设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(8),1381-1391
PublishedOnlineAugust2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.128151
˜mšàg˜‘nþfi˜—²-ÿÝ
“““+++§§§ÜÜÜwww___§§§ââ⬬¬
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c719F¶¹^Fϵ2022c819F¶uÙFϵ2022c831F
Á‡
©ïÄ˜mšàgnþfi3†‚Ú‚þ˜—²-ÿÝ"Äk§|^†‚þ=£Ý
?nüzÝAНK¿‰ÑƒAA•þ§Tþfi3†‚þäk˜—²
-ÿݧ,„‰Ñ˜mšàgnþfi3†‚þüzÝ±Ï5L«¶3dÄ:þ§
òi ˜˜m•›‚þ§y²‚þ˜—²-ÿÝ•35¿‰ÑL«"
'…c
þfi§šàg§²-ÿݧ˜—ÿÝ
UniformStationaryMeasureof
Space-InhomogeneousOne-Dimensional
Three-StateQuantumWalks
PengYe,LixiaZhang,CaishiWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jul.19
th
,2022;accepted:Aug.19
th
,2022;published:Aug.31
st
,2022
©ÙÚ^:“+,Üw_,â¬.˜mšàg˜‘nþfi˜—²-ÿÝ[J].nØêÆ,2022,12(8):
1381-1391.DOI:10.12677/pm.2022.128151
“+
Abstract
Inthispaper,weconsidertheuniformstationarymeasureofspace-inhomogeneous
threestatequantumwalksonthelineandcycles.Firstly,theeigenvalueproblemis
solvedbytransfermatrixandthecorrespondinguniformstationarymeasureisgiven
ontheline.Inaddition,wegivetheperiodicrepresentationoftheevolutionmatrix
underthemodelontheline.Then,weshowtheuniformstationarymeasureofthe
cyclesbyrestrictingthepositionspacetothecycles.
Keywords
Quantum,Inhomogeneous,StationaryMeasure,UniformMeasure
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
þfiŠ•²;‘Åiþfa qÔ, g1993 cdAharonov[1]Jѱ5, ˜†É<‚
2•'5[2–11]. þfi̇©•lÑžmþfiÚëYžmþfi, ©Ì‡ïÄlÑ
žmþfi. þfiì?1•̇Ny3²-ÿÝ,žm²þ4 • ÿÝ, f4•ÿÝn‡•¡,
Ù¥žm²þ4• ÿÝÚf4•ÿÝ©ONyþfiÛÜz•35Ú1•. lÑžmþ
fi²-ÿÝŠ•n)þfiì?1•-‡å», ˜†É'5.2013 cKonno[11]<
|^)¤¼ê{?nAНK, ‰Ñ†‚þ˜mšàgüþf i²-ÿÝ, T ²-ÿÝ
† ˜¥•ê5P~¿vk˜—ÿÝ.2014 cKonno[12]<ïÄ†‚þ˜màgnþfi
˜—²-ÿÝ•35. 2017 cKawai[13]<JÑØÓu)¤¼ê{{zÝ•{, ‰Ñ
†‚þ˜màgnþfiš˜—²-ÿÝ. éušàg œ/¿vk?Ø, @oéu˜
mšàgnþfi˜—²-ÿÝ´ÄÓ•3, ù´©ïÄ̇¯K.©|^2019 c
Endo[14]<=£Ý•{, ?nüzÝAНK¿‰ÑƒAA•þ, i
3†‚Ú‚þ˜—²-ÿÝ. 2014 cKonno [12] <ïÄ†‚þàg nþfi ˜—²
-ÿÝ, ©Ø=y²†‚þšàgnþfi˜—²-ÿÝ•3, „‰Ñ‚þšà
gnþfi˜—²-ÿÝ9ÙL«, 9‰Ñ†‚þšàgnþfiüzÝ±Ï
DOI:10.12677/pm.2022.1281511382nØêÆ
“+
5L«.
©(Xe: 1˜ÙÚó. 1Ùý•£, 0˜mšàgnþfiÚ‚½Â±
9ƒ'•£:. 1nÙ, 1˜!‰Ñ˜mšàgnþfi3†‚þ˜—²-ÿÝ•3
5Úþfi=£ÝS±Ï5L«; 1!‰Ñ˜mšàgnþfi3‚þ˜—
²-ÿÝ•359ÙL«.
2.ý•£
þfiŠ•²;‘Åiþf‡, O\Ã5gdÝ. üþf iO\†
Ã5ÚmÃ5.3dÄ:þ2O\˜‡¥Ã5, Ònþfi. nþfiÃ5k†
Ã5, ¥Ã5, mÃ5. z˜‡žmÚ•, XJik†Ã5, K•†£Ä˜Ú; eikmÃ
5,K•m£Ä˜Ú;XJik¥Ã5,KÊ33/.Ù¥
|Li=




1
0
0




,|Oi=




0
1
0




,|Ri=




0
0
1




,
©OL«L«†,¥,mÃ5.˜mšàgnþfi½Â3ê8Zþ,dÃ5˜m
|Li,|Oi,|RiÚ ˜˜m|xi:x∈Z?1•x. e¡‰Ñ˜mšàgnþfi½Â
½Â2.1[15]˜mšàgnþfiÏ~d˜‡3×3ÝU
x
(½, ÙžmüzÏLe¡
Ý½Â:
U
x
=




a
x
b
x
c
x
d
x
e
x
f
x
g
x
h
x
i
x




∈U(3),
Ù¥eIx∈Z“L ˜; a
x
,b
x
,c
x
,d
x
,e
x
,f
x
,g
x
,h
x
,i
x
∈C.U(3) ´3×3 ÝU
x
8Ü.
N´Kê8,þfi3N(N∈N)ž• ux(x∈Z) ?VÇÅÌL«•
Ψ
n
(x) = (Ψ
L
n
(x),Ψ
O
n
(x),Ψ
R
n
(x))
T
∈C
3
,
Ù¥CL«Eê•.éz‡ ˜x,Ψ
n
(x)kXeüzúª
Ψ
n+1
(x) = P
x+1
Ψ
n
(x+1)+O
x
Ψ
n
(x)+Q
x−1
Ψ
n
(x−1),(x∈Z)(2.1)
Ù¥
P
x
=




a
x
b
x
c
x
000
000




,R
x
=




000
d
x
e
x
f
x
000




,Q
x
=




000
000
g
x
h
x
l
x




.
=U
x
= P
x
+R
x
+Q
x
,N´y˜mšàgþfi´•6u ˜.
DOI:10.12677/pm.2022.1281511383nØêÆ
“+
e¡‰Ñþfi3nž•VÇÅÌ
Ψ
n
=





···,





Ψ
L
n
(−1)
Ψ
O
n
(−1)
Ψ
Q
n
(−1)





,





Ψ
L
n
(0)
Ψ
O
n
(0)
Ψ
Q
n
(0)





,





Ψ
L
n
(1)
Ψ
O
n
(1)
Ψ
Q
n
(1)





,···





T
∈(C
3
)
Z
,kjÝ
U
s
=















.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
···R
−2
P
−1
OOO···
···Q
−2
R
−1
P
0
OO···
···OQ
−1
R
0
P
1
O···
···OOQ
0
R
1
P
2
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.















Ù¥
O=





000
000
000





.
é?¿nž•,djÝU
(s)
,‰Ñjüz,Ψ
n
= (U
(s)
)
n
Ψ
0
,n≥0.
e5‰Ñ²-ÿÝ½Â,kÚ\˜‡Nφ: (C
3
)
Z
→R
Z
+
,R
Z
+
= [0,∞).
Ψ
n
= (···,Ψ
n
(−1),Ψ
n
(0),Ψ
n
(1),···)
Ù¥
Ψ
n
(−1) = (Ψ
L
n
(−1),Ψ
O
n
(−1),Ψ
Q
n
(−1))
T
;
Ψ
n
(0) = (Ψ
L
n
(0),Ψ
O
n
(0),Ψ
Q
n
(0))
T
;
Ψ
n
(1) = (Ψ
L
n
(1),Ψ
O
n
(1),Ψ
Q
n
(1))
T
.
K
φ(Ψ) = [···,|Ψ
L
(0)|
2
+|Ψ
O
(0)|
2
+|Ψ
R
(0)|
2
,|Ψ
L
(1)|
2
+|Ψ
O
(1)|
2
+|Ψ
R
(1)|
2
,···]
T
∈(R
Z
+
).
é½Ψ ∈(C
3
)
Z
,?¿xk¼êx→φ(Ψ
n
(x)),x∈Z, ¦
φ(Ψ)(x) = |Ψ
L
(x)|
2
+|Ψ
O
(x)|
2
+|Ψ
R
(x)|
2
(x∈Z).
?˜Ú‰ÑÿÝν: Z→R
+
,ν(x) = φ(Ψ)(x). N´*ν(x)´þfi3x?˜‡ÿÝ.
DOI:10.12677/pm.2022.1281511384nØêÆ
“+
½Â2.2[16]e
Θ
s
= {φ(Ψ
0
) ∈R
Z
+
: ∃Ψ
0
,s.t.φ((U
s
)
n
Ψ
0
) = φ(Ψ
0
),∀n≥0}.
K¡8ÜΘ
s
¥ƒ•þfi²-ÿÝ.
?˜Úe¡‰Ñ˜—ÿÝ½Â.
½Â2.3e∃c>0, ¦ν
(c)
(x) = c(x∈Z), Kν
(c)
L«¹ëêc˜—ÿÝ. Θ
u
L«Zþ
˜—ÿÝ8,äN/
Θ
u
= {ν:∃c>0,s.t.ν(x) = c,∀x∈Z}.
e5k‰Ñã½Â,2‰Ñ‚½Â.
½Â2.4[11]e˜|8ÜéG= (V,E)÷vV´š˜º:8,E´š˜>8.K¡G= (V,E)
•ã.éü‡º:x,y∈V¡•ƒ,XJ{x,y}∈E,PŠx∼y.eV´k•º:8,K¡
G= (V,E) •k•ã.
½Â2.5eC
n
´ãG=(V,E)˜‡ãÓ,Ù¥n(n>0)L«äkn‡º:,V =
{1,2,···,n},E= {{1,2},{2,3}···,{n−1,n}}. K¡C
n
•‚.
PΨ
0
•þfiЩ,äN
Ψ
0
= Ψ
0
(α,β,γ)
=




···,




Ψ
L
(−2)
Ψ
O
(−2)
Ψ
R
(−2)




,




Ψ
L
(−1)
Ψ
O
(−1)
Ψ
R
(−1)




,




Ψ
L
(0)
Ψ
O
(0)
Ψ
R
(0)




,




Ψ
L
(1)
Ψ
O
(1)
Ψ
R
(1)




,




Ψ
L
(2)
Ψ
O
(2)
Ψ
R
(2)




,···




T
=




···,




0
0
0




,




0
0
0




,




α
β
γ




,




0
0
0




,




0
0
0




,···




T
Ù¥|α|
2
+|β|
2
+|γ|
2
= 1.
Ú\AНKU
(S)
Ψ = λΨ,(λ∈C,|λ|= 1). Ï•U
(S)
´jÝ,¤±kφ(Ψ) ∈Θ
s
.
Ún2.6[11]U
y
´¹yëêšàgnþfijüzÝ¤8Ü, Ψ
n
(x)=
(Ψ
L
n
(x),Ψ
O
n
(x),Ψ
R
n
(x))
T
´VÇÅÌ. e‰½Ð©Ψ(0), ƒAAНKU
(S)
Ψ=λΨ,KkA
•þ
Ψ(x) =











Π
x
y=1
D
+
y
Ψ(0)(x≥1),
Ψ(0)(x= 0),
Π
x
y=−1
D
−
y
Ψ(0)(x≤−1),
DOI:10.12677/pm.2022.1281511385nØêÆ
“+
=£ÝD
±
y
©OL«•
D
+
y
=






d
+
11
d
+
12
d
+
13
d
+
21
d
+
22
d
+
23
d
+
31
d
+
32
d
+
33






Ú
D
−
y
=






d
−
11
d
−
12
d
−
13
d
−
21
d
−
22
d
−
23
d
−
31
d
−
32
d
−
33






.
Ù¥
d
+
11
=
(λ−e
y
)(λ
2
−g
y−1
c
y
)−g
y−1
b
y
f
y
λ{a
y
(λ−e
y
)+b
y
d
y
}
,d
+
12
= −
h
y−1
{b
y
f
y
+c
y
(λ−e
y
)}
λ{a
y
(λ−e
y
)+b
y
d
y
}
d
+
13
= −
l
y−1
{b
y
f
y
+c
y
(λ−e
y
)}
λ{a
y
(λ−e
y
)+b
y
d
y
}
,d
+
21
=
λ
2
d
y
+g
y−1
(a
y
f
y
−c
y
d
y
)
λ{a
y
(λ−e
y
)+b
y
d
y
}
d
+
22
=
h
y−1
(a
y
f
y
−c
y
d
y
)
λ{a
y
(λ−e
y
)+b
y
d
y
}
,d
+
23
=
l
y−1
(a
y
f
y
−c
y
d
y
)
λ{a
y
(λ−e
y
)+b
y
d
y
}
d
+
31
=
g
y−1
λ
,d
+
32
=
h
y−1
λ
,d
+
33
=
l
y−1
λ
,
d
−
11
=
a
y+1
λ
,d
−
12
=
b
y+1
λ
,d
−
13
=
c
y+1
λ
d
−
21
= −
a
y+1
(f
y
g
y
−l
y
d
y
)
λ{l
y
(λ−e
y
)+h
y
f
y
}
,d
−
22
= −
b
y+1
(f
y
g
y
−l
y
d
y
)
λ{l
y
(λ−e
y
)+h
y
f
y
}
d
−
23
=
λ
2
f
y
−c
y+1
(g
y
f
y
−l
y
d
y
)
λ{l
y
(λ−e
y
)+h
y
f
y
}
,d
−
31
= −
a
y+1
{h
y
d
y
+g
y
(λ−e
y
)}
λ{l
y
(λ−e
y
)+h
y
f
y
}
d
−
32
= −
b
y+1
{h
y
d
y
+g
y
(λ−e
y
)}
λ{l
y
(λ−e
y
)+h
y
f
y
}
,d
−
33
= −
(λ−e
y
)(λ
2
−g
y
c
y+1
)−h
y
c
y+1
d
y
λ{l
y
(λ−e
y
)+h
y
f
y
}
.
3.̇(J9Ùy²
!̇ïĘmšàg˜‘nþfi.,ÙüzÝXe
U
x
=




cosθ0e
ω
x
i
sinθ
0e
ω
x
i
0
e
−ω
x
i
sinθ0−cosθ




(ω
x
∈[0,2π),θ∈(0,2π)).
Ù¥xL« ˜,AO•ÄéÝ¥ëêω
x
,•3φ∈[0,2π),÷v^‡ω
x
−ω
x−1
= 2φ,x∈Z.
DOI:10.12677/pm.2022.1281511386nØêÆ
“+
3.1.†‚þi˜—²-ÿÝ9üzÝ±Ï5L«
¼T.AŠ9ƒAA•þ,
½n3.1.1eüzÝ÷vU
(s)
Ψ=λΨ, -λ= e
φi
, lAНKC†•U
(s)
Ψ=e
φi
Ψ,
Ù¥
Ψ(x) =











Π
x
y=1
D
+
y
Ψ(0)(x≥1),
Ψ(0)(x= 0),
Π
x
y=−1
D
−
y
Ψ(0)(x≤−1),
=£ÝD
±
y
•
D
+
x
=




e
φi
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−φi
cosθ




Ú
D
−
x
=




e
−φi
cosθ0e
α
x
i
sinθ
000
e
−α
x+1
i
sinθ0−e
φi
cosθ




,
Ù¥α
x
= ω
x−1
+φ=ω
x
−φ, ω
x
∈[0,2π),θ∈(0,2π).qφ(Φ) ∈Θ
u
∩Θ, K3†‚þk˜—²-
ÿÝ.
y²:OŽÙ=£Ý•
D
+
x
=




λ
2
−e
−ω
x−1
i
sin
2
θe
ω
x
i
λcosθ
0
e
ω
x
i
sinθ
λ
000
e
−ω
x−1
i
sinθ
λ
0
−cosθ
λ




=





e
2φi
−e
(ω
x
−ω
x−1
)i
sin
2
θ
e
φi
cosθ
0
e
ω
x
i
sinθ
e
φi
000
e
−ω
x−1
i
sinθ
e
φi
0
−cosθ
e
φi





=





e
2φi
−e
2φi
sin
2
θ
e
φi
cosθ
0e
(ω
x
−φ)i
sinθ
000
e
(φ−ω
x−1
)i
sinθ0−e
−φi
cosθ





=





e
φi
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−φi
cosθ





.
DOI:10.12677/pm.2022.1281511387nØêÆ
“+
aq,
D
−
x
=




cosθ
λ
0
e
ω
x
i
sinθ
λ
000
e
−ω
x
i
sinθ
λ
0
λ
2
−e
(ω
x+1
−ω
x
)i
sin
2
θ
−λcosθ




=




cosθ
e
φi
0
e
ω
x
i
sinθ
e
φi
000
e
−ω
x
i
sinθ
e
φi
0
e
2φi
−e
(ω
x+1
−ω
x
)i
sin
2
θ
−e
φi
cosθ




=




cosθ
e
φi
0e
(ω
x
−φ)i
sinθ
000
e
−(ω
x
+φ)i
sinθ0
e
2φi
cos
2
θ
−e
φi
cosθ




=




e
−φi
cosθ0e
α
x
i
sinθ
000
e
−α
x+1
i
sinθ0−e
φi
cosθ




.
N´yD
+
x
,D
−
x
´jÝ, dÚn2.6,Ψ(x) ‰ê† ˜xÃ'. ¤±φ(x) ∈Θ
u
.Ïd, †‚
þTþfiäk˜—²-ÿÝ.
e¡•Ć‚þüzÝS{U
x
,x∈Z}±Ï5.
½Â3.1.2éuþfi.üzÝS{U
x
,x∈Z},eU
x+n
=U
x
(n∈N),K¡S
{U
x
}äkN±Ï, ÄKvk±Ï.
íØ3.1.3
U
x
=




cosθ0e
ω
x
i
0e
ω
x
i
0
e
−ω
x
i
sinθ0−cosθ




(ω
x
∈[0,2π),θ∈(0,2π)),
Ù¥ω
x
−ω
x−1
=
2π
N
.lkω
x+N
= 2π+ω
x
.¤±
U
x+N
=




cosθ0e
ω
x+N
i
0e
ω
x+N
i
0
e
−ω
x+N
i
sinθ0−cosθ




=




cosθ0e
ω
x
i
0e
ω
x
i
0
e
−ω
x
i
sinθ0−cosθ




= U
x
.
KüzÝS{U
x
}±N•±Ï.
3.2.‚þi˜—²-ÿÝ
‚C
2N
þþfiÏLüzÝU
x
?1üz.3†‚þþfiüzd(2.1)ª¤
û½.‚þžmüzŽfaquU
(s)
•U
(s)
c
.Ùüz•§•Ψ
n+1
=U
(s)
c
Ψ
n
(n≥0),Ψ
n
=
(Ψ
n
(1),···,Ψ
n
(2N)),
DOI:10.12677/pm.2022.1281511388nØêÆ
“+
Ù¥Ψ
n
(1) = (Ψ
L
n
(1),Ψ
O
n
(1),Ψ
Q
n
(1))
T
;Ψ
n
(2N) = (Ψ
L
n
(2N),Ψ
O
n
(2N),Ψ
Q
n
(2N))
T
.
•Ä‚C
2m
þ˜mšàgnþfi,3½n3.1¥^U
(s)
c
“OU
(s)
?1üzke¡
(J,Ù¥2m(m∈N)“Lº:‡ê.éu‚C
2m
=(V,E),∀m∈N,º:8Ú>8©O•
V={x∈Z/mZ}ÚE={(x,x+1),(x+1,x):x∈V}.e¡òþfiüz˜m ˜•›
‚C
2m
þ.Ùüz•§÷veª
Ψ
n+1
(x) = P
x+1
Ψ
n
(x+1)+O
x
Ψ
n
(x)+Q
x−1
Ψ
n
(x−1),(x∈Z/mZ).
·K3.2.1‚C
2m
(m∈N) þ˜mšàgnþfi,3?¿ ˜x?=£ÝXe
D
+
x
=




e
φi
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−φi
cosθ




ω
x
∈[0,2π),θ∈(0,2π),
Ù¥ω
x
−ω
x−1
=
2π
m
,∀x∈{1,2,3,···,2m}.d.3‚C
2m
þk˜—²-ÿÝ.éuЩ
Ψ(0) = (α,β,γ)
T
,˜—²-ÿÝ•ν(Ψ(x)) = |α|
2
+|γ|
2
.Ù¥α,β,γ∈C.
y²:®•ω
x
−ω
x−1
=
2π
m
,Kφ=
2π
m
,¤±
D
+
x
=




e
φi
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−φi
cosθ




=




e
π
m
i
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−
π
m
i
cosθ




qÏ•α
x
=
π
m
+ω
x−1
= ω
x
−
π
m
, ?˜Ú,Œ±α
x+1
−α
x
= (
π
m
+ω
x
)−(
π
m
+ω
x−1
) =
2π
m
. ¤
±,k
D
+
x+1
D
+
x
=




e
φi
cosθ0e
α
x+1
i
sinθ
000
e
−α
x+1
i
sinθ0−e
−φi
cosθ








e
φi
cosθ0e
α
x
i
sinθ
000
e
−α
x
i
sinθ0−e
−φi
cosθ




=




e
2π
m
i
00
000
00e
−2π
m
i




.
dd
2m
Y
x=1
D
+
y
=




e
2π
m
i
00
000
00e
−2π
m
i




m
=




100
000
001




.
éuЩΨ(0) = (α,β,γ)
T
,k
Ψ(x) =




e
2π
m
i
00
000
00e
−2π
m
i




m




α
β
γ




=




α
0
γ




,( 1 ≤x≤2m)
DOI:10.12677/pm.2022.1281511389nØêÆ
“+
ν(Ψ(x)) = |α|
2
+|γ|
2
.-|α|
2
+|γ|
2
= c,kν(Ψ(x)) = c. dd3‚C
2m
þ˜—ÿÝ.
e5`²˜—ÿÝáu²-ÿÝ8Θ
s
,é‚þAНKU
s
Ψ = λΨ, AŠλ= 1.-
ν
Ψ
0
n
= φ((U
(s)
)
n
)Ψ
0
,k
ν
Ψ
0
n
= (ν
Ψ
0
n
(1),ν
Ψ
0
n
(2),ν
Ψ
0
n
(3),···)
T
.
?˜Ú
ν
Ψ
0
n
= (|α|
2
+|γ|
2
,|α|
2
+|γ|
2
,|α|
2
+|γ|
2
,···)
T
.
Œ±wé∀n≥0, kφ(Ψ
0
(x)) = ν
Ψ
0
n
(x) = c.¤±ν(Ψ) = ν
Ψ
0
n
∈Θ
s
(U).
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(1OÒ:11861057)"
ë•©z
[1]Aharonov,Y.,Davidovich,L.andZagury,N.(1993)QuantumRandomWalks.PhysicalReviewA,48,
1687-1690.https://doi.org/10.1103/PhysRevA.48.1687
[2]Vegenas-Andraca,S.E.(2012)QuantumWalks:AComprehensiveReview.QuantumInformationProcess-
ing,11,1015-1106.https://doi.org/10.1007/s11128-012-0432-5
[3]Shankar,K.H.(2014)QuantumRandomWalksandDecisionMaking.TopicsinCognitiveScience,6,
108-113.https://doi.org/10.1111/tops.12070
[4]‘“,â¬,41.þfxD(©Û[M].ÉÇ:‰ÆEâч,2004.
[5]Machida,T.(2013)RealizationoftheProbabilityLawsintheQuantumCentralLimitTheoremsbya
QuantumWalk.QuantumInformationandComputation,13,430-438.
https://doi.org/10.26421/QIC13.5-6-4
[6]Matsue,K.,Ogurisu,O.andSegawa,E.(2016)QuantumWalksonSimplicialComplexes.QuantumInfor-
mationProcessing,3,11-30.
[7]Wang,C.S.andZhang,J.H.(2013)Lo calizationofQuantumBernoulliNoises.JournalofMathematical
Physics,54,103502-103509.https://doi.org/10.1063/1.4824130
[8]Wang,C.S.,Chai,H.F.andLu,Y.C.(2010)Discrete-TimeQuantumBernoulliNoises.JournalofMathe-
maticalPhysics,51,ArticleID:053528.https://doi.org/10.1063/1.3431028
[9]Endo,T.,Kawai,H.andKonno,N.(2017)StationaryMeasuresfortheThree-StateGroverWalkwithOne
DefectinOneDimension.InterdisciplinaryInformationSciences,23,45-55.
[10]Komatsu,T.andKonno,N.(2022)StationaryMeasureInducedbytheEigenvalueProblemoftheOne-
DimensionalHadamardWalk.JournalofStatisticalPhysics,187,ArticleNo.10.
https://doi.org/10.1007/s10955-022-02901-x
DOI:10.12677/pm.2022.1281511390nØêÆ
“+
[11]Konno,N.,Luczak,T.andSegawa,E.(2013)LimitMeasuresofInhomogeneousDiscrete-TimeQuantum
WalksinOneDimension.QuantumInformationProcessing,12,33-53.
https://doi.org/10.1007/s11128-011-0353-8
[12]Konno,N.(2014)TheUniformMeasureforDiscrete-TimeQuantumWalksinOneDimension.Quantum
InformationProcessing,13,1103-1125.https://doi.org/10.1007/s11128-013-0714-6
[13]Kawai,H.,Komatsu,T.andKonno,N.(2017)StationaryMeasuresofThree-StateQuantumWalksonthe
One-DimensionalLattice.YokohamaMathematicalJournal,63,59-74.
[14]Endo,T.,Komatsu,T.andKonno,N.(2019)StationaryMeasureforThree-StateQuantumWalk.Quantum
InformationandComputation,19,901-912.https://doi.org/10.26421/QIC19.11-12-1
[15]Wang,C.S.,Lu,X.Y.andWang,W.L.(2015)TheStationaryMeasureofaSpace-InhomogeneousThree-
StateQuantumWalkontheLine.QuantumInformationProcess,14,867-880.
https://doi.org/10.1007/s11128-015-0922-3
[16]Kawai,H.,Komatsu,T.andKonno,N.(2018)StationaryMeasureforTwo-StateSpace-Inhomogeneous
QuantumWalkinOneDimension.YokohamaMathematicalJournal,64,111-130.
[17]Obata,N.(2017)SpectralAnalysisofGrowingGraphs.Springer,Singapore.
DOI:10.12677/pm.2022.1281511391nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.