设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(9),6827-6834
PublishedOnlineSeptember2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.119723
Äug·A››CXêÈ©ž¢ ²ä
ÓÚ
HHH###ŒŒŒ§§§444)))
þ°“‰ŒÆêÆX§þ°
ÂvFϵ2022c826F¶¹^Fϵ2022c921F¶uÙFϵ2022c928F
Á‡
©ïÄ˜«‘kCXêÈ©ž¢. ²ä."|^•¼‡©•§Lyapunov-
Lasalln§äÄug·A››-½5•â"•§ÏLêŠ[é¤(Ø?1
y"
'…c
ž¢ ²ä§ÓÚ§Lyapunov-Lasalln§g·A››§žCò´
SynchronizationofVariableCoefficient
IntegralTime-DelayNeuralNetworks
BasedonAdaptiveControl
LingyuGuo,BaoshengLiu
DepartmentofMathematics,ShanghaiNormalUniversity,Shanghai
Received:Aug.26
th
,2022;accepted:Sep.21
st
,2022;published:Sep.28
th
,2022
©ÙÚ^:H#Œ,4).Äug·A››CXêÈ©ž¢ ²äÓÚ[J].A^êÆ?Ð,2022,11(9):
6827-6834.DOI:10.12677/aam.2022.119723
H#Œ§4)
Abstract
Inthispaper,avariablecoefficientintegralneuralnetworkwithtimedelayiscon-
sidered.ByusingLyapunov-Lasallprincipleoffunctionaldifferentialequations,we
obtainthecriterionofstabilitybasedonadaptivecontrol.Finally,weverifyour
conclusionbynumericalsimulation.
Keywords
Time-DelayedNeuralNetwork,Synchronization,Lyapunov-LasallPrinciple,
AdaptiveControl,Time-VaryingDelay
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1..£ã9ý•£
1988c§ L.O.ChuaÚL.YangJÑ˜«#&E?nXÚ§¡•[œ ²ä"† ²
äƒ '§[œ ²äkü‡AÏA5µ˜´ÙëYžmA5#Né&Ò?1¢ž?n¶1§
§‚ÛÜpë¦[œ ²äAO·Ü‡Œ58¤>´¢y[1]"1990c§L.O.ChuaÚT.
Roskaé˜a ü•[œ ²ä-½5?1ïÄ"¦‚@•ÀJÜ·[œ ²ä†Œ±
)ûÛÜÚÛª£O¯K[2]"
Cohen-Grossberg ²ä£CGNNs¤´•-‡ ²䃘"§´dCohenÚGrossberg
[3]31983cJÑ"CGNNs3`z!¿1OŽ!©a!ã”?n+•äk2,A^c
µ[4–6]"ùA^錧Ýþûu§‚Ä1•[6,7]ÚNõ'uCGNNs,aOÄ¯
Kk¿ÂóŠ´¢y[4,8]"Cc5§ò´CGNNs(DCGNNs)½žmÓÚÄ•Úå
5õ'5[4–7,9–11]"
2006c§J.Zhou§T.P.ChenÚL.XiangïÄëꙕÍÜ·bXÚž¢ÓÚ¯K"¦
‚ïÄò´CNNYÓÚ¯K§.Xeµ
˙x(t) = −Cx(t)+Af(x(t))+Bf(x(t−τ))+u.(1.1)
DOI:10.12677/aam.2022.1197236828A^êÆ?Ð
H#Œ§4)
,§ÌXÚ1.1†lXÚÓÚ§
˙y(t) = −
˜
Cx(t)+
˜
Af(x(t))+Bf(x(t−τ))+u.(1.2)
Éþãéu§·‚ïÄ±ež¢ ²ä§
˙x(t) = −Cx(t)+Af(x(t))+B
Z
t
t−β(t)
f(x(s))ds+J(t).(1.3)
Ù¥x(t)=[x
1
(t),x
2
(t),...,x
n
(t)]
T
∈R
n
•tž• ²'éG•þ§n• ²äê
þ¶C=diag(c
1
,c
2
,...,c
n
)•½éÝ§A=(a
ij
)
n×n
L«ë-Ý§a
ij
L«ü
‚iÚj3tž•ërݶB =(b
ij
)
n×n
L«ò´ëÝ§b
ij
L«ü‚iÚj3žmt−
β(t)J=(J
1
,J
2
,...,J
n
)
T
∈R
n
¥´žmtÜÑ\•þ¶β(t)≥0•DÑò´¶f(x(t))=
{f
1
(x
1
(t)),f
2
(x
2
(t)),...,f
n
(x
n
(t))}
T
∈R
n
L« ²äXÚ-¹¼ê"
3e5Ù!¥§·‚òïLyapunov¼ê§ÏLV\g·A››ì§¢yXÚ1.3ÚX
Ú2.1g·AÓÚ"•§ÏL˜‡Ž~`²nØ(Jk5"
2.̇(Ø
•ïÄÌXÚ1.3§·‚ElXÚ•µ
˙y(t) = −C(t)y(t)+A(t)f(y(t))+B(t)
Z
t
t−β(t)
f(y(s))ds+J(t)+ε(y(t)−x(t)).(2.1)
Ù¥§C(t),A(t),B(t)©O´'uC,A,B31.3þCþXêëê¶ε´››ì"·‚e(t)=
y(t)−x(t)•ÓÚØ"@o§e(t)´l1.32.1ØÄXÚ"·‚b-¹¼êf
i
(x)÷
v(A
1
)huo(A
2
):
(A
1
)µéuz‡-¹¼êf
j
§•3k
j
>0§¦eØª¤á§
|f
j
(x
1
)−f
j
(x
2
)|≤k
j
|x
1
−x
2
|,j= 1,2,...,n.
(A
∗
1
)µéuz‡-¹¼êf
j
§•3k
j
>0§¦eØª¤á§
0 ≤
f
j
(x
1
)−f
j
(x
2
)
x
1
−x
2
≤k
j
,j= 1,2,...,n.
XJ÷v(A
1
)½(A
∗
1
)§·‚ε,ˆc
i
,ˆa
ij
,
ˆ
b
ij
(i= 1,2,...,n)÷v±e^‡µ
˙ε
i
= −δ
i
e
2
i
(t)exp(µt),
˙
ˆc
i
= γ
i
e
i
(t)y
i
(t)exp(µt),
˙
ˆa
ij
= −η
ij
e
i
(t)f
j
(y
j
(t))exp(µt),
˙
ˆ
b
ij
= −ρ
ij
e
i
(t)
Z
t
t−β(t)
f
j
(y
j
(s))dsexp(µt),
DOI:10.12677/aam.2022.1197236829A^êÆ?Ð
H#Œ§4)
Ù¥§e(t)=y(t)−x(t)(i= 1,2,...,n),µ≥0´˜‡é~ê§ δ
i
,γ
i
,η
ij
,ρ
ij
´?¿~ê"·
‚r
1
,r
2
∈[0,1]•‰½~ê§¿…
h
i
=
1
2
n
X
j=1
(a
ij
k
2r
1
j
+a
ji
k
2(1−r
1
)
i
)+
β
2
n
X
j=1
(b
ij
k
2r
1
j
+b
ji
k
2(1−r
1
)
i
),
XJðkØª−c
i
−l
i
+
µ
2
+h
i
<0¤á§Ù¥l
i
•‰½~ê"@o§ Œ±¢y1.3Ú2.1ÓÚ§
¿…
lim
t→+∞
(c
i
−ˆc
i
) =lim
t→+∞
(a
ij
−ˆa
ij
) =lim
t→+∞
(b
ij
−
ˆ
b
ij
) = 0,i,j= 1,2,···,n.
ÏL1.3Ú2.1§·‚Œ±XeØXÚµ·‚E˜‡Lyapunov-krasovskii¼êXe§
V(t) =
1
2
n
X
i=1
{e
2
i
(t)exp(µt)+
1
γ
i
(ˆc
i
−c
i
)
2
+
n
X
j=1
1
η
ij
(ˆa
ij
−a
ij
)
2
+
1
δ
i
(ε
i
+l
i
)
2
+
n
X
j=1
1
ρ
ij
(
ˆ
b
ij
−b
ij
)
2
}.
(2.2)
,§OŽ2.2ê±9ØXÚe(t)§
˙
V(t) =
n
X
i=1
{e
i
(t)exp(µt)˙e
i
(t)+
µ
2
e
2
i
(t)exp(µt)+
1
γ
i
(ˆc
i
−c
i
)
˙
ˆc
i
+
n
X
j=1
1
η
ij
(ˆa
ij
−a
ij
)
˙
ˆa
ij
+
1
δ
i
(ε
i
+l
i
)˙ε
i
+
n
X
j=1
1
ρ
ij
(
ˆ
b
ij
−b
ij
)
˙
ˆ
b
ij
}
= exp(µt)
n
X
i=1
{(−c
i
−l
i
+
µ
2
)e
2
i
(t)+
n
X
j=1
a
ij
e
i
(t)
˜
f
j
(e
j
(t))+
n
X
j=1
b
ij
e
i
(t)
Z
t
t−β(t)
˜
f
j
(e
j
(s))ds}.
(2.3)
d^‡(A
1
)§·‚Œ±
|
˜
f
j
(e
j
(t))|= |f
j
(y
j
(t))−f
j
(x
j
(t))|≤k
j
|y
j
(t)−x
j
(t)|= k
j
|e
j
(t)|,
@o
˙
V(t) ≤exp(µt)
n
X
i=1
{(−c
i
−l
i
+
µ
2
)e
2
i
(t)+
n
X
j=1
|a
ij
e
i
(t)
˜
f
j
(e
j
(t))|+
n
X
j=1
|b
ij
e
i
(t)
Z
t
t−β(t)
˜
f
j
(e
j
(s))ds|}.
(2.4)
5¿
|k
j
e
i
(t)e
j
(t)|≤
1
2
(k
2r
1
j
e
2
i
(t)+k
2(1−r
1
)
j
e
2
j
(t)),
DOI:10.12677/aam.2022.1197236830A^êÆ?Ð
H#Œ§4)
Ïd
˙
V(t) ≤exp(µt)
n
X
i=1
(−c
i
−l
i
+
µ
2
+h
i
)e
2
i
(t)
≤0.
w,
˙
V(t)=0§…=e(t)=0ž"ù¿›X8ÜF={e(t)=0,ε=ε
0
|e(t),ε∈R
n×n
}´•¹
t→∞ž§
˙
V= 0•ŒØC8"Ïd§ŠâͶoäÊìÅ-½5n§XÚ(3);ìC
Âñ u8ÜF"Ïd§t→∞ž§ke→0¿…ˆc
i
,ˆa
ij
,
ˆ
b
ij
→ε
0
"†dÓž§ëêˆc
i
,ˆa
ij
,
ˆ
b
ij
•ò ì
C/ªCuc
i
,a
ij
,b
ij
[12–16]"y..
3.êŠ[
3!¥§·‚ÏL˜‡êŠ[~f5Øy·‚(Ø"
~3.1
•ıe‘kž¢È©‘ ²ä§
˙x
i
(t) = −c
i
x
i
(t)+
n
X
j=1
a
ij
f
j
(x
j
(t))+
n
X
j=1
b
ij
Z
t
t−β(t)
f
j
(x
j
(s))ds,(3.1)
Ù¥i= 1,2§¿…k
C=
10
01
!
,A=
20.17
−53
!
,B=
−1.5−0.1
−0.2−2.5
!
.
‘kž¢È©‘ ²ä3.1LyÑ·b1•§ЩŠx
1
(t)=−0.01,x
2
(t)=0.01,t∈[0,1]"
lXÚµ
˙y
i
(t) = −ˆc
i
y
i
(t)+
n
X
j=1
ˆa
ij
f
j
(y
j
(t))+
n
X
j=1
ˆ
b
ij
Z
t
t−β(t)
f
j
(y
j
(s))ds+ε
i
(y
i
(t)−x
i
(t)).(3.2)
e5§·‚òẏIO´^5Úk5"•{üå„§·‚•(½o‡ë
êa
11
a
22
b
11
Úb
22
"••Bå„§·‚ò§‚©OL«•a
1
,a
2
,b
1
Úb
2
"•|^®k̇(J§
·‚I‡E‡"rÝ2Ì‚5ÆÚëêg·A5Ƨ
˙a
1
= −9.22(y
3
−y
1
)tanh(y
1
)exp(0.0065),
˙a
2
= −0.8(y
4
−y
2
)tanh(y
2
)exp(0.0065),
˙
b
1
= −9.0(y
3
−y
1
)y
15
exp(0.0065),
˙
b
2
= −1.6(y
4
−y
2
)y
16
exp(0.0065),
˙ε
1
= −1.52(y
3
−y
1
)
2
exp(0.0065),
˙ε
2
= −1.52(y
4
−y
2
)
2
exp(0.0065),
DOI:10.12677/aam.2022.1197236831A^êÆ?Ð
H#Œ§4)
·‚Щ^‡Xeµ
a
1
(0) = −0.2;a
2
(0) = 4.5;
b
1
(0) = −0.02;b
2
(0) = 0.8;
ε
1
(0) = −0.1;ε
2
(0) = −0.1.
dꊕý(JL²§TXÚU¤õ¢yg·AÓÚÚëêE£(„ã1)"
Figure1.RobustsynchronizationofFCNNwithdelays
(3.1)andcontrolledslavesystem(3.2).
ã1.‘ò´‘FCNN°•ÓÚ(3.1)ÚlXÚ(3.2)
Figure2.Evolutionofsynchronizationerrorse
1
(t),e
2
(t),
asymptoticallyachieveto0.
ã2.ÓÚØe
1
(t),e
2
(t)ªu0"
Ó/§ÏLE‡"rÝ2Ì‚5ÆÚëêg·A5ƧÀJÜ·Щ^‡"·‚Œ±
xaqãL§Xã2¤«§¤±·‚ŽÑ§‚"
DOI:10.12677/aam.2022.1197236832A^êÆ?Ð
H#Œ§4)
ë•©z
[1]Chua,L.O.andYang,L.(1988)CellularNeuralNetworks:Theory.IEEETransactionson
CircuitsandSystems,35,1257-1272.https://doi.org/10.1109/31.7600
[2]Chua,L.O.andRoska,T.(1990)StabilityofaClassofNonreciprocalCellularNeuralNetworks.
IEEETransactionsonCircuitsandSystems,37,1520-1527.
https://doi.org/10.1109/31.101272
[3]Zhou,Y.,Li,C.,Chen,L.andHuang,T.(2018)GlobalExponentialStabilityofMemristive
Cohen-Grossberg NeuralNetworks with MixedDelaysandImpulseTimeWindow. Neurocom-
puting,275,2384-2391.https://doi.org/10.1016/j.neucom.2017.11.011
[4]Huang,Y.,Qiu,S.,Ren,S.andZheng,Z.(2018)Fixed-TimeSynchronizationofCoupled
Cohen-GrossbergNeuralNetworkswithandwithoutParameterUncertainties.Neurocomput-
ing,315,157-168.https://doi.org/10.1016/j.neucom.2018.07.013
[5]Wang,X.,Fang,J. andZhou,W. (2019)Controller Designfor Fixed-TimeSynchronization of
NonlinearCoupledCohen-GrossbergNeuralNetworkswithSwitchingParametersandTime-
VaryingDelays Based onSynchronizationDynamicsAnalysis.NonlinearDynamics,98,2079-
2096.https://doi.org/10.1007/s11071-019-05309-7
[6]Chen,W.,Huang,Y.andRen,S.(2018)PassivityandRobustPassivityofDelayedCohen
GrossbergNeuralNetworkswithandwithoutReaction-DiffusionTerms.Circuits,Systems,
andSignalProcessing,37,2772-2804.https://doi.org/10.1007/s00034-017-0693-4
[7]Wan,Y., Cao,J., Wen,G.andYu, W.(2016) RobustFixed-TimeSynchronizationofDelayed
Cohen-GrossbergNeuralNetworks.NeuralNetworks,73,86-94.
https://doi.org/10.1016/j.neunet.2015.10.009
[8]Zhou,Y.,Li,C.,Chen,L.andHuang,T.(2018)GlobalExponentialStabilityofMemristive
Cohen-Grossberg NeuralNetworks with MixedDelaysandImpulseTimeWindow. Neurocom-
puting,275,2384-2391.https://doi.org/10.1016/j.neucom.2017.11.011
[9]Xiao,J.,Zeng,Z.,Wu,A.andWen,S.(2020)Fixed-TimeSynchronizationofDelayedCohen
GrossbergNeuralNetworksBasedonaNovelSlidingMode.NeuralNetworks,128,1-12.
https://doi.org/10.1016/j.neunet.2020.04.020
[10]Chen,W.,Huang,Y.andRen,S.(2018)PassivityandSynchronizationofCoupledReac-
tionDiffusionCohen-GrossbergNeuralNetworkswithStateCouplingandSpatialDiffusion
Coupling.Neurocomputing,275,1208-1218.https://doi.org/10.1016/j.neucom.2017.09.063
[11]Wang,X.,Fang,J.andZhou,W.(2020)Fixed-TimeSynchronizationControlforaClassof
NonlinearCoupledCohen-GrossbergNeuralNetworksfromSynchronizationDynamicsView-
point.Neurocomputing,400,371-380.https://doi.org/10.1016/j.neucom.2020.02.111
DOI:10.12677/aam.2022.1197236833A^êÆ?Ð
H#Œ§4)
[12]Liu,X.,Wu,K.andZhang,W.(2020)IntermittentBoundaryStabilizationofStochastic
Reaction-DiffusionCohen-GrossbergNeuralNetworks.NeuralNetworks,131,1-13.
https://doi.org/10.1016/j.neunet.2020.07.019
[13]Qiu,S.,Huang,Y.andRen,S.(2018)Finite-TimeSynchronizationofCoupledCohenGross-
bergNeuralNetworkswithandwithoutCouplingDelays.JournalofTheFranklinInstitute,
355,4379-4403.https://doi.org/10.1016/j.jfranklin.2018.04.023
[14]Ali,M., Saravanan,S.and Palanisamy,L. (2019)Stochastic Finite-TimeStability ofReaction
DiffusionCohen-GrossbergNeuralNetworkswithTime-VaryingDelays.ChineseJournalof
Physics,57,314-328.https://doi.org/10.1016/j.cjph.2018.09.039
[15]Wang,D.,Huang,L.,Tang,L. andZhuang,J. (2018)Generalized PinningSynchronizationof
Delayed Cohen-GrossbergNeuralNetworks withDiscontinuous Activations.NeuralNetworks,
104,80-92.https://doi.org/10.1016/j.neunet.2018.04.006
[16]Ren,F., Jiang,M., Xu,H. and Li, M. (2020) Quasi Fixed-Time Synchronization of Memristive
Cohen-GrossbergNeuralNetworkswithReaction-Diffusion.Neurocomputing,415,74-83.
https://doi.org/10.1016/j.neucom.2020.07.071
DOI:10.12677/aam.2022.1197236834A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.