,Y.,Zhang,Y.,
etal.
(2019)SomeRemarksonJacobiandGauss-Seidel-Type
Iteration Methods for the Matrix Equation AXB = C.
AppliedMathematicsandComputation
,
354
,305-307.https://doi.org/10.1016/j.amc.2019.02.014
[6]Dehghan, M.and Shirilord,A. (2019)AGeneralizedModifiedHermitianand Skew-Hermitian
Splitting(GMHSS)MethodforSolvingComplexSylvesterMatrixEquation.
AppliedMathe-
maticsandComputation
,
348
,632-651.https://doi.org/10.1016/j.amc.2018.11.064
[7]Wu,N.C.,Liu,C.Z.and Zuo,Q. (2022)On theKaczmarz MethodsBasedon RelaxedGreedy
Selection for SolvingMatrix EquationAXB =C.
JournalofComputationalandAppliedMath-
ematics
,
413
,ArticleID:114374.https://doi.org/10.1016/j.cam.2022.114374
[8]Safarzadeh,M.,SadeghiGoughery,H.andSalemi,A.(2022)Global-DGMRESMethodfor
MatrixEquationAXB=C.
InternationalJournalofComputerMathematics
,
99
,1005-1021.
https://doi.org/10.1080/00207160.2021.1942459
[9]
•
µ
û
,
•
•
Ÿ
.
A
Ï
Ý
[M].
®
:
˜
u
Œ
Æ
Ñ
‡
,2001.
[10]Davis,P.J.(1994)CirculantMatrices.AMSChelseaPublishing,NewYork.
[11]Arup,B.andKoushik,S.(2018)RandomCirculantMatrices.CRCPress,BocaRaton,FL.
[12]
•
u
.
Ý
Ø
[M].
®
:
‰
E
Ñ
‡
,2001.
DOI:10.12677/pm.2022.1281491369
n
Ø
ê
Æ