设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(9),6192-6198
PublishedOnlineSeptember2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.119653
älNþåÏþï6Ž{ïÄ
±±±ŒŒŒ
-Ÿ¢½…’Æ§-Ÿ
ÂvFϵ2022c81F¶¹^Fϵ2022c830F¶uÙFϵ2022c96F
Á‡
©30Wardrop²;ÏþïnÄ:þ§-:0älNþ åÏþïn§¿
|^Beckmannúª§rälNþåÏþï6OޝK=z¤êÆ5y¯K§3dÄ:þ
EälNþåÏþï6Ž{§ÓžÞ~éŽ{?1?˜Ú`²"
'…c
älNþå§Ú´»§Beckmannúª§Ž{§þï6
ResearchontheAlgorithmofTraffic
EquilibriumFlowwithArcCapacity
Constraint
DaqiongZhou
ChongqingCityVocationalCollege,Chongqing
Received:Aug.1
st
,2022;accepted:Aug.30
th
,2022;published:Sep.6
th
,2022
Abstract
BasedontheintroductionofWardropsclassicaltrafficequilibriumprinciple,this
©ÙÚ^:±Œ .älNþåÏþï6Ž{ïÄ[J].A^êÆ?Ð,2022,11(9):6192-6198.
DOI:10.12677/aam.2022.119653
±Œ
paperfocusesontheprinciple oftrafficequilibriumflowwitharccapacityconstraint,
andmakesuseofBeckmannformula,thecalculationproblemoftrafficequilibrium
flowwitharccapacityconstraintistransformedintoamathematicalprogramming
problem,andthealgorithmoftrafficequilibriumflowwitharccapacityconstraintis
constructed.
Keywords
ArcCapacityConstraint,SaturatedPath,BeckmannFormula,Algorithm,
EquilibriumFlow
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Cc5§du¬ˆ•¡¯„uЧ´×l¯K3¢½Fªî-§•)û¢½´Ï
×l¯K§~f•<Ñ1¤§ÒI‡kêÆ.âU)û¯K"²;Wardrop[1]
Ïþï.̇^5)ûp„ú´×l¯K§é)û¢½´Ï×l¯Kk˜½Û•5§Ï
d“<rWardropÏþï.?1U?§3.¥\\´»9lïħr.í 2
älNþåÏþï.[3,4]¿?1ïħ'uÏþï¯KÙ¦ïÄ„[5–8]"
•)ûÏþï6OޝK§Beckmann<rWardropÏþï¯K†êÆ5y¯K
éXå5[2]§^êÆ5y.)ûÏþï6OޝK§ù••Ïþï6OŽJøn
ØÄ:"3©¥§·‚ÏLêÆ5yEälNþåÏþï6Ž{§¿Þ~éŽ{?
1`²§'uÏþï6Ù¦Ž{ïÄ„[9–11]"
2.ý•£
3Ï䥧V•!:8ܧE•k•l8ܧW•OD:é£å:/ª:¤8ܧé?
Ûω∈W§P
ω
•OD:éω´»8ܧPK=∪
ω∈ W
P
ω
,m=|K|"D=(d
ω
)
ω∈ W
•I¦•
þ§Ù¥d
ω
(>0)•OD:éωÏI¦þ§é?Ûla∈E§x
a
∈R
+
={z∈R:z≥0}•
lþ6þ"é?Ûω∈W§k∈P
ω
§^x
k
(≥0)k•´»þÏ6þ"¡x=(x
k
)
T
k∈K
∈
R
m
+
={(z
1
,z
2
,···,z
m
)∈R
m
:z
i
≥0,i=1,2,···,m}•´»6({¡6)"´•§éla∈E§
x
a
=
P
ω∈ W
P
k∈P
ω
δ
ak
x
k
§laáu´»kž§δ
ak
= 1§laØáu´»kž§δ
ak
= 0"^C=
DOI:10.12677/aam.2022.1196536193A^êÆ?Ð
±Œ
(c
a
)
a∈E
L«Nþ•þ§Ù¥c
a
(>0)L«laþÏ6Nþ"
é?Ûla∈E§3laþ6þI÷ve¡Nþå^‡:c
a
≥x
a
≥0§Óž§é?ÛOD:
éω∈W§6xI‡÷ve¡I¦å^‡:
P
k∈P
ω
x
k
= d
ω
"rÓž÷vI¦å^‡ÚNþå
^‡6x¡•Œ1´»6({¡Œ16)"
Œ168Ü^A={x∈R
m
+
: ∀ω∈W,
P
k∈P
ω
x
k
= d
ω
and∀a∈E,c
a
≥x
a
≥0}L«"3©
¥§é?Ûω∈W§bÏI¦d
ω
´ØC§¿…A6= ∅"´•§8ÜA´˜‡;à8"éa∈E§
^t
a
= t
a
(x
a
) = t
a
(x) ∈R
+
L«laþ¤§é?Ûω∈W,k∈P
w
§b½´»kþ¤t
k
´´
»þ¤kl¤ƒÚ§=t
k
(x) =
P
a∈E
δ
ak
t
a
(x)"Ï䘄L«•ℵ= {V,E,W,D,C}"
3.ÏþïK9Beckmannúª
3Ïþï6OŽ¥§duz‡<Ñ18IØÓ§é•þÏþï6O ŽïÄLuE
,§Ïd·‚•éIþÏ þï6OŽ?1ïÄ§Ï de¡ÏþïKþ•IþÏþ
ïK"
½Â3.1.(WardropÏþïK).[1]Œ16x∈A
1
¡•þï6§•‡÷v
∀ω∈W,∀k,j∈P
ω
,t
k
(x)−t
j
(x) >0 ⇒x
k
= 0.
þï6x¡•Ïþï¯K˜‡)"
d u²;Ïþï.Û•5§Ïd“<3ïÄ¥O\é´»9lïħr²
;Ïþï.í2älNþåÏþï."„e¡½Â
[4]
"
½Â3.2.éŒ16x∈A,a∈E,
i)XJx
a
= c
a
§Ka´x˜^Úl§ÄK§a´x˜^šÚl;
ii)éOD:éω∈W§´»k∈P
ω
§Xx˜^Úláu´»k§K´»k¡ •x˜^Ú
´»§ÄK¡´»k•x˜^šÚ´»"
½Â3.3.(älN þåÏþïK).6x∈A¡•älNþåÏþï6§•‡
÷vXe^‡µ
∀ω∈W,∀k,j∈P
ω
,t
k
(x)−t
j
(x) >0
⇒x
k
= 0½öj´´´666x˜˜˜^^^ÚÚÚ´´´»»».
r6x•¡•älNþåÏþï¯K)"
˜„œ¹e·‚^Γ = {ℵ,A,t}L«älNþåÏþï¯K)"
éuälNþåÏþï¯KΓ= {ℵ,A,t}§ÏLEXeêÆ5y¯KQ5OŽÏþ
ï6:
DOI:10.12677/aam.2022.1196536194A^êÆ?Ð
±Œ
Minz(x) = Σ
a∈E
R
x
a
0
t
a
(x)dx
s.t.







P
k
x
k
= d
ω
,∀ω∈W,k∈P
ω
x
a
=
P
ω
P
k
x
k
δ
ak
≤c
a
,∀a∈E,ω∈W,k∈P
ω
x
k
≥0,∀ω∈W,k∈P
ω
.
þª¡•2ÂBeckmannúª"e¡(Ø„[9]"
|^BeckmannúªOŽÏþï6§Iy²êÆ5y¯K)Ò´Ïþï6§ÏdÚ^ 
±e(Ø"
Ún3.1.[9]éälNþåÏþï¯K{ℵ,A,t}§XJé?Ûa∈E§t
a
(x)3R
m
+
þë
Y§¿…x∈A´êÆ5yQ)§@o§x´Ïþï6"^P
s
ω
L«Œ16x'uOD:éω¤k
Ú´»8ܧP
T
ω
= max
k∈P
ω
{t
k
: x
k
>0},
e
T
ω
=
(
T
ω
,XXXJJJP
s
ω
= P
ω
min
k∈P
ω
\P
s
ω
{t
k
},XXXJJJP
s
ω
6= P
ω
.
4.älNþåÏþï6Ž{
þ¡·‚0Beckmannúªí2ª§ùÒ•Ïþï6OŽJønØÄ:§Ïd·‚
3OŽÏþï6L§¥§|^dúª§,^Lingo^‡OŽÑÏþï6"
duälNþåÏþï¯K·A52§kéÐïÄdЧ Ïd3dúªÄ:þ§
EälNþåÏþï6Beckmannúªí2ªŽ{§¿^äN~f\±`²"
3OŽälNþåÏþï6L§¥§·‚kXebµé?Ûα∈E§t
α
(·)3R
r
+
þ
´ëY§dž§é?Ûα∈E§k∈P
ω
§´»¤¼êt
α
(·)3R
r
+
þ´ëY§Ïd§Ïþï6
•3"P
K= ∪
ω∈ W
,W= {ω
1
,ω
2
,···,ω
v
}.
Ù¥§v•ê"
5.Ïþï6Ž{Þ~
3Ïþï6OŽ¥§é÷vNþåÚI¦åälNþåÏþï6Oޝ
K§A^±þBeckmannúªí2ª§EBeckmannúªŽ{§©±en‡Ú½¤µ
1˜ÚµéØÓ:é§r¤klO:D:´»éÑ5§¿r¤k:é´»L«Ñ5"
1Úµé¤k:é¤k´»§ŽÑz^lþ¤k´»²L´»6§=rlþ¤k´»
²L´»6ƒ\"
DOI:10.12677/aam.2022.1196536195A^êÆ?Ð
±Œ
1nÚµE±eêÆ5y¯K(MP
2
)§|^Lingo^‡¦ÑälNþåÏþï6"
Minz(x) =
P
a∈E
R
x
a
0
t
a
(x)dx
s.t.







P
k
x
k
= d
ω
,∀ω∈W,k∈P
ω
x
a
=
P
ω
P
k
x
k
δ
ak
≤c
a
,∀a∈E,ω∈W,k∈P
ω
x
k
≥0.∀ω∈W,k∈P
ω
e¡Þ~§^Beckmannúªí2ªOŽÏþï6"
~µ•ÄälNþåÏþï¯K£„ã1¤§
Figure1.Thefigureoftrafficnetwork
ã1.Ïäã
Ù¥
V= {1,2,3,4,5,}§E= {e
1
,e
2
,e
3
,e
4
,e
5
,e
6
,e
7
,e
8
},
C={5,6,5,8,7,9,8,6},W={ω
1
,ω
2
}={(1,5),(2,4)},D= (d
ω
1
,d
ω
2
) = (11,10).
¿…k
t
e
1
(x
e
1
)=20x
2
e
1
+12,t
e
2
(x
e
2
)=2x
2
e
2
+80,t
e
3
(x
e
3
)=3x
2
e
3
+25,
t
e
4
(x
e
4
)=3x
2
e
4
+15§t
e
5
(x
e
5
)=x
2
e
5
+60§t
e
6
(x
e
6
)=4x
2
e
6
+30§
t
e
7
(x
e
7
)=3x
2
e
7
+113§t
e
8
(x
e
8
)=6x
e
8
"
dã•
1˜ÚµéO/D:éω1=(1,5)§P
ω1
•¹´»l
1
={e
1
}§l
2
={e
5
e
6
},§l
3
={e
5
e
4
e
7
}¶
éO/D:éω2=(2,4)§P
ω2
•¹´»l
4
={e
6
e
2
},§l
5
={e
4
e
3
}§l
6
={e
4
e
7
e
2
}"
DOI:10.12677/aam.2022.1196536196A^êÆ?Ð
±Œ
1ÚµP
x= (x
1
,x
2
,x
3
,x
4
,x
5
,x
6
)
T
∈R
6
+
.
Ù¥x
j
L«´»l
j
þ6þ(j= 1,2,···,6)§Ïd§k
x
e
1
= x
1
§x
e
2
= x
4
+x
6
§x
e
3
= x
5
§
x
e
4
= x
3
+x
e
5
+x
e
6
§
x
e
5
= x
2
+x
e
3
§x
e
6
= x
2
+x
4
§
x
e
7
= x
3
+x
6
§x
e
8
= 0§
Υ
R
x
e
1
0
t
e
1
(x)dx=
R
x
e
1
0
(20x
2
+12)dx=
20
3
x
3
e
1
+12x
e
1
=
20
3
(x
1
)
3
+12x
1
),
R
x
e
2
0
t
e
2
(x)dx=
R
x
e
2
0
(2x
2
+80)dx=
2
3
x
3
e
2
+80x
e
2
=
2
3
(x
4
+x
6
)
3
+80(x
4
+x
6
),
R
x
e
3
0
t
e
3
(x)dx=
R
x
e
3
0
(3x
2
+25)dx= x
3
e
3
+25x
e
3
= x
3
5
+25x
5
,
R
x
e
4
0
t
e
4
(x)dx=
R
x
e
4
0
(3x
2
+15)dx= x
3
e
4
+15x
e
4
= (x
3
+x
5
+x
6
)
3
+15(x
3
+x
5
+x
6
),
R
x
e
5
0
t
e
5
(x)dx=
R
x
e
5
0
(x
2
+60)dx=
1
3
x
3
e
5
+60x
e
5
=
1
3
(x
2
+x
3
)
3
+15(x
2
+x
3
),
R
x
e
6
0
t
e
6
(x)dx=
R
x
e
6
0
(4x
2
+30)dx=
4
3
x
3
e
6
+30x
e
6
=
4
3
(x
2
+x
4
)
3
+30(x
2
+x
4
),
R
x
e
7
0
t
e
7
(x)dx=
R
x
e
7
0
(3x
2
+113)dx= x
3
e
7
+113x
e
7
= (x
3
+x
6
)
3
+113(x
3
+x
6
),
1nÚµBeckmannúªí2ªMP
3
Xe
Minz(x) =
20
3
(x
1
)
3
++12x
1
+
2
3
(x
4
+x
6
)
3
+80(x
4
+x
6
)+x
3
5
+25x
5
+(x
3
+x
5
+x
6
)
3
+15(x
3
+
x
5
+x
6
)+
1
3
(x
2
+x
3
)
3
+15(x
2
+x
3
)+
4
3
(x
2
+x
4
)
3
+30(x
2
+x
4
)+(x
3
+x
6
)
3
+113(x
3
+x
6
)
s.t

































x
1
+x
2
+x
3
= 11
x
4
+x
5
+x
6
= 10
x
4
+x
6
≤6,x
2
+x
3
≤7
x
2
+x
4
≤9,x
3
+x
6
≤8
x
3
+x
5
+x
6
≤8,0 ≤x
2
0 ≤x
5
≤5,0 ≤x
1
≤5
0 ≤x
3
,0 ≤x
4
,0 ≤x
6
^Lingo^‡§Œ±ŽÑÙþï6•(A•Œ168Ü)
x= (4.58,6.09,0.33,2.58,5.00,2.42)
T
∈A.
Ï Ld~Œ±wѧ3älNþåÏþï6OŽ¥§rÏþï6OŽ=z•êÆ
5y¯K§|^Beckmannúªí2ªEŽ{§´˜«1ƒk•{§=•Ïþï6OŽ
JønØÄ:§qUA^u¢S"
DOI:10.12677/aam.2022.1196536197A^êÆ?Ð
±Œ
Ä7‘8
-Ÿ¢½…’Æ‰ï‘8(No.XJKJ202102004)"
ë•©z
[1]Wardrop,J.(1952)SomeTheoreticalAspectsofRoadTrafficResearch.Proceedingsofthe
InstituteofCivilEngineers,PartII,1,325-378.https://doi.org/10.1680/ipeds.1952.11259
[2]Beckmann, M.J.,McGuire,C.B. andWinsten,C.B.(1956) Studiesin theEconomics ofTrans-
portation.YaleUniversityPress,NewHaven.
[3]Lin,Z.(2010)TheStudyofTrafficEquilibriumProblemswithCapacityConstraintsofArcs.
NonlinearAnalysis:RealWorldApplications,11,2280-2284.
https://doi.org/10.1016/j.nonrwa.2009.07.002
[4]Lin,Z.(2010)OnExistenceofVectorEquilibriumFlowswithCapacityConstraintsofArcs.
NonlinearAnalysis:Theory,MethodsandApplications,72,2076-2079.
https://doi.org/10.1016/j.na.2009.10.007
[5]Chen, A., Zhou,Z. andXu, X.D.(2012)A Self-Adaptive GradientProjectionAlgorithm forthe
NonadditiveTrafficEquilibriumProblem.ComputersandOperationsResearch,39,127-138.
https://doi.org/10.1016/j.cor.2011.02.018
[6]Xu,Y.D. andLi,S.J. (2013) Optimality Conditions for Generalized Ky Fan Quasi-Inequalities
withApplications.JournalofOptimizationTheoryandApplications,157,663-684.
https://doi.org/10.1007/s10957-012-0242-z
[7]Xu,Y.D. and Li, S.J. (2014) Vector Network Equilibrium Problems with Capacity Constraints
ofArcsandNonlinearScalarizationMethods.ApplicableAnalysis,93,2199-2210.
https://doi.org/10.1080/00036811.2013.875160
[8]Luc,D.T. andPhuong, T.T.T. (2016) Equilibrium in Multi-Criteria Transportation Networks.
JournalofOptimizationTheoryApplications,169,116-147.
https://doi.org/10.1007/s10957-016-0876-3
[9]Zhi,L.(2015)AnAlgorithmforTrafficEquilibriumFlowwithCapacityConstraintsofArcs.
JournalofTransportationTechnologies,5,240-246.https://doi.org/10.4236/jtts.2015.54022
[10]Chiou,S.W. (2010) An Efficient Algorithm for Computing Traffic Equilibria Using TRANSYT
Model.AppliedMathematicalModelling,34,3390-3399.
https://doi.org/10.1016/j.apm.2010.02.028
[11]Xu,M.,Chen,A.,Qu,Y.andGao,Z.(2011)ASemismoothNewtonMethodforTraffic
EquilibriumProblemwithaGeneralNonadditiveRouteCost.AppliedMathematicalModelling,
35,3048-3062.https://doi.org/10.1016/j.apm.2010.12.021
DOI:10.12677/aam.2022.1196536198A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.