设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(9),1493-1500
PublishedOnlineSeptember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.129163
˜
a
¹
•
ê
‘
©•
§
.
©
Û
NNN
-
Ÿ
“
‰
Œ
Æ
§
ê
Æ
‰
ÆÆ
§
-
Ÿ
Â
v
F
Ï
µ
2022
c
8
17
F
¶
¹
^
F
Ï
µ
2022
c
9
15
F
¶
u
Ù
F
Ï
µ
2022
c
9
22
F
Á
‡
©·
‚
Ì
‡
ï
Ä
˜
a
¹
k
•
ê
‘
‘
©•
§
.
Ä
å
Æ1
•
"
Ï
L
O
Ž
§
·
‚
Ä
k
‰
Ñ
T
‘
X
Ú
Ø
Ä:
•
3
5
"
Ù
g
§
|
^
‚
5
Ü
©
A
Š
†
-
½
5
'
X
Ø
Ä:
a
.
!
V
-
Ø
Ä:
-
½
5
±
9
ƒ
A
ë
ê
^
‡
"
•
§
(
Ü
¥
%
6
/
½
n
Ú
©
n
Ø
ƒ
'
•
£
?
Ø
š
V
-
Ø
Ä:
©
y–
§
l
)
flip
©
^
‡
"
'
…
c
Ä
å
Æ1
•
§
Ø
Ä:
§
¥
%
6
/
½
n
§
©
n
Ø
§
Flip
©
AnalysisofaClassofDifferenceEquation
ModelswithExponentialTerm
RongWang
SchoolofMathematicalSciences,ChongqingNormalUniversity,Chongqing
Received:Aug.17
th
,2022;accepted:Sep.15
th
,2022;published:Sep.22
nd
,2022
Abstract
Inthispaper,wemainlystudythedynamicbehaviorofaclassoftwo-dimensional
©
Ù
Ú
^
:
N
.
˜
a
¹
•
ê
‘
©•
§
.
©
Û
[J].
n
Ø
ê
Æ
,2022,12(9):1493-1500.
DOI:10.12677/pm.2022.129163
N
differenceequationmodelswithexponentialterms.Throughcalculation,wefirstly
givetheexistenceofthefixedpointofthistwo-dimensionalsystem.Secondly,the
typeoffixedpoint,thestabilityofthehyperbolicfixedpointandthecorresponding
parameterconditionsareobtainedbyusingtherelationshipbetweentheeigenvalues
ofthelinearpartandthestability.Finally,thebifurcationphenomenonofnon-
hyperbolicfixedpointisdiscussedbycombiningtheknowledgeofcentermanifold
theoremandbifurcationtheory,andtheconditionsforgeneratingflipbifurcationare
obtained.
Keywords
DynamicBehavior,FixedPoint,CenterManifoldTheorem,BifurcationTheory,Flip
Bifurcation
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©•
§
3
y
¢)
¹
¥
A^
5
2
•
§
A
O
´
3
)
Ô
Æ
!
Ô
n
Æ
!
²
L
Æ
!
ó
§
Æ
+
•
"
C
c
5
§
¹
k
•
ê
‘
©•
§
ï
Ä
•
´
4
Œ
/
-
å
<
‚
,
§
~
X
©
z
[1–5]
é
¹
•
ê
‘
©•
§
)
k
.
5
!
ØC
5
!
Û
1
•
?
1
ï
Ä
§
©
z
[6–8]
é
¹
•
ê
‘
©•
§
©
y–
?
1
ï
Ä
"
´
§
3ù
ƒ
'
©
Ù
¥
§
du
©•
§
|
¥
¹
k
•
ê
‘
é
Œ
U
—
•
§
|
)
v
k
w
«
L
ˆ
§
Ï
d
§
4
k
©
Ù
ï
Ää
k
š
"
²
ï
)
ƒ
'
5
Ÿ
"
Œ
±
Ž
§
X
J
©•
§
|
k
š
"
²
ï
)
§
Ù
Ä
å
Æ1
•
´
Ä
¬
•
\
´
L
º
u
´
§
©
ò
•
Ä
˜
a
¹
•
ê
‘
©•
§
|
x
n
+1
=
ax
n
−
1
+
bx
n
e
−
y
n
,
y
n
+1
=
cy
n
−
1
+
dy
n
e
−
x
n
,
(1.1)
Ä
å
Æ1
•
§
ù
p
§
n
•
š
K
ê
§
ë
ê
a,b,c,d
´
~
ê
§
Ð
©
Š
x
0
,
x
−
1
,
y
0
,
y
−
1
´
š
K
¢ê
"
·
‚
•
§
X
Ú
(1.1)
½
Â
˜
‡
²
¡
N
F
:
R
2
+
→
R
2
+
F
(
x,y
)
−→
(
ax
+
bxe
−
y
,cy
+
dye
−
x
)
T
,
(1.2)
ù
p
§
R
+
:= [0
,
+
∞
)
¿
…
(
x,y
)
T
P
•
•
þ
(
x,y
)
=
˜
"
DOI:10.12677/pm.2022.1291631494
n
Ø
ê
Æ
N
2.
Ì
‡
(
J
Ä
k
§
·
‚
‰
Ñ
X
Ú
(1.2)
Ø
Ä:
•
3
5
Ú
¤
k
Ø
Ä:
a
.
!
V
-
Ø
Ä:
-
½
5
±
9
ƒ
A
ë
ê
^
‡
"
½
n
1.
X
Ú
(1.2)
–
õ
k
ü
‡
Ø
Ä:
E
0
(0
,
0),
E
1
(
ln
d
1
−
c
,ln
b
1
−
a
)
§
Ù
¥
E
1
…
=
0
<a<
1,0
<
c<
1
¤
á
ž
•
3
"
L
1
‰
Ñ
Ø
Ä:
E
0
½
55
Ÿ
"
é
u
Ø
Ä:
E
1
ó
§
÷
v
^
‡
a
+
b
=1
½
ö
c
+
d
= 1
½
ö
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
= 4
ž
§
§
´
š
V
-
¶
0
<a
+
b<
1
,
0
<c
+
d<
1(or
a
+
b>
1
,c
+
d>
1),
…
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
6
= 4
ž
§
§
´
˜
‡
Q
:
¶
0
<a
+
b<
1
,c
+
d>
1(or
a
+
b>
1
,
0
<c
+
d<
1)
ž
§
§
´
˜
‡
Ø
-
½
:
"
Table1.
Qualitativepropertiesofthefixedpoint
E
0
L
1.
Ø
Ä:
E
0
½
55
Ÿ
^
‡
a
.
0
<c
+
d<
1
-
½
(
:
0
<a
+
b<
1
c
+
d
= 1
š
V
-
c
+
d>
1
Q
:
a
+
b
= 1
c
+
d>
0
š
V
-
0
<c
+
d<
1
Q
:
a
+
b>
1
c
+
d
= 1
š
V
-
c
+
d>
1
Ø
-
½
(
:
y
²
µ
Š
â
N
(1.2)
§
Ø
Ä:
÷
v
±
e
'
X
x
=
ax
+
bxe
−
y
,y
=
cy
+
dye
−
x
.
O
Ž
Œ
•
X
Ú
(1.2)
–
õ
k
ü
‡
Ø
Ä:
E
0
(0
,
0),
E
1
(
ln
d
1
−
c
,ln
b
1
−
a
)
§
Ù
¥
E
1
…
=
0
<a<
1,
0
<c<
1
¤
á
ž
•
3
"
·
‚
^
J
(
x,y
)
L
«
X
Ú
(1.2)
3
(
x,y
)
?
ä
Œ
'
Ý
§
K
J
(
x,y
) =
a
+
be
−
y
−
bxe
−
y
−
dye
−
x
c
+
de
−
x
.
3
Ø
Ä:
E
0
(0
,
0)
?
§
X
Ú
(1.2)
ä
Œ
'
Ý
•
J
(0
,
0) =
a
+
b
0
0
c
+
d
,
é
A
ü
‡
A
Š
©
O
•
a
+
b
,
c
+
d
§
d
A
Š
†
-
½
5
'
X
Œ
L
1
¥
(
Ø
"
DOI:10.12677/pm.2022.1291631495
n
Ø
ê
Æ
N
3
Ø
Ä:
E
1
(
ln
d
1
−
c
,ln
b
1
−
a
)
?
§
X
Ú
(1.2)
ä
Œ
'
Ý
J
(
ln
d
1
−
c
,ln
b
1
−
a
) =
1(
a
−
1)
ln
d
1
−
c
(
c
−
1)
ln
b
1
−
a
1
,
é
A
ü
‡
A
Š
©
O
•
λ
1
= 1
−
r
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
,λ
2
= 1+
r
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
.
d
A
Š
†
-
½
5
'
X
Œ
•
§
a
+
b
=1
½
ö
c
+
d
=1
ž
§
λ
1
,
2
=1,
K
Ø
Ä:
E
1
´
š
V
-
¶
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
=4
ž
§
λ
1
=
−
1,
λ
2
=3
§
K
Ø
Ä:
E
1
´
š
V
-
"
,
˜
•
¡
§
é
u
V
-
œ
/
µ
(1)
X
J
0
<a
+
b<
1
,
0
<c
+
d<
1,
…
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
6
=4,
K
ln
b
1
−
a
ln
d
1
−
c
>
0,
=
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
>
0,
Œ
±
ü
¢
A
Š
λ
1
= 1
−
r
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
,λ
2
= 1+
r
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
,
u
´
§
λ
1
<
1(
…
λ
1
6
=
−
1),
λ
2
>
1
K
E
1
´
Q
:
"
(2)
X
J
0
<a
+
b<
1
,c
+
d>
1,
K
ln
b
1
−
a
ln
d
1
−
c
<
0,
=
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
<
0,
Œ
±
ü
E
A
Š
λ
1
= 1
−
i
r
−
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
,λ
2
= 1+
i
r
−
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
,
d
d
Œ
„
,
λ
1
,
2
•
þ
Œ
u
1
§
Ï
d
§
E
1
´
˜
‡
Ø
-
½
:
"
(3)
X
J
a
+
b>
1
,
0
<c
+
d<
1,
Ó
(2)
§
E
1
´
˜
‡
Ø
-
½
:
"
(4)
X
J
a
+
b>
1
,c
+
d>
1,
…
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
6
= 4,
Ó
(1)
§
K
E
1
´
Q
:
"
y
.
"
3
þ
¡
L
§
¥
§
·
‚
©
Û
Ø
Ä:
•
3
œ
¹
±
9
V
-
Ø
Ä:
k
'
5
Ÿ
§
e
¡
·
‚
m
©
?
Ø
š
V
-
Ø
Ä:
©
y–
§
±
9
)
©
ë
ê
^
‡
"
•
Ä
d
=
d
0
+
ε
0
,
…
d
0
÷
v
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
0
1
−
c
= 4,
Ù
¥
§
ε
0
Š
•
©
ë
ê
"
P
ρ
1
=
1
2
(
a
+(1
−
a
)(
−
1
2
+
c
)
ln
d
0
1
−
c
)
2
+
(
a
−
1)
2
4
·
(1+(
−
1
2
+
c
)
ln
d
0
1
−
c
)
ln
d
0
1
−
c
,
ρ
2
=
1
d
0
ln
d
0
1
−
c
·
−
1
−
a
+
c
(1
−
a
)
ln
d
0
1
−
c
2
.
½
n
2.
X
J
d
=
d
0
+
ε
0
Ú
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
0
1
−
c
=4,
ε
0
¿
©
§
…
ρ
1
6
=0,
ρ
2
6
=0
§
K
X
Ú
(1.2)
3
Ø
Ä:
E
1
(
ln
d
1
−
c
,ln
b
1
−
a
)
N
C
¬
u
)
flip
©
"
DOI:10.12677/pm.2022.1291631496
n
Ø
ê
Æ
N
y
²
µ
•
ò
X
Ú
(1.2)
Ø
Ä:
E
1
£
:
§
·
‚
Š
C
†
x
=
ln
d
1
−
c
+
ξ,
y
=
ln
b
1
−
a
+
η,
X
Ú
(1.2)
C
•
µ
ξ
η
−→
aξ
+(1
−
a
)(
ξ
+
ln
d
1
−
c
)
e
−
η
+(
a
−
1)
ln
d
1
−
c
cη
+(1
−
c
)(
η
+
ln
b
1
−
a
)
e
−
ξ
+(
c
−
1)
ln
b
1
−
a
.
(2.1)
•
•
B
§
·
‚
ò
(2.1)
m
>
U
V
ú
ª
Ð
m
aξ
+(1
−
a
)(
ξ
+
ln
d
1
−
c
)
e
−
η
+(
a
−
1)
ln
d
1
−
c
=
aξ
+(1
−
a
)
ξ
+(
a
−
1)
ξη
+(
a
−
1)
ln
d
1
−
c
η
+
1
−
a
2
ln
d
1
−
c
η
2
+
O
(3)
.
ù
p
§
O
(3)
L
«
ê
Œ
u
2
‘
"
Ó
n
§
cη
+(1
−
c
)(
η
+
ln
b
1
−
a
)
e
−
ξ
+(
c
−
1)
ln
b
1
−
a
=
cη
+(1
−
c
)
η
+(
c
−
1)
ξη
+(
c
−
1)
ln
b
1
−
a
ξ
+
1
−
c
2
ln
b
1
−
a
ξ
2
+
O
(3)
.
=
X
Ú
(2.1)
d
u
ξ
η
−→
ξ
+(
a
−
1)
ξη
+(
a
−
1)
ln
d
1
−
c
η
+
1
−
a
2
ln
d
1
−
c
η
2
η
+(
c
−
1)
ξη
+(
c
−
1)
ln
b
1
−
a
ξ
+
1
−
c
2
ln
b
1
−
a
ξ
2
+
h.o.t.,
(2.2)
y
3
•
Ä
d
=
d
0
+
ε
0
,
…
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
0
1
−
c
=4,
Ù
¥
§
ε
0
Š
•
©
ë
ê
§
ε
0
=0
•
©
Š
"
d
ž
§
N
(2.2)
¤
•
ξ
η
−→
1(
a
−
1)
ln
d
0
1
−
c
(
c
−
1)
ln
b
1
−
a
1
ξ
η
+
f
(
ξ,η,ε
0
)
g
(
ξ,η,ε
0
)
,
(2.3)
ù
p
§
f
(
ξ,η,ε
0
) = (
a
−
1)
ξη
+(
a
−
1)
ln
d
0
+
ε
0
d
0
η
+
1
−
a
2
ln
d
0
+
ε
0
1
−
c
η
2
+
O
(3)
,
g
(
ξ,η,ε
0
) = (
c
−
1)
ξη
+
1
−
c
2
ln
b
1
−
a
ξ
2
+
O
(3)
.
A
Š
λ
1
=
−
1,
λ
2
= 3,
é
A
A
•
þ
•
(
1
−
a
2
ln
d
0
1
−
c
,
1)
T
,(
a
−
1
2
ln
d
0
1
−
c
,
1)
T
,
Š
‚
5
C
†
(
ξ,η
)
T
=
H
(
u,v
)
T
,
DOI:10.12677/pm.2022.1291631497
n
Ø
ê
Æ
N
K
X
Ú
(2.3)
C
•
µ
u
v
−→
−
10
03
u
v
+
H
−
1
e
f
(
u,v,ε
0
)
e
g
(
u,v,ε
0
)
,
(2.4)
ù
p
§
H
=
1
−
a
2
ln
d
0
1
−
c
a
−
1
2
ln
d
0
1
−
c
11
,
H
−
1
=
1
(1
−
a
)
ln
d
0
1
−
c
1
2
−
1
(1
−
a
)
ln
d
0
1
−
c
1
2
,
e
f
(
u,v,ε
0
) = (
a
−
1)
ln
d
0
+
ε
0
d
0
(
u
+
v
)+(
1
−
a
2
ln
d
0
+
ε
0
1
−
c
−
(1
−
a
)
2
2
ln
d
0
1
−
c
)
u
2
+(
1
−
a
2
ln
d
0
+
ε
0
1
−
c
+
(1
−
a
)
2
2
ln
d
0
1
−
c
)
v
2
+(1
−
a
)
ln
d
0
+
ε
0
1
−
c
uv,
e
g
(
u,v,ε
0
) = (1
−
a
)(
−
1
2
+
c
)
ln
d
0
1
−
c
u
2
+(1
−
a
)(
3
2
−
c
)
ln
d
0
1
−
c
v
2
+(
a
−
1)
ln
d
0
1
−
c
uv,
é
A
]
!
X
Ú
u
ε
0
v
−→
−
u
ε
0
3
v
+
b
f
(
u,v,ε
0
)
0
b
g
(
u,v,ε
0
)
(2.5)
ù
p
§
b
f
(
u,v,ε
0
) =
1
(1
−
a
)
ln
d
0
1
−
c
e
f
(
u,v,ε
0
)+
1
2
e
g
(
u,v,ε
0
)
,
b
g
(
u,v,ε
0
) =
−
1
(1
−
a
)
ln
d
0
1
−
c
e
f
(
u,v,ε
0
)+
1
2
e
g
(
u,v,ε
0
)
.
N
(2.5)
3
:
N
C
k
˜
‡
‘
¥
%
6
/
v
=
h
(
u,ε
0
) =
h
1
u
2
+
h
2
uε
0
+
h
3
ε
2
0
+
O
(3)
,
Š
â
©
z
[9]
Œ
•
§
ù
X
ê
h
1
,h
2
,h
3
û
u
•
§
ℵ
(
h
(
u,ε
0
)) =
h
(
−
u
+
b
f
(
u,h
(
u,ε
0
)
,ε
0
)
,ε
0
)
−
3
h
(
u,ε
0
)
−
b
g
(
u,h
(
u,ε
0
)
,ε
0
) = 0
,
DOI:10.12677/pm.2022.1291631498
n
Ø
ê
Æ
N
'
u
2
,uε
0
,ε
2
0
X
ê
§
·
‚
Œ
±
h
1
=
1
4
(
a
−
1)(1+(
−
1
2
+
c
)
ln
d
0
1
−
c
)
,h
2
=
−
1
4
d
0
ln
d
0
1
−
c
,h
3
= 0
.
u
´
§
v
=
h
(
u,ε
0
) =
1
4
(
a
−
1)(1+(
−
1
2
+
c
)
ln
d
0
1
−
c
)
·
u
2
−
1
4
d
0
ln
d
0
1
−
c
·
uε
0
+
O
(3)
,
(2.6)
P
p
=
ln
(
d
0
+
ε
0
)
−
lnd
0
lnd
0
−
ln
(1
−
c
)
,
ò
ª
f
(2.6)
“
\
X
Ú
(2.5)
1
˜
‡
•
§
§
u
ε
0
−→
−
u
ε
0
+
f
∗
(
u,ε
0
)
0
+
h.o.t.,
(2.7)
ù
p
§
f
∗
(
u,ε
0
)=
−
pu
+(
−
ph
1
+
1
2
p
+
a
−
1
2
+
1
−
a
8
d
0
ε
0
+
(1
−
a
)(
−
1
2
+
c
)
ln
d
0
1
−
c
2
)
u
2
+
p
4
d
0
ln
d
0
1
−
c
uε
0
+
a
−
1
2
ln
d
0
1
−
c
h
1
u
3
,
X
Ú
(2.7)
½
Â
˜
‡
˜
‘
N
u
7→
φ
ε
0
(
u
),
ù
p
φ
ε
0
(
u
) =
−
u
+
f
∗
(
u,ε
0
)+
h.o.t..
(2.8)
O
Ž
Œ
ρ
1
=[
1
2
(
∂
2
φ
ε
0
∂u
2
)
2
+
1
3
(
∂
3
φ
ε
0
∂u
3
)]
|
(0
,
0)
=
1
2
(
a
+(1
−
a
)(
−
1
2
+
c
)
ln
d
0
1
−
c
)
2
+
(
a
−
1)
2
4
·
(1+(
−
1
2
+
c
)
ln
d
0
1
−
c
)
ln
d
0
1
−
c
,
ρ
2
=[
∂φ
ε
0
∂ε
0
∂
2
φ
ε
0
∂u
2
+2
∂
2
φ
ε
0
∂u∂ε
0
]
|
(0
,
0)
=
1
d
0
ln
d
0
1
−
c
·
−
1
−
a
+
c
(1
−
a
)
ln
d
0
1
−
c
2
.
•
‡
ρ
1
6
= 0,
ρ
2
6
= 0
§
K
©
z
[10]
¥
½
n
3.5.1
š
ò
z
^
‡
Úî
^
‡
(
F
1
),(
F
2
)
¤
á
§
ù
¿
›
X
d
ž
X
Ú
(1.2)
3
Ø
Ä:
E
1
(
ln
d
1
−
c
,ln
b
1
−
a
)
N
C
¬
u
)
flip
©
"
y
.
"
3.
(
Ø
©
Ï
L
‚
5
Ü
©
A
Š
†
-
½
5
'
X
?
Ø
V
-
Ø
Ä:
a
.
9
-
½
5
§
|
^
¥
%
6
/
½
n
Ú
©
n
Ø
š
V
-
Ø
Ä:
)
flip
©
^
‡
"
´
§
3ù
Ÿ
©
Ù
¥
§
Ù
¢
·
‚
==
•
ï
Ä
Ø
Ä:
E
1
3
^
‡
(1
−
a
)(1
−
c
)
ln
b
1
−
a
ln
d
1
−
c
= 4
e
flip
©
œ
/
§
,
3
½
n
1
¥
§
·
‚
Œ
±
w
Ñ
Ø
Ä:
E
0
,
E
1
„
k
A
a
Ù
¦
š
V
-
œ
/
§
du
§
‚
{
‘
p
§
3ù
p
·
‚
6
ž
v
k
U
Y
?
Ø
"
~
X
§
é
u
E
0
ó
§
a
+
b
= 1,
c
+
d
6
= 1
ž
§
·
‚
Œ
±
|
^
½
n
2
¥
•{
Œ
•
X
Ú
(1.2)
•
›
DOI:10.12677/pm.2022.1291631499
n
Ø
ê
Æ
N
3
¥
%
6
/
þ
N
š
ò
z
^
‡
Ø
÷
v
§
©
´
p
{
‘
"
Ï
d
§
3
¡
ó
Š
¥
§
·
‚
Œ
±
}
Á
U
Y
•
Ä
p
{
‘
œ
/
§
½
N
¬
k
•
\
´
L
k
Ä
å
Æ1
•
"
ë
•
©
z
[1]Elettreby,M.F.andEl-Metwally,H.(2013)OnaSystemofDifferenceEquationsofanEco-
nomicModel.
DiscreteDynamicsinNatureandSociety
,
2013
,ArticleID:405628.
https://doi.org/10.1155/2013/405628
[2]Khan,A.Q.andQureshi,M.N.(2016)StabilityAnalysisofaDiscreteBiologicalModel.
In-
ternationalJournalofBiomathematics
,
9
,ArticleID:1650021.
https://doi.org/10.1142/S1793524516500212
[3]Psarros,N.,Papaschinopoulos,G.and Schinas,C.J.(2018)OntheStabilityofSomeSystems
ofExponentialDifferenceEquations.
OpusculaMathematica
,
38
,95-115.
https://doi.org/10.7494/OpMath.2018.38.1.95
[4]Psarros,N.,Papaschinopoulos,G.andSchinas,C.J.(2017)StudyoftheStabilityofa3
@
3
SystemofDifferenceEquationsUsingCentreManifoldTheory.
AppliedMathematicsLetters
,
64
,185-192.https://doi.org/10.1016/j.aml.2016.09.002
[5]Dilip, D.S. andMathew, S.M.(2021) Dynamicsofa Second-OrderNonlinear DifferenceSystem
withExponents.
JournaloftheEgyptianMathematicalSociety
,
29
,ArticleNo.10.
https://doi.org/10.1186/s42787-021-00119-6
[6]Din,Q.,Elabbasy,E.M.,Elsadany, A.A.,
etal.
(2019) Bifurcation Analysis and Chaos Control
ofaSecond-OrderExponentialDifferenceEquation.
Filomat
,
33
,5003-5022.
https://doi.org/10.2298/FIL1915003D
[7]Mylona,C.,Papaschinopoulos,G.andSchinas,C.J.(2021)Neimark-Sacker,Flip,andTrans-
criticalBifurcation inaClosetoSymmetric SystemofDifference EquationswithExponential
Terms.
MathematicalMethodsintheAppliedSciences
,
44
,10210-10224.
https://doi.org/10.1002/mma.7400
[8]Mylona,C., Papaschinopoulos,G. andSchinas, C.J.(2021) Stability andFlipBifurcationof a
Three DimensionalExponential SystemofDifference Equations.
MathematicalMethodsinthe
AppliedSciences
,
44
,4316-4329.https://doi.org/10.1002/mma.7031
[9]Carr,J.(1981)ApplicationsofCenterManifoldTheory.Springer,NewYork.
[10]Guckenheimer,J.andHolmes,P.(1983)NonlinearOscillations,DynamicalSystems,and
Bifurcations of Vector Fields. Springer,New York. https://doi.org/10.1007/978-1-4612-1140-2
DOI:10.12677/pm.2022.1291631500
n
Ø
ê
Æ