设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(9),1441-1456
PublishedOnlineSeptember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.129157
©
ê
g
4
Œ
Ž
f
9
Ù
†
f
3
Lie
+
Š
^
e
2
Â
Orlicz-Morrey
˜
m
þ
O
ÂÂÂ
§§§
ÍÍÍ
111
ŸŸŸ
∗
§§§
ooo
ÈÈÈ
rrr
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
8
7
F
¶
¹
^
F
Ï
µ
2022
c
9
6
F
¶
u
Ù
F
Ï
µ
2022
c
9
13
F
Á
‡
©
Ä
k
‰
Ñ
©
o
+
G
Š
^
e
2
Â
Orlicz-Morrey
˜
m
M
Φ
,ϕ
(
G
)
½
Â
§
Ù
g
|
^
H¨older
Ø
ª
±
9
¼
ê
©
)
•{
§
©
ê
g
4
Œ
Ž
f
M
α
3
d
˜
m
þ
k
.
5
O
§
•
y
²
©
ê
g
4
Œ
Ž
f
M
α
†
BMO
¼
ê)
¤
†
f
M
b,α
l
M
Φ
,ϕ
(
G
)
M
Ψ
,η
(
G
)
þ
k
.
5
"
'
…
c
©
ê
g
4
Œ
Ž
f
§
†
f
§
2
Â
Orlicz-Morrey
˜
m
§
BMO(
G
)
˜
m
§
Lie
+
FractionalMaximalOperatorand
ItsCommutatoronGeneralized
Orlicz-MorreySpacesover
LieGroups
LiRui,GuanghuiLu
∗
,XuemeiLi
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Aug.7
th
,2022;accepted:Sep.6
th
,2022;published:Sep.13
th
,2022
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
Â
,
Í
1
Ÿ
,
o
È
r
.
©
ê
g
4
Œ
Ž
f
9
Ù
†
f
3
Lie
+
Š
^
e
2
Â
Orlicz-Morrey
˜
m
þ
O
[J].
n
Ø
ê
Æ
,2022,12(9):1441-1456.DOI:10.12677/pm.2022.129157
Â
Abstract
Thisarticle firstgivesthedefinitionofgeneralizedOrlicz-Morrey
M
Φ
,ϕ
(
G
)
on stratified
Liegroup
G
;secondprovesthatthefractionalmaximaloperator
M
α
isboundedfrom
spaces
M
Φ
,ϕ
(
G
)
intospaces
M
Ψ
,η
(
G
)
bymeansofH¨olderinequalityandthemethod
offunctiondecomposition.Furthermore,theboundednessofthecommutator
M
b,α
generatedby
b
∈
BMO(
G
)
fromspaces
M
Φ
,ϕ
(
G
)
intospaces
M
Ψ
,η
(
G
)
isalsoobtained.
Keywords
FractionalMaximalOperator,Commutator,GeneralizedOrlicz-MorreySpace,Space
BMO(
G
)
,LieGroup
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
¯
¤
±•
,Orlicz
˜
m
½
Â
Œ
±
ï
á
3
[1,2]
²
;
Lebesgue
˜
m
*
Ð
ƒ
þ
,
§
3
N
Ú
©
Û
Ú
‡
©•
§
¥
å
X
'
…
Š
^
(
ë
„
[3–7]).
g
d
,
N
õ
©
Ù
Ñ
8
¥
?
Ø
Orlicz
˜
m
5
Ÿ
±
9
3ù
˜
m
þ
È
©
Ž
f
k
.
5
.
~
X
,
3
2012
c
, Kawasumi
Ú
Nakai
3
©
z
[8]
¥
Orlicz
˜
m
þ
ò
È
Ž
f
F
á
“
C
†
˜
5
Ÿ
,
•
õ
'
u
Orlicz
˜
m
ï
Ä
Œ
„
©
z
[9–12].
;
X
,
3
2004
c
, Nakai
Ä
g
¼
Orlicz-Morrey
˜
m
½
Â
(
„
©
z
[13]).
d
, Orlicz-
Morrey
˜
m
þ
È
©
Ž
f
k
.
5
É
2
•
'
5
.
~
X
,
3
©
z
[14]
¥
Š
ö
ï
Ä
Orlicz
4
Œ
Ž
f
,
Orlicz
©
ê
g
4
Œ
Ž
f
Ú
©
ê
g
È
©
Ž
f
3
Morrey
˜
m
Ú
Orlicz-Morrey
˜
m
þ
k
.
5
.
•
C
,
Yamaguchi
Ú
Nakai
3
©
z
[15]
¥
Orlicz-Morrey
˜
m
þ
†
f
[
b,T
]
Ú
[
b,I
ρ
]
;
5
¿
‡
^
‡
.
3
©
z
[16]
¥
,Sawano
<
O
3
Orlicz-Morrey
˜
m
þ
2
Â
©
ê
È
©
Ž
f
Ú2
Â
©
ê
4
Œ
Ž
f
k
.
5
.
d
, Hasanov
3
©
z
[17]
¥
Ä
g
J
Ñ
2
Â
Orlicz-Morrey
˜
m
½
Â
,
¿
ù
˜
m
þ
Φ
Œ
#
N
g
‚
5
Û
É
Ž
f
k
.
5
.
'
u
È
©
Ž
f
3
2
Â
Orlicz-Morrey
˜
m
þ
ˆ
«
5
Ÿ
Œ
ë
„
©
z
([18–24]).
É
þ
ã
(
JÚ
©
z
[25]
é
u
,
3
©
¥
,
Š
ö
Ì
‡
•
Ä
©
ê
4
Œ
Ž
f
9
Ù
†
f
3
?
¿
©
o
+þ
2
Â
Orlicz-Morrey
˜
m
þ
k
.
5
.
DOI:10.12677/pm.2022.1291571442
n
Ø
ê
Æ
Â
·
‚
Ä
k
£
˜
'
u
©
Lie
+
Ð
Ú
ï
Ä
(
ë
\
©
z
[17,26–28]).
b
G
´
†
G
ƒ
'
Lie
+
,
Ù
¥
G
´
k
•
‘
,
˜
•
ê
•
"
©
Lie
“
ê
,
Kù
‡
•
ê
N
´
l
G
G
Û
‡
©
Ó
N
.
Ï
d
,
x
= (
x
ij
)
∈
R
N
, 1
≤
i
≤
K
j
, 1
≤
j
≤
m
,
N
=
P
j
=1
K
j
,
é
?
¿
g
∈
G
,
k
g
=exp(
P
x
ij
X
ij
).
G
þ
à
g
‰
ê
¼
ê
|·|
Ï
L
|
g
|
=(
P
|
x
ij
|
2
·
m
!
/j
)
Ú
Q
=
P
j
=1
jk
j
5
½
Â
,
¡
Š
G
à
g
‘
.
G
þ
*
Ü
ξ
r
(
r>
0)
Œ
½
Â
•
:
ξ
r
(
g
) = exp(
X
r
j
x
ij
X
ij
)
, g
= exp(
X
x
ij
X
ij
)
.
Ù
¥
d(
ξ
r
x
) =
r
Q
d
x
.
2022
c
,
©
z
[25]
¥
Ä
g
?
Ø
©
ê
4
Œ
Ž
f
9
Ù
†
f
3
?
¿
©
Lie
+þ
Orlicz-Morrey
˜
m
þ
5
Ÿ
.
Ó
ž
,
•
)
é
õ
'
u
©
Lie
+þ
2
Â
Orlicz-Morrey
˜
m
þ
ƒ
'
5
Ÿ
ï
Ä
.
G
þ
à
g
‰
ê´
l
G
[0
,
∞
)
½
Â
3
G
\{
0
}
þ
C
∞
ë
Y
¼
ê
,
•
3
x
→
ρ
(
x
),
¦
÷
v
e
^
‡
:
(1)
ρ
(
x
−
1
) =
ρ
(
x
),
(2)
é
?
¿
r>
0,
k
ρ
(
ξ
r
x
) =
rρ
(
x
)
,
(3)
é
?
¿
x,y
∈
G
,
k
ρ
(
xy
)
≤
c
0
(
ρ
(
x
)+
ρ
(
y
)).
Š
â
þ
ã
‰
ê
,
·
‚
Ï
L
B
(
x,r
)=
{
y
∈
G
:
ρ
(
y
−
1
x
)
<r
}
½
±
x
•
¥
%
,
r
•
Œ
»
¥
,
^
B
(
x,r
)
c
=
G
\
B
(
x,r
)
L
«
B
(
x,r
)
Ö
8
,
Ù
¥
c
=
c
(
G
),
|
B
(
x,r
)
|
=
cr
Q
,x
∈
G
,r>
0
.
©
ê
g
4
Œ
Ž
f
k
.
5
n
Ø
3
C
•
I
¼
ê
˜
m
þ
®
²?
1
2
•
ï
Ä
,
Œ
ë
„
©
z
([29–32]).
©
ê
g
4
Œ
Ž
f
Œ
(
„
[25])
½
Â
•
:
M
α
f
(
x
) =sup
x>
0
,r>
0
|
B
(
x,r
)
|
−
1+
α
Q
Z
B
(
x,r
)
|
f
(
y
)
|
dy,
(1
.
1)
Ù
¥
|
B
(
x,r
)
|
L
«
B
(
x,r
)
þ
Haar
ÿ
Ý
.
e
¡
·
‚
£
Á˜
e
'
u
Young
¼
ê
˜
P
Ò
.
½
Â
1.1
[25]
X
J¼
ê
Φ:[0
,
∞
)
→
[0
,
∞
)
´
à
,
ë
Y
,
=
lim
r
→
+0
Φ(
r
)=Φ(0)=0
…
lim
r
→∞
Φ(
r
) =
∞
,
@
o
¡
Φ
•
Young
¼
ê
.
d
Young
¼
ê
à
5
Ú
Φ(0) = 0
Œ
±
w
Ñ
:
?
¿
Young
¼
ê
Ñ
•
O
¼
ê
.
X
J
•
3
s
∈
(0
,
∞
)
¦
Φ(
r
) =
∞
,
k
r
≥
s
.
-
Γ
•
¤
k
Young
¼
ê
Φ
8
Ü
,
¦
0
<
Φ(
r
)
<
∞
,
0
<r<
∞
.
X
J
Φ
∈
Γ,
K
Φ
3
[0
,
∞
)
¥
z
‡
4
«
m
þ
ý
é
ë
Y
,
¿
…
l
[0
,
∞
)
Ù
g
•
V
.
DOI:10.12677/pm.2022.1291571443
n
Ø
ê
Æ
Â
˜
‡
Young
¼
ê
Φ
X
J
÷
v
Φ(2
r
)
≤
c
Φ(
r
) ,
r>
0.
Ù
¥
C>
1,
@
o
¡
Φ
÷
v
4
2
-
^
‡
,
P
Š
Φ
∈4
2
.
X
J
Φ
∈4
2
,
@
o
Φ
∈
Γ.
˜
‡
Young
¼
ê
Φ
e
÷
v
Φ(2
r
)
≤
1
2
c
Φ(
cr
),
r
≥
0,
Ù
¥
c>
1,
K
¡
Φ
÷
v
∇
2
-
^
‡
,
P
Š
Φ
∈∇
2
.
é
u
˜
‡
Young
¼
ê
Φ
…
0
≤
s
≤∞
,
Φ
∈
Γ
ž
,
¡
Φ
−
1
•
Φ
_
¼
ê
.
…
k
Φ(Φ
−
1
(
r
))
≤
r
≤
Φ
−
1
(Φ(
r
))
,
0
≤
r<
∞
,
Ù
¥
Φ
−
1
Œ
½
Â
•
:
Φ
−
1
(
s
) = inf
{
r
≥
0 : Φ(
r
)
>s
}
(inf
∅
=
∞
)
.
w
,
k
r
≤
Φ
−
1
(
r
)
˜
Φ
−
1
(
r
)
≤
2
r,r
≥
0
,
Ù
¥
˜
Φ
½
Â
•
:
˜
Φ =
(
sup
{
rs
−
Φ(
s
) :
s
∈
[0
,
∞
)
}
,r
∈
[0
,
∞
)
,
∞
,r
=
∞
.
e
¡
‰
Ñ
©
Lie
+þ
k
.
²
þ
˜
m
(= BMO)
½
Â
:
½
Â
1.2
[32]BMO(
G
)
˜
m
Œ
½
Â
•
:
BMO
(
G
) =
{
b
∈
L
1
loc
:
k
b
k
BMO(
G
)
<
∞}
k
b
k
BMO(
G
)
:= sup
B
1
|
B
|
Z
B
|
b
(
x
)
−
b
B
|
d
x<
∞
,
(1
.
2)
Ù
¥
é
¤
k
B
⊂
G
þ(
.
,
…
b
B
•
b
3
B
þ
²
þ
Š
.
‰
½
˜
‡
¼
ê
b
∈
BMO(
G
),
†
f
M
α,b
Ú
[
b,M
α
]
Œ
©
O
½
Â
•
:
M
α,b
(
f
)(
x
) = sup
B
|
B
|
−
1+
α
Q
Z
B
|
b
(
x
)
−
b
(
y
)
||
f
(
y
)
|
d
y,
(1
.
3)
[
b,M
α
](
f
)(
x
) = sup
B
|
B
|
−
1+
α
Q
Z
B
(
b
(
x
)
−
b
(
y
))
|
f
(
y
)
|
d
y.
(1
.
4)
N
õ
Æ
ö
ï
Ä
M
b,α
Ú
[
b,M
α
]
N
A
5
,
=
[
b,M
α
]
Œ
d
M
b,α
›
›
,
ë
•
©
z
[33–36],
©
•
I
‡
é
†
f
M
b,α
?
15
Ÿ
O
.
e
¡
‰
Ñ
Lie
+
Š
^
e
Orlicz
˜
m
½
Â
.
½
Â
1.3
[25]
é
u
˜
‡
Young
¼
ê
Φ, Orlicz
˜
m
Œ
½
Â
•
:
L
Φ
(
G
) =
f
∈
L
1
loc
(
G
) :
Z
G
Φ
|
f
(
x
)
|
λ
d
x<
∞
forsome
λ>
0
,
DOI:10.12677/pm.2022.1291571444
n
Ø
ê
Æ
Â
Ù
¥
L
Φ
loc
(
G
)
´
é
?
¿
¥
B
⊂
G
Ñ
k
fχ
B
∈
L
Φ
(
G
)
¼
ê
f
8
Ü
.
L
Φ
(
G
)
´
˜
‡
Banach
˜
m
,
Ù
˜
m
‰
ê
•
:
k
f
k
L
Φ
(
G
)
= inf
λ>
0 :
Z
G
Φ
|
f
(
x
)
|
λ
d
x
≤
1
.
(1
.
5)
Š
â
Orlicz
˜
m
½
Â
,
·
‚
k
Z
Ω
Φ(
|
f
(
x
)
|
k
f
k
L
Φ
(Ω)
)d
x
≤
1
,
(1
.
6)
Ù
¥
k
f
k
L
Φ
(Ω)
=
k
fχ
Ω
k
L
Φ
±
9
k
f
k
WL
Φ
(Ω)
=
k
fχ
Ω
k
WL
Φ
.
½
Â
1.4
[37]
ϕ
(
x,r
)
´
G
×
(0
,
∞
)
þ
˜
‡
Œ
ÿ
¼
ê
,
¿
…
Φ
´
?
¿
Young
¼
ê
,
K
2
Â
Orlicz-Morry
˜
m
M
Φ
,ϕ
(
G
)
Œ
½
Â
•
:
M
Φ
,ϕ
(
G
) =
{
f
∈
L
Φ
loc
(
G
) :
k
f
k
M
Φ
,ϕ
(
G
)
<
∞}
,
Ù
¥
k
f
k
M
Φ
,ϕ
(
G
)
=sup
x
∈
G
,t>
0
ϕ
(
x,t
)
−
1
Φ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
f
k
L
Φ
(
B
(
x,t
))
.
(1
.
7)
Ó
ž
,
f
2
Â
Orlicz-Morry
˜
m
W
M
Φ
,ϕ
(
G
)
Œ
½
Â
•
:
k
f
k
W
M
Φ
,ϕ
(
G
)
=sup
x
∈
G
,t>
0
ϕ
(
x,t
)
−
1
Φ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
f
k
WL
Φ
(
B
(
x,t
))
<
∞
.
(1
.
8)
5
P
1.5
(1)
X
J
Φ(
r
) =
r
p
,1
≤
p<
∞
,
@
o
2
Â
Orlicz-Morry
˜
m
M
Φ
,ϕ
(
G
)
d
u
2
Â
Morry
˜
m
M
p,ϕ
(
G
).
(2)
X
J
ϕ
(
r
)=Φ
−
1
(
r
−Q
),
@
o
2
Â
Orlicz-Morry
˜
m
M
Φ
,ϕ
(
G
)
d
u
Orlicz
˜
m
L
Φ
(
G
).
©
Ì
‡
½
n
L
ã
X
e
½
n
1.6
[
Spanne-
.
(
J
]
Φ
,
Ψ
•
Young
¼
ê
,0
<α<
Q
.
…
ϕ
1
,ϕ
2
∈
Γ
Φ
.
(1)
r
α
Φ
−
1
(
r
−Q
)
≤
C
Ψ
−
1
(
r
−Q
)
,
Φ
∈∇
2
.
(1
.
9)
@
o
^
‡
sup
r<t<
∞
ϕ
1
(
t
)
Ψ
−
1
(
t
−Q
)
Φ
−
1
(
t
−Q
)
≤
Cϕ
2
(
r
)
,
(1
.
10)
´
M
α
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
¿
©
^
‡
,
Ù
¥
r>
0,
…
C
´
†
r
Ã
'
~
ê
.
(2)
ϕ
1
´
˜
‡
A
??
4
~
¼
ê
,
…
Φ
∈∇
2
,
K
^
‡
ϕ
1
(
r
)
r
α
≤
Cϕ
2
(
r
)
,
´
M
α
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
k
.
7
‡
^
‡
,
Ù
¥
r>
0,
…
C
´
†
r
Ã
'
~
ê
.
DOI:10.12677/pm.2022.1291571445
n
Ø
ê
Æ
Â
(3)
^
‡
r
α
Φ
−
1
(
r
−Q
)
≤
Cϕ
−
1
(
r
−Q
)
,r>
0
,
÷
v
e
Ø
ª
:
sup
r<t<
∞
ϕ
1
(
t
)
Ψ
−
1
(
t
−Q
)
Φ
−
1
(
t
−Q
)
≤
Cϕ
1
(
r
)
r
α
,r>
0
.
Ù
¥
Φ
∈∇
2
,
ϕ
1
´
A
??
4
~
¼
ê
,
…
C>
0
´
†
r
Ã
'
~
ê
.
@
o
^
‡
ϕ
1
(
r
)
r
α
≤
Cϕ
2
(
r
)
´
M
α
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
k
.
¿
‡
^
‡
.
½
n
1.7
[
Adams-
.
(
J
]
0
<α<
Q
, Φ
•
Young
¼
ê
,
ϕ
∈
Γ
Φ
A
??
4
~
,
η
(
t
)=
ϕ
(
t
)
β
,Φ(
t
)
β
= Ψ(
t
)
±
9
Ψ(
t
) = Φ(
t
1
/β
),
Ù
¥
β
∈
(0
,
1).
(1)Φ
∈∇
2
,
Ø
ª
t
α
ϕ
(
t
)
≤
Cϕ
(
t
)
β
,t>
0
,
(1
.
11)
´
M
α
l
M
Φ
,ϕ
(
G
)
M
Ψ
,η
(
G
)
k
.
¿
©
^
‡
,
Ù
¥
C
´
†
r
Ã
'
~
ê
.
(2)
Ø
ª
t
α
≤
Cϕ
(
t
)
β
−
1
,t>
0
,
´
M
α
l
M
Φ
,ϕ
(
G
)
M
Ψ
,η
(
G
)
k
.
7
‡
^
‡
,
Ù
¥
C
´
†
r
Ã
'
~
ê
.
(3)
Ø
ª
t
α
≤
Cϕ
(
t
)
β
−
1
,t>
0
,
´
M
α
l
M
Φ
,ϕ
(
G
)
M
Ψ
,η
(
G
)
k
.
¿
‡
^
‡
,
Ù
¥
C
´
†
r
Ã
'
~
ê
,
…
Φ
∈∇
2
.
5
P
1.8
Š
â
½
Â
1.6
±
9
Ú
n
3.1,
·
‚
•
α
= 0
ž
,
M
´
l
M
Φ
,ϕ
(
G
)
M
Ψ
,η
(
G
)
k
.
.
½
n
1.9
[
Spanne-
.
(
J
]
0
<α<
Q
,
b
∈
BMO(
G
)
…
Φ
,
Ψ
•
Young
¼
ê
.
(1)
Φ
∈∇
2
,
ϕ
(
t
),
Ù
¥
ϕ
1
∈
Γ
Φ
9
ϕ
2
∈
Γ
Ψ
.
÷
v
e
^
‡
:
r
α
Φ
−
1
(
r
−Q
)+sup
r<t<
∞
(1+
t
r
)Φ
−
1
(
t
−Q
)
t
α
≤
C
Ψ
−
1
(
r
−Q
)
K
Ø
ª
:
sup
r<t<
∞
ϕ
1
(
t
)(1+
t
r
)
Φ
−
1
(
t
−Q
)
Ψ
−
1
(
t
−Q
)
≤
Cϕ
2
(
r
)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
¿
©
^
‡
.
(2)
ϕ
1
A
??
4
~
,
…
Ψ
∈4
2
,
K
Ø
ª
:
ϕ
1
(
t
)
t
α
≤
Cϕ
2
(
t
)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
7
‡
^
‡
.
DOI:10.12677/pm.2022.1291571446
n
Ø
ê
Æ
Â
(3)
ϕ
1
A
??
4
~
, Φ
∈4
2
∩5
2
±
9
Ψ
∈4
2
,
^
‡
(1
.
9)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
¿
‡
^
‡
.
þ
ã
(
J
Œ
±
æ
^†
©
z
[4]
¥
Ú
n
6.1
a
q
y
²
•{
5
y
²
,
•
{
'
å
„
,
d?
Ø
2
K
ã
.
½
n
1.10
[
Adams-
.
(
J
]
0
<α<
Q
,
b
∈
BMO(
G
)
…
Φ
,
Ψ
•
Young
¼
ê
.
(1)
Φ
∈4
2
∩5
2
,Ψ
∈4
2
,
Ù
¥
ϕ
1
∈
Γ
Φ
…
ϕ
2
∈
Γ
Ψ
.
^
‡
r
α
Φ
−
1
(
r
−Q
)
≤
C
Ψ
−
1
(
r
−Q
)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
¿
©
^
‡
.
(2)
ϕ
1
A
??
4
~
,
…
Ψ
∈4
2
,
K
^
‡
ϕ
1
(
t
)
t
α
≤
Cϕ
2
(
t
)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
7
‡
^
‡
.
(3)
ϕ
1
A
??
4
~
,Φ
∈4
2
∩5
2
…
Ψ
∈4
2
,
^
‡
(1
.
9)
´
M
b,α
(
G
)
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
þ
k
.
¿
‡
^
‡
.
©
¥
,
C
L
«
†
Ì
‡
ë
ê
Ã
'
~
ê
,
Ù
Š
3
Ø
Ó
/
•
Œ
U
Ø
¦
ƒ
Ó
.
2.
ý
•
£
3
!
¥
,
•
y
²
Ì
‡
½
n
,
·
‚
Ä
k
£
˜
Ú
n
.
Ú
n
2.1
[22]
Φ
•
˜
‡
Young
¼
ê
.
(1)
e
M
l
˜
m
L
Φ
(
G
)
˜
m
WL
Φ
(
G
)
k
.
ž
,
Ø
ª
k
Mf
k
WL
Φ
(
G
)
≤
C
0
k
f
k
L
Φ
(
G
)
¤
á
,
Ù
¥
C
0
´
†
f
Ã
'
~
ê
.
(2)
M
3
L
Φ
(
G
)
þ
k
.
ž
,
…
=
Φ
∈∇
2
Ø
ª
:
k
Mf
k
L
Φ
(
G
)
≤
C
0
k
f
k
L
Φ
(
G
)
¤
á
,
Ù
¥
C
0
´
†
f
Ã
'
~
ê
.
Ú
n
2.2
[19]
0
<α<
Q
, Φ
,
Ψ
•
Young
¼
ê
…
Φ
∈
Γ, Φ
∈∇
2
.
@
o
^
‡
:
r
α
Φ
−
1
(
r
−Q
)
≤
C
Ψ
−
1
(
r
−Q
)
´
M
α
l
L
Φ
(
G
)
L
Ψ
(
G
)
þ
k
.
¿
‡
^
‡
,
Ù
¥
r>
0,
C
´
†
r
Ã
'
~
ê
.
Ú
n
2.3
[19]
0
<α<
Q
,
b
∈
L
1
loc
(
G
)
…
Φ
∈
Υ
,
Ψ
•
Young
¼
ê
.
DOI:10.12677/pm.2022.1291571447
n
Ø
ê
Æ
Â
(1)
Φ
∈∇
2
…
^
‡
(3.1)
¤
á
,
@
o
^
‡
b
∈
BMO(
G
)
´
M
b,α
l
L
Φ
(
G
)
L
Ψ
(
G
)
þ
k
.
¿
©
^
‡
.
(2)
Ψ
−
1
(
r
−Q
)
.
r
α
Φ
−
1
(
r
−Q
),
@
o
^
‡
b
∈
BMO(
G
)
´
M
b,α
l
L
Φ
(
G
)
L
Ψ
(
G
)
þ
k
.
7
‡
^
‡
.
(3)
Φ
∈∇
2
±
9
Ψ
−
1
(
r
−Q
)
≈
r
α
Φ
−
1
(
r
−Q
),
@
o
^
‡
b
∈
BMO(
G
)
´
M
b,α
l
L
Φ
(
G
)
L
Ψ
(
G
)
k
.
¿
‡
^
‡
.
Ú
n
2.4
[29]
E
⊂
G
´
k
•
Haar
ÿ
Ý
,
…
Φ
•
Young
¼
ê
,
K
:
k
χ
E
k
L
Φ
(
G
)
=
k
χ
E
k
WL
Φ
(
G
)
=
1
Φ
−
1
(
|
E
|
−
1
)
.
Ú
n
2.5
[29]
é
u
Young
¼
ê
Φ
±
9
?
¿
¥
B
,
k
:
Z
B
|
f
(
y
)
|
d
y
≤
2
|
B
|
Φ
−
1
(
|
B
|
−
1
)
k
f
k
L
Φ
(
B
)
.
Ú
n
2.6
f,g
•
E
þ
Œ
ÿ
¼
ê
,
…
E
⊂
G
•
Œ
ÿ
8
.
é
u
Young
¼
ê
Φ
9
Ù
Ö
¼
ê
˜
Φ,
k
:
Z
E
|
f
(
x
)
g
(
x
)
|
dx
≤
2
k
f
k
L
Φ
(
E
)
k
g
k
L
˜
Φ
(
E
)
.
Ú
n
2.7
0
<α<
Q
, Φ
,
Ψ
•
Young
¼
ê
.
e
•
3
˜
‡
~
ê
C
¦
:
r
α
Φ
−
1
(
r
−Q
)
≤
C
Ψ
−
1
(
r
−Q
)
.
K
é
u
?
Û
f
∈
L
Φ
loc
(
G
)
…
B
=
B
(
x,r
),
·
‚
k
:
k
M
α
f
k
WL
Ψ
(
B
)
≤
1
Ψ
−
1
(
r
−Q
)
sup
t>r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
.
Ú
n
2.8
[4]
B
0
=
B
(
x
0
,r
0
),
K
|
B
0
|
α
Q
.
M
α
χ
B
0
(
x
)
,
Ù
¥
?
¿
x
∈
B
0
.
3.
½
n
1.6
Ú
½
n
1.7
y
²
du
†
|
^
2
Â
Olicz-Morrey
˜
m
½
Â
y
²
k
.
5
•
3
˜
½
(
J
,
¤
±
·
‚
Ä
k
‡
©
ê
g
4
Œ
Ž
f
3
Olicz
˜
m
þ
˜
‡
Ø
ª
,
=
k
.
5
y
²
x
ù
.
Ú
n
3.1
0
<α<
Q
,
…
Φ
,
Ψ
•
Young
¼
ê
.
Φ
−
1
Ú
Ψ
−
1
÷
v
^
‡
(1
.
10),
K
é
?
¿
f
∈
L
Φ
loc
(
G
),
k
:
k
M
α
f
k
L
Ψ
(
B
)
≤
1
Ψ
−
1
(
r
−Q
)
sup
t>r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
.
y
²
Ú
n
3.1
é
u
?
¿
f
∈
L
Φ
loc
(
G
),
f
=
f
1
+
f
2
,
Ù
¥
f
1
=
fχ
2
k
0
B
,
f
2
=
fχ
(2
k
0
B
)
c
.
@
DOI:10.12677/pm.2022.1291571448
n
Ø
ê
Æ
Â
o
M
α
f
(
z
) =
M
α
f
1
(
z
)+
M
α
f
2
(
z
)
.
Š
â
Ú
n
2.3,
·
‚
k
k
M
α
f
1
k
L
Ψ
(
B
)
≤k
M
α
f
1
k
L
Ψ
(
G
)
≤
C
k
f
1
k
L
Φ
(
G
)
=
C
k
f
k
L
Φ
(
B
(
x,
2
k
0
r
))
,
Ù
¥
k
f
k
L
Φ
(
B
(
x,
2
k
0
r
))
=
k
f
k
L
Φ
(
B
(
x,
2
k
0
r
))
sup
t>
2
k
0
r
Ψ
−
1
(
t
−Q
)Ψ(
t
−Q
)
≤
k
f
k
L
Φ
(
B
(
x,
2
k
0
r
))
Ψ
−
1
(
r
−Q
)
sup
t>
2
k
0
r
Ψ
−
1
(
t
−Q
)
≤
1
Ψ
−
1
(
r
−Q
)
sup
t>
2
k
0
r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
.
z
•
B
¥
?
¿˜
:
,
B
(
z,t
)
∩
(
G
\
2
k
0
B
)
6
=
∅
ž
,
@
o
t>r
.
Ó
ž
,
X
J
y
∈
B
(
z,t
)
∩
(
G
\
2
k
0
B
),
·
‚
Ò
Œ
±
t>ρ
(
y
−
1
z
)
≥
1
k
0
ρ
(
x
−
1
y
)
−
ρ
(
x
−
1
z
)
>
2
r
−
r
=
r
,
Ù
¥
k
0
´
÷
v
ρ
(
yz
)=
k
0
(
ρ
(
y
)+
ρ
(
z
))
~
ê
.
,
˜
•
¡
,
X
J
y
∈
B
(
z,t
)
∩
(
G
\
2
k
0
B
),
·
‚
k
ρ
(
x
−
1
y
)
≤
ρ
(
y
−
1
z
)+
ρ
(
x
−
1
z
)
<t
+
r<
2
t
≤
2
k
0
t
.
¤
±
,
M
α
f
2
(
z
) = sup
t>
0
1
|
B
(
z,t
)
|
1
−
α
Q
Z
B
(
z,t
)
∩
(2
k
0
B
)
c
|
f
(
y
)
|
d
y
= sup
t>
0
1
|
B
(
z,t
)
|
1
−
α
Q
|
B
(
x,
2
k
0
t
)
|
1
−
α
Q
|
B
(
x,
2
k
0
t
)
|
1
−
α
Q
Z
B
(
z,t
)
∩
(2
k
0
B
)
c
|
f
(
y
)
|
d
y
≤
C
sup
t>r
1
|
B
(
x,
2
k
0
t
)
|
1
−
α
Q
Z
B
(
x,
2
k
0
t
)
|
f
(
y
)
|
d
y
≤
C
sup
t>
2
k
0
r
1
|
B
(
x,t
)
|
1
−
α
Q
Z
B
(
x,t
)
|
f
(
y
)
|
d
y.
|
^
Ú
n
2.5,
·
‚
k
k
M
α
f
2
k
L
Ψ
(
B
)
≤
C
1
Ψ
−
1
(
r
−Q
)
sup
t>r
t
α
−Q
|
B
(
x,t
)
|
Φ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
f
k
L
Φ
(
B
(
x,t
))
≤
C
1
Ψ
−
1
(
r
−Q
)
sup
t>r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
.
(
Ü
±
þ
O
,
Œ
±
:
k
M
α
f
k
L
Ψ
(
B
)
≤
C
1
Ψ
−
1
(
r
−Q
)
sup
t>r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
.
DOI:10.12677/pm.2022.1291571449
n
Ø
ê
Æ
Â
y
²
½
n
1.6
(1)
Ï
L
|
^
Ú
n
3.1
±
9
(1.10),
·
‚
k
k
M
α
f
k
M
Ψ
,ϕ
2
(
G
)
=sup
X
∈
G
,r>
0
ϕ
−
1
2
(
x,r
)Ψ
−
1
(
r
−Q
)
k
M
α
f
k
L
Ψ
(
B
)
≤
C
sup
X
∈
G
,r>
0
ϕ
−
1
2
(
x,r
)sup
t>r
Ψ
−
1
(
t
−Q
)
k
f
k
L
Φ
(
B
(
x,t
))
≤
C
sup
X
∈
G
,r>
0
ϕ
−
1
2
(
x,r
)sup
t>r
Ψ
−
1
(
t
−Q
)Φ(
t
−Q
)
ϕ
1
(
x,t
)
k
f
k
M
Φ
,ϕ
1
(
G
)
≤k
f
k
M
Φ
,ψ
1
(
G
)
,
(2)
-
B
0
=
B
(
x
0
,t
0
)
…
x
∈
B
0
,
K
(
Ü
Ú
n
2.8
·
‚
k
r
α
0
≤
M
α
χ
B
0
(
x
)
.
2
orlicz
‰
ê
,
…
M
α
l
M
Φ
,ϕ
1
(
G
)
M
Ψ
,ϕ
2
(
G
)
´
k
.
,
Œ
±
:
r
α
0
.
Ψ
−
1
(
|
B
0
|
−
1
)
k
M
α
χ
B
0
k
L
ψ
(
B
0
)
.
ϕ
2
(
x
0
,t
0
)
k
M
α
χ
B
0
k
M
Ψ
,ϕ
2
(
G
)
.
ϕ
2
(
x
0
,t
0
)
k
χ
B
0
k
M
Φ
,ϕ
1
(
G
)
.
ϕ
2
(
x
0
,t
0
)
ϕ
(
x
0
,t
0
)
.
(3)
½
n
1
n
Ü
©
y
²
Œ
±
Š
â
½
n
1
˜
Ü
©
Ú
1
Ü
©
.
y
²
½
n
1.7
(1)
-
B
:=
B
(
x,r
)
´
˜
‡
±
x
•
¥
%
,
±
r
•
Œ
»
¥
.
e
¡
·
‚
ò
f
©
)
•
:
f
:=
f
1
+
f
2
=
fχ
B
+
fχ
G
\
2
B
.
Ï
L
Ž
f
M
α
g
‚
5
,
k
M
α
f
(
x
)
≤
M
α
f
1
(
x
)+
M
α
f
2
(
x
) = D
1
+D
2
.
Š
â
©
z
[38]
Hedberg
E
|
,
é
N
´
:
D
1
=
M
α
f
1
(
x
)
≤
Cr
α
Mf
(
x
)
.
y
3
·
‚
5
O
D
2
,
(
Ü
ª
(1.1)
Ú
Ú
n
2.5,
·
‚
k
:
M
α
f
2
(
x
) = sup
t>
0
1
|
B
(
x,t
)
|
1
−
α
Q
Z
B
(
x,t
)
|
f
2
(
y
)
|
d
y
≤
C
sup
t>
0
t
α
|
B
(
z,t
)
|
Z
B
(
x,t
)
T
{
G
\
2
B
(
z,r
)
}
|
f
(
y
)
|
d
y
≤
C
sup
r<t<
∞
t
α
|
B
(
x,t
)
|
Z
B
(
x,t
)
|
f
(
y
)
|
d
y
≤
C
sup
r<t<
∞
t
α
Φ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
f
k
L
Φ
(
B
(
x,t
))
.
DOI:10.12677/pm.2022.1291571450
n
Ø
ê
Æ
Â
d
,
(
Ü
½
Â
1.4,
ª
(1.11)
±
9
é
D
1
Ú
D
2
O
,
·
‚
Œ
±
í
ä
Ñ
:
M
α
f
(
x
)
≤
Cr
α
Mf
(
x
)+
C
sup
r<t<
∞
t
α
Φ
−
1
(
|
B
(
z,t
)
|
−
1
)
k
f
k
L
Φ
(
B
(
x,t
))
≤
Cr
α
Mf
(
x
)+
C
k
f
k
M
Φ
,ϕ
(
G
)
sup
r<t<
∞
t
α
ϕ
(
t
)
≤
C
[
ϕ
(
r
)]
β
[
ϕ
(
r
)]
−
1
Mf
(
x
)+
C
[
ϕ
(
r
)]
β
k
f
k
M
Φ
,ϕ
(
G
)
≤
C
[
ϕ
(
r
)]
β
−
1
Mf
(
x
)+
C
[
ϕ
(
r
)]
β
k
f
k
M
Φ
,ϕ
(
G
)
≤
min
Cϕ
(
r
)
β
−
1
Mf
(
x
)
,Cϕ
(
r
)
β
k
f
k
M
Φ
,ϕ
(
G
)
≤
sup
s>
0
min
Cs
β
−
1
Mf
(
x
)
,Cs
β
k
f
k
M
Φ
,ϕ
(
G
)
≤
C
(
Mf
(
x
))
β
k
f
k
1
−
β
M
Φ
,ϕ
(
G
)
,
(
Ü
½
Â
1.3,
·
‚
k
:
Z
B
Ψ
(
Mf
(
z
))
β
k
Mf
k
β
L
Φ
(
B
)
!
d
z
=
Z
B
Φ
Mf
(
z
)
k
Mf
k
L
Φ
(
B
)
!
d
z
≤
1
,
'
u
þ
ã
Ø
ª
þ(
.
,
é
N
´
:
k
(
Mf
)
β
k
L
Ψ
(
B
)
≤k
Mf
k
β
L
Φ
(
B
)
.
(3
.
1)
Ï
L
½
Â
1.4,
Ú
n
2,1
±
9
ª
(3.1),
·
‚
k
:
k
M
α
f
k
M
Ψ
,η
(
G
)
=sup
x
∈
G,t>
0
η
(
x,t
)
−
1
Ψ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
M
α
(
f
)
k
L
Ψ
(
B
(
x,t
))
≤
C
sup
x
∈
G,t>
0
η
(
x,t
)
−
1
Ψ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
(
Mf
(
x
))
β
k
L
Ψ
(
B
(
x,t
))
k
f
k
1
−
β
M
Φ
,ϕ
(
G
)
≤
C
sup
x
∈
G,t>
0
ϕ
(
x,t
)
−
1
Φ
−
1
(
|
B
(
x,t
)
|
−
1
)
k
Mf
k
L
Φ
(
B
(
x,t
))
β
k
f
k
1
−
β
M
Φ
,ϕ
(
G
)
≤
C
k
f
k
M
Φ
,ϕ
(
G
)
.
(2)
-
B
0
=
B
(
x
0
,t
0
)
…
x
∈
B
0
.
Š
â
Ú
n
2.8,
·
‚
k
:
r
α
0
≤
CM
α
χ
B
0
(
x
)
.
Ï
d
,
é
þ
ã
Ø
ª
Orlicz
‰
ê
,
·
‚
k
:
r
α
0
≤
C
Ψ
−
1
(
t
−Q
0
)
k
M
α
χ
B
0
k
L
Ψ
(
B
0
)
≤
Cη
(
t
0
)
k
M
α
χ
B
0
k
M
Ψ
,η
(
G
)
≤
Cη
(
t
0
)
k
χ
B
0
k
M
Φ
,ϕ
(
G
)
≤
Cϕ
(
t
0
)
β
−
1
.
DOI:10.12677/pm.2022.1291571451
n
Ø
ê
Æ
Â
(3)
½
n
1
n
Ü
©
y
²
Œ
±
Š
â
½
n
1
˜
Ü
©
Ú
1
Ü
©
.
4.
½
n
1.10
y
²
•
y
²
½
n
1.10,
·
‚
I
‡±
e
Ú
n
:
Ú
n
4.1
[25]
f
∈
L
1
loc
(
G
),
K
e
^
‡
d
:
(1)
b
∈
BMO(
G
)
…
f
−
∈
L
∞
(
G
).
(2)
•
3
t
∈
[1
,
∞
)
,
k
Ø
ª
:
sup
B
k
(
f
(
·
)
−
M
B
(
f
)(
·
))
χ
B
k
L
t
(
G
)
k
χ
B
k
L
t
(
G
)
≤
C.
(3)
é
u
¤
k
t
∈
[1
,
∞
)
,
(2)
¥
Ø
ª
¤
á
.
Ú
n
4.2
[25]
b
∈
L
1
loc
(
G
)
…
B
0
:=
B
(
x
0
,r
0
),
K
e
Ø
ª
¤
á
:
r
α
0
|
b
(
x
)
−
b
B
0
|≤
CM
b,α
χ
B
0
(
x
)
,
∀
x
∈
B
0
.
Ó
ž
,
·
‚
I
‡
é
BMO(
G
)
˜
m
?
1
£
ã
,
Œ
„
ë
•
©
z
[39].
Ú
n
4.3
f
∈
BMO(
G
)
±
9
Φ
∈4
2
•
Young
¼
ê
,
K
k
f
k
BMO(
G
)
≈
sup
B
Φ
−
1
(
|
B
|
−
1
)
k
f
(
·
)
−
f
B
k
L
Φ
(
B
)
,
Ù
¥
þ(
.
L
«
¤
k
¥
B
⊂
G
.
e
¡
é
©
ê
g
4
Œ
Ž
f
†
f
O
Œ
„
©
z
[40],
=
©
ê
g
4
Œ
Ž
f
›
›
'
X
.
Ú
n
4.4
0
<α<
Q
±
9
b
∈
BMO(
G
).
K
•
3
~
ê
C>
0
¦
é
?
¿
x
∈
G
Ú
f
∈
L
1
loc
(
G
),
k
:
M
b,α
f
(
x
)
≤
C
k
b
k
BMO(
G
)
[
M
(
M
α
f
)(
x
)+
M
α
(
Mf
)(
x
)]
.
y
²
½
n
1.10
(1)
Ï
L
(
Ü
½
n
1.7(1)
Ú
Ú
n
4.4,
·
‚
Œ
±
k
M
b,α
f
k
M
Ψ
,ϕ
2
(
G
)
≤
C
k
b
k
BMO
k
M
(
M
α
f
)+
M
α
(
Mf
)
k
M
Ψ
,ϕ
2
(
G
)
≤
C
k
b
k
BMO
(
k
M
α
f
k
M
Ψ
,ϕ
2
(
G
)
+
k
Mf
k
M
Ψ
,ϕ
2
(
G
)
)
≤
C
k
b
k
BMO
k
f
k
M
Φ
,ϕ
1
(
G
)
.
DOI:10.12677/pm.2022.1291571452
n
Ø
ê
Æ
Â
(2)
-
B
0
=
B
(
x
0
,t
0
).
Š
â
½
Â
1.4,
½
n
2.4,4.2
9
½
n
4.3,
·
‚
k
:
t
α
0
≤
C
k
M
b,α
χ
B
0
k
L
Ψ
(
B
0
)
k
b
(
·
)
−
b
B
0
k
L
Ψ
(
B
0
)
≤
C
1
k
b
k
BMO
k
M
b,α
χ
B
0
k
L
Ψ
(
B
0
)
Ψ
−
1
(
|
B
0
|
−
1
)
≤
C
1
k
b
k
BMO
ϕ
2
(
t
0
)
k
M
b,α
χ
B
0
k
M
Ψ
,ϕ
2
(
G
)
≤
Cϕ
2
(
t
0
)
k
χ
B
0
k
M
Φ
,ϕ
1
(
G
)
≤
C
ϕ
2
(
t
0
)
ϕ
1
(
t
0
)
.
(3)
½
n
1
n
Ü
©
y
²
Œ
±
Š
â
½
n
1
˜
Ü
©
Ú
1
Ü
©
.
Ä
7
‘
8
[
‹
Ž
p
Æ
‰
ï
‘
8
(2020A-010);
Ü
“
‰
Œ
Æ
“
c
“
‰
ï
U
å
J
,
‘
8
(NWNU-
LKQN2020-07).
ë
•
©
z
[1]Birnbaum,Z.andOrlicz,W.(1931)
¨
Uberdieverallgemeinerungdesbegriffesderzueinander
konjugiertenpotenzen.
StudiaMathematica
,
3
,1-67.https://doi.org/10.4064/sm-3-1-1-67
[2]Orlicz,W.(1932)
¨
UbereinegewisseKlassevonR¨aumenvomTypusB.
Bull.Int.Acad.Pol.
Ser.A
,
8
,207-220.(Reprintedin:CollectedPapers,PWN,Warszawa,1988,217-230)
[3]Aberqi,A.,Bennouna,J.andElmassoudi,M.(2021)NonlinearEllipticEquationswithMea-
sureDatainOrliczSpaces.
Ukrains’kyiMatematychnyiZhurnal
,
73
,1587-1611.
https://doi.org/10.37863/umzh.v73i12.1290
[4]Bourahma, M.,Benkirane,A.andBennouna, J.(2021)ExistenceofRenormalizedSolutionsfor
a Class of NonlinearParabolic Equationswith Generalized Growth in Orlicz Spaces.
Khayyam
JournalofMathematics
,
7
,140-164.
[5]Mohamed,M.M.A.(2021)NonlinearQuadraticVolterra-UrysohnFunctional-IntegralEqua-
tionsinOrliczSpaces.
Filomat
,
35
,2963-2972.https://doi.org/10.2298/FIL2109963M
[6]Bourahma,M.,Benkirane,A.andBennouna,J.(2020)ExistenceofRenormalizedSolutions
forSomeNonlinearEllipticEquationsinOrliczSpaces.
RendicontidelCircoloMatematicodi
Palermo
,
69
,231-252.https://doi.org/10.1007/s12215-019-00399-z
[7]Zhang, C.,Li,C.andMeng,F.(2022)GlobalAttractorsin OrliczSpacesforReaction-Diffusion
Equations.
AppliedMathematicsLetters
,
123
,ArticleID:107294.
https://doi.org/10.1016/j.aml.2021.107294
DOI:10.12677/pm.2022.1291571453
n
Ø
ê
Æ
Â
[8]Kawasumi,R.andNakai,E.(2020)PointwiseMultipliersonWeakOrliczSpaces.
Hiroshima
MathematicalJournal
,
50
,169-184.https://doi.org/10.32917/hmj/1595901625
[9]Asadzadeh,J.A. andJabrailova,A.N.(2021) OnStability ofBases FromPerturbedExponen-
tialSystemsinOrliczSpaces.
AzerbaijanJournalofMathematics
,
11
,196-213.
[10]Chamorro,D.(2022)MixedSobolev-LikeInequalitiesinLebesgueSpacesofVariableExpo-
nentsandinOrliczSpaces.
Positivity
,
26
,5-21.https://doi.org/10.1007/s11117-022-00882-5
[11]Rao,M.M.andRen,Z.(2002)ApplicationsofOrliczSpaces.MarcelDekkerInc.,NewYork.
[12]Tran,M.andNguyen,T.(2022)WeightedDistributionApproachtoGradientEstimatesfor
QuasilinearEllipticDouble-ObstacleProblemsinOrlicz Spaces.
Journal ofMathematicalAnal-
ysisandApplications
,
509
,ArticleID:125928.https://doi.org/10.1016/j.jmaa.2021.125928
[13]Nakai, E.(2004) GeneralizedFractionalIntegrals onOrlicz-Morrey Spaces.Banach andFunc-
tionSpaces.YokohamaPubl.,Yokohama,323-333.
[14]Takeshi,I.(2021)Orlicz-FractionalMaximalOperatorsinMorreyandOrlicz-MorreySpaces.
Positivity
,
25
,243-272.https://doi.org/10.1007/s11117-020-00762-w
[15]Yamaguchi, S.andNakai,E.(2022)CompactnessofCommutators ofIntegralOperatorswith
FunctionsinCampanatoSpacesonOrlicz-MorreySpaces.
JournalofFourierAnalysisand
Applications
,
28
,ArticleNo.33.https://doi.org/10.1007/s00041-022-09920-y
[16]Sawano, Y., Sugano, S.and Tanaka,H. (2012)Orlicz-Morrey Spacesand Fractional Operators.
PotentialAnalysis
,36,517-556.https://doi.org/10.1007/s11118-011-9239-8
[17]Hasanov,J.J.(2014)Φ-AdmissibleSublinearSingularOperatorsandGeneralizedOrlicz-
MorreySpaces.
JournalofFunctionSpaces
,
2014
,ArticleID:505237.
https://doi.org/10.1155/2014/505237
[18]Deringoz,F.,Guliyev,V.S.andHasanov,S.G.(2018)CommutatorsofFractionalMaximal
OperatoronGeneralizedOrlicz-MorreySpaces.
Positivity
,
22
,141-158.
https://doi.org/10.1007/s11117-017-0504-y
[19]Eroglu,A.,Abasova,G.A.andGuliyev,V.S.(2019)CharacterizationofParabolicFraction-
alIntegralandItsCommutatorsinParabolicGeneralizedOrlicz-MorreySpaces.
Azerbaijan
JournalofMathematics
,
9
,92-107.
[20]Nakai, E.(2014) GeneralizedFractionalIntegrals onGeneralized MorreySpaces.
Mathematis-
cheNachrichten
,
287
,339-351.https://doi.org/10.1002/mana.201200334
[21]Deringoz,F.,Guliyev,V.S.andSamko,S.G.(2014)BoundednessofMaximalandSingular
OperatorsonGeneralizedOrlicz-MorreySpaces.In:Bastos,M.,Lebre,A.,Samko,S.and
Spitkovsky,I.,Eds.,
OperatorTheory,OperatorAlgebrasandApplications
,Birkh¨auser,Basel,
139-158.https://doi.org/10.1007/978-3-0348-0816-37
[22]Gogatishvili, A.,Genebashvili, I.and Kokilashvili, V.(1998) WeightTheory forIntegralTrans-
formsonSpacesofHomogeneousType.Longman,Harlow.
DOI:10.12677/pm.2022.1291571454
n
Ø
ê
Æ
Â
[23]Lu,G.(2021)ParameterMarcinkiewiczIntegralandItsCommutatoronGeneralizedOrlicz-
MorreySpaces.
JournaloftheKoreanMathematicalSociety
,
58
,383-400.
[24]Omarova,M.N.(2020)NonsingularIntegralOperatorandItsCommutatorsonVanishing
GeneralizedOrlicz-MorreySpaces.
AzerbaijanJournalofMathematics
,
10
,140-156.
[25]Guliyev, V.(2022) SomeCharacterizations ofBMO SpacesviaCommutators inOrlicz Spaces
onStratifiedLieGroups.
ResultsinMathematics
,
77
,ArticleNo.42.
https://doi.org/10.1007/s00025-021-01578-0
[26]Jiang,M.andLi,F.(2022)LieGroupContinualMetaLearningAlgorithm.
AppliedIntelli-
gence
,
52
,10965-10978.
[27]Moustafa,M.,Amin,A.andLaouini,G.(2021)NewExactSolutionsfortheNonlinear
Schrdinger’s EquationwithAnti-Cubic Nonlinearity TermviaLieGroupMethod.
Optik
,
248
,
168-205.https://doi.org/10.1016/j.ijleo.2021.168205
[28]Stein,E.(1993)HarmonicAnalysis:Real-VariableMethods,OrthogonalityandOscillatory
Integrals.PrincetonUniversityPress,Princeton.
[29]Capone,C.,Cruz-Uribe,D.andFiorenza,A.(2007)TheFractionalMaximalOperatorand
FractionalIntegralsonVariable
L
p
Spaces.
RevistaMatem´aticaIberoamericana
,
23
,743-770.
https://doi.org/10.4171/RMI/511
[30]Cao,M.andXue,Q.(2016)CharacterizationofTwo-WeightedInequalitiesforMultilinear
FractionalMaximalOperator.
NonlinearAnalysis
,
130
,214-228.
https://doi.org/10.1016/j.na.2015.10.004
[31]Hu,G.,Lin,H.andYang,D.(2007)MarcinkiewiczIntegralswithNon-DoublingMeasures.
IntegralEquationsandOperatorTheory
,
52
,205-238.
https://doi.org/10.1007/s00020-007-1481-5
[32]Guliyev,V.andDeringoz,F.(2015)BoundednessofFractionalMaximalOperatorandIts
CommutatorsonGeneralizedOrlicz-MorreySpaces.
ComplexAnalysisandOperatorTheory
,
9
,1249-1267.https://doi.org/10.1007/s11785-014-0401-3
[33]Ri,C.andZhang,Z.(2019)BoundednessofCommutatorof
θ
-TypeCalder´on-ZygmundOp-
eratorsonNon-HomogeneousMetricMeasureSpaces.
ChineseAnnalsofMathematics,Series
B
,
40
,585-598.https://doi.org/10.1007/s11401-019-0153-5
[34]Lu,G.(2020)Commutatorsof
θ
-TypeGeneralizedFractionalIntegrals onNon-Homogeneous
Spaces.
JournalofInequalitiesandApplications
,
2020
,ArticleNo.202.
https://doi.org/10.1186/s13660-020-02470-1
[35]Lu,G.andTao,S.(2021)GeneralizedHomogeneousLittlewood-Paley
g
-FunctiononSome
FunctionSpaces.
BulletinoftheMalaysianMathematicalSciencesSociety
,
44
,17-34.
https://doi.org/10.1007/s40840-020-00934-7
[36]Lu, G.andZhou, J.(2015)BoundednessofCommutatorsofParameterMarcinkiewicz Integrals
onMorreySpaceswithNon-DoublingMeasures.
AdvancesinMathematics
,
44
,73-83.
DOI:10.12677/pm.2022.1291571455
n
Ø
ê
Æ
Â
[37]Deringoz,F.,Dorak,K.andGuliyev,V.(2012)CharacterizationoftheBoundednessofFrac-
tionalMaximalOperatorandItsCommutatorsinOrliczandGeneralizedOrlicz-MorreyS-
pacesonSpacesofHomogeneousType.
AnalysisandMathematicalPhysics
,
11
,ArticleNo.
63.https://doi.org/10.1007/s13324-021-00497-1
[38]Li,H.(1972)On CertainConvolutionInequalities.
ProceedingsoftheAmericanMathematical
Society
,
36
,505-510.https://doi.org/10.1090/S0002-9939-1972-0312232-4
[39]Janson,S.(1978)MeanOscillationandCommutatorsofSingularIntegralOperators.
Arkiv
f¨orMatematik
,
16
,263-270.https://doi.org/10.1007/BF02386000
[40]Guliyev,V.(2021)CommutatorsofFractionalMaximalFunctioninGeneralizedMorreySpaces
onCarnotGroups.
ComplexVariablesandEllipticEquations
,
66
,893-909.
https://doi.org/10.1080/17476933.2020.1793969
DOI:10.12677/pm.2022.1291571456
n
Ø
ê
Æ