设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(10),1649-1654
PublishedOnlineOctober2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1210178
V
-
Kenmotsu
6
/
þ
C
Yamabe
á
f
¸¸¸ÚÚÚ
999
∗
§§§
444
ïïï
¤¤¤
†
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
9
13
F
¶
¹
^
F
Ï
µ
2022
c
10
12
F
¶
u
Ù
F
Ï
µ
2022
c
10
20
F
Á
‡
|
^
Lie
ê
Ž
f
,
C
‡
©
Ž
f
±
9
/
•
þ
|
5
Ÿ
,
y
²
3
ä
k
V
-
Kenmotsu
(
C
Yamabe
á
f
¥
,
X
J
•
3
1
w
¼
ê
f
,
¦
ƒ
>
1
−
/
ª
η
ØC
,
K
Ù
³
•
þ
|
´
Killing
•
þ
|
"
'
…
c
V
-
Kenmotsu
6
/
§
/
•
þ
|
§
C
Yamabe
á
f
§
Killing
•
þ
|
AlmostYamabeSolitonsonHyperbolic
KenmotsuManifolds
HelongHan
∗
,JianchengLiu
†
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Sep.13
th
,2022;accepted:Oct.12
th
,2022;published:Oct.20
th
,2022
∗
1
˜
Š
ö
"
†
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
¸Ú
9
,
4
ï
¤
.
V
-
Kenmotsu
6
/
þ
C
Yamabe
á
f
[J].
n
Ø
ê
Æ
,2022,12(10):1649-1654.
DOI:10.12677/pm.2022.1210178
¸Ú
9
§
4
ï
¤
Abstract
ByusingthepropertiesofLie-derivativeoperator,covariantderivativeoperatorand
conformalvectorfield,we prove thatin almostYamabesolitonswithhyperbolic Ken-
motsustructrue,ifthereexistsasmoothfunction
f
thatleavesthecontact1-form
η
invariant,thenitspotentialvectorfieldsareKillingvectorfields.
Keywords
HyperbolicKenmotsuManifold,ConformalVectorField,AlmostYamabeSoliton,
KillingVectorField
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
(
M
n
,g
)
´
n
‘–
i
ù6
/
,
P
X
(
M
)
´
M
þ
1
w
ƒ
•
þ
|
8
Ü
.
X
J
•
3
V
∈
X
(
M
)
Ú
˜
‡
~
ê
λ
,
¦
1
2
L
V
g
= (
λ
−
r
)
g,
K
M
n
¡
•
˜
‡
Yamabe
á
f
,
d
ž
V
¡
•
Yamabe
á
f
³
•
þ
|
,
λ
¡
•
á
f
~
ê
,
L
V
g
L
«
Ý
þ
g
÷
³
•
þ
|
V
•
•
Lie
ê
,
r
L
«
M
n
ê
þ
-
Ç
.
3
λ>
0(=0
,<
0)
ž
,
K
¡
Yamabe
á
f
´Â
(
-
½
,
*
Ü
)
.
3
Ø
Ó
-
Ç
^
‡
e
,Yamabe
á
f
®
²
N
õ
Æ
ö
2
•
ï
Ä
([1],[2],[3],[4]),
A
O
/
,Hsu
3
[5]
¥y
²
?
¿
;
—
Yamabe
á
f
ê
þ
-
Ç
˜
½
´
~
ê
.
Yamabe
á
f
í
2
C
Yamabe
á
f
3
©
z
[6]
¥
Barbosa-Ribeiro
0
X
e
:
½
Â
1
(
M,g
)
´
˜
‡
–
i
ù6
/
,
X
J
•
3
M
þ
ƒ
•
þ
|
V
Ú1
w
¼
ê
λ
,
¦
1
2
L
V
g
= (
λ
−
r
)
g,
(1)
K
¡
M
•
˜
‡
C
Yamabe
á
f
,
P
•
(
g,V,λ
).
w
,
,
λ
•
~
êž
,
C
Yamabe
á
f
=
•
DOI:10.12677/pm.2022.12101781650
n
Ø
ê
Æ
¸Ú
9
§
4
ï
¤
Yamabe
á
f
.
Ó
/
,
λ>
0(= 0
,<
0)
ž
,(
g,V,λ
)
¡
•
´Â
(
-
½
,
*
Ü
)
.
,
˜
•
¡
,Upadhyay
Ú
Dube[7]
J
Ñ
C
ƒ
>
V
-
(
V
g
,
Ó
ž
Ù
¦
Æ
ö
?
˜
Ú
ï
Ä
.
3
1972
c
,Kenmotsu[8]
ï
Ä
÷
v
˜
A
Ï
^
‡
ƒ
>
i
ù6
/
©
a
,
¿
ò
ù
«
6
/
·
¶
•
Kenmotsu
6
/
. Kenmotsu
y
²
Kenmotsu
6
/
Û
Ü
þ
´
˜
‡
«
m
I
Ú
˜
‡
ä
k
ò
È
¼
ê
f
(
t
)=
se
t
K¨ahler
6
/
M
¤
/
¤
ò
È
I
×
f
M
,
s
´
š
"
~
ê
.
3
[9]
¥
,Ghosh
ï
Ä
Kenmotsu
6
/
¥
C
Ricci
á
f
Ú
C
Yamabe
á
f
,
Ä
u
d
,
©
?
Ø
V
-
Kenmotsu
6
/
þ
C
Yamabe
á
f
³
•
þ
|
5
Ÿ
,
e
¡
Ì
‡
½
n
.
½
n
1
(
M
2
n
+1
,g,V,λ
)
´
(2
n
+1)
‘
ä
k
V
-
Kenmotsu
(
˜
‡
C
Yamabe
á
f
,
X
J
•
3
1
w
¼
ê
f
,
¦
ƒ
>
1
−
/
ª
η
ØC
,
=
L
V
η
=
fη
,
K
V
´
Killing
•
þ
|
.
©
ë
ì
©
z
[9]
‰
Ñ
V
-
Kenmotsu
6
/
þ
C
Yamabe
á
f
ƒ
'
5
Ÿ
.
Ù
(
Œ
—
©
•
n
‡
Ü
©
.
Ä
k
0
˜
'
u
C
Yamabe
á
f
ï
Ä
y
G
¿
‰
Ñ
©
Ì
‡
½
n
,
Ù
g
0
V
-
Kenmotsu
6
/
V
g
9
Ù
5
Ÿ
,
•©
¥
½
n
y
²
‰O
,
•
K
‰
Ñ
©
½
n
y
²
L
§
.
2.
ý
•
£
9
Ú
n
M
2
n
+1
´
˜
‡
2
n
+ 1
‘
1
w
6
/
,
X
J
•
3
˜
‡
(1,1)
.
Ü
þ
|
φ
,
˜
‡
ƒ
•
þ
|
ζ
Ú
ƒ
>
1
−
/
ª
η
¦
φ
2
=
I
+
η
⊗
ζ,η
(
ζ
) =
−
1
,
(2)
Ù
¥
I
´
M
2
n
+1
ƒ
m
þ
ð
g
Ó
,
⊗
“
L
Ü
þ
È
,
K
¡
M
2
n
+1
ä
k
C
ƒ
>
V
-
(
,
P
•
(
φ,ζ,η
).
d
ž
M
2
n
+1
\
þ
˜
‡
C
ƒ
>
V
-
(
Ò
¡
•
˜
‡
C
ƒ
>
V
-
6
/
,
P
•
(
M
n
+1
,φ,ζ,η
).
X
J
˜
‡
C
ƒ
>
V
-
6
/
M
2
n
+1
þ
•
3
–
i
ù
Ý
þ
g
÷
v
g
(
φX,φY
) =
−
g
(
X,Y
)
−
η
(
X
)
η
(
Y
)
,
∀
X,Y
∈
X
(
M
)
,
K
¡
M
2
n
+1
´
C
ƒ
>
V
-
–
Ý
þ
6
/
,(
φ,ζ,η,g
)
¡
•
C
ƒ
>
V
-
–
Ý
þ
(
.
•
?
˜
Ú
é
∀
X,Y
∈
X
(
M
)
k
(
∇
X
φ
)
Y
=
g
(
φX,Y
)
ζ
−
η
(
Y
)
φ
(
X
)
¤
á
,
K
¡
Ù
•
V
-
Kenmotsu
6
/
,
d
ž
k
±
e
ª
¤
á
([10])
∇
X
ζ
=
−
X
−
η
(
X
)
ζ,
(3)
(
∇
X
η
)
Y
=
g
(
φX,φY
) =
−
g
(
X,Y
)
−
η
(
X
)
η
(
Y
)
,
R
(
X,Y
)
ζ
=
η
(
Y
)
X
−
η
(
X
)
Y,
R
(
X,ζ
)
ζ
=
−
X
−
η
(
X
)
ζ,
(4)
R
(
ζ,X
)
Y
=
g
(
X,Y
)
ζ
−
η
(
Y
)
X,
DOI:10.12677/pm.2022.12101781651
n
Ø
ê
Æ
¸Ú
9
§
4
ï
¤
S
(
X,ζ
) = 2
nη
(
X
)
,S
(
ζ,ζ
) =
−
2
n,Qζ
= 2
nζ.
(5)
Ù
¥
R,S
Ú
Q
©
O
´
M
2
n
+1
þ
-
Ç
Ü
þ
,Ricci
Ü
þ
Ú
Ricci
Ž
f
,
…
S
(
X,Y
) =
g
(
QX,Y
).
½
Â
2
–
i
ù6
/
(
M
n
,g
)
þ
•
þ
|
V
X
J
÷
v
L
V
g
= 2
ρg,
K
¡
V
´
˜
‡
/
•
þ
|
,
Ù
¥
ρ
´
M
þ
1
w
¼
ê
,
¡
•
V
/
Ï
f
.
X
J
ρ
=0,
K
V
´
Killing
•
þ
|
.
w
,
3
˜
‡
C
Yamabe
á
f
¥
,
V
´
±
ρ
= (
r
−
λ
)
•
/
Ï
f
/
•
þ
|
.
,
•
y
²
©
(
Ø
,
·
‚
I
‡
e
¡
Ú
n
(
„
[11]).
Ú
n
1
é
3
2
n
+1
‘
i
ù6
/
M
þ
˜
‡
/
•
þ
|
V
,
k
e
ú
ª
¤
á
(
L
V
R
)(
X,Y
)
Z
=
g
(
∇
X
Dρ,Z
)
Y
−
g
(
∇
Y
Dρ,Z
)
X
+
g
(
X,Z
)
∇
Y
Dρ
−
g
(
Y,Z
)
∇
X
Dρ,
(6)
(
L
V
S
)(
X,Y
) = (1
−
2
n
)
g
(
∇
X
Dρ,Y
)+(∆
ρ
)
g
(
X,Y
)
,
(7)
L
V
r
=
−
2
rρ
+4
n
∆
ρ,
Ù
¥
X
,
Y
,
Z
´
M
þ
?
¿
•
þ
|
,
…
∆ =
−
div
D
´
'
u
Ý
þ
g
Laplacian
Ž
f
, div
´
Ñ
Ý
Ž
f
,
D
´
F
Ý
Ž
f
.
3.
Ì
‡
½
n
y
²
½
n
1
y
²
Š
â
•
§
(1)
Ú
½
Â
1
Œ
±
`
³
•
þ
|
V
´
/
,
Ï
d
ρ
=(
λ
−
r
).
é
η
(
ζ
) =
g
(
ζ,ζ
) =
−
1
¦
÷
V
•
•
Lie
ê
,
^
•
§
(1)
Ú
(2)
(
L
V
η
)
ζ
=
−
η
(
L
V
ζ
) =
−
ρ.
d
ž
b
³
•
þ
|
V
¦
ƒ
>
/
η
ØC
,
=
L
V
η
=
fη
,
f
∈
C
∞
(
M
),
K
k
(
fη
)
ζ
=
−
ρ
,
f
=
ρ
.
u
´
L
V
η
=
ρη,
L
V
ζ
=
−
ρζ.
(8)
é
(5)
ª
¥
1
˜
ª
¦
÷
V
•
•
Lie
ê
,
¿
|
^
Ù
5
Ÿ
k
L
V
S
(
X,ζ
) =(
L
V
S
)(
X,ζ
)+
S
(
L
V
X,ζ
)+
S
(
X,
L
V
ζ
)
= (
L
V
S
)(
X,ζ
)+
g
(
L
V
X,Qζ
)+
S
(
X,
L
V
ζ
)
= (
L
V
S
)(
X,ζ
)+2
ng
(
L
V
X,ζ
)+
S
(
X,
L
V
ζ
)
= 2
n
(
L
V
η
)
X
+2
nη
(
L
V
X
)
,
DOI:10.12677/pm.2022.12101781652
n
Ø
ê
Æ
¸Ú
9
§
4
ï
¤
l
(
L
V
S
)(
X,ζ
)+
S
(
X,
L
V
ζ
) = 2
n
(
L
V
η
)
X.
|
^
(8)
ª
Œ
±
(
L
V
S
)(
X,ζ
) = 4
nρη
(
X
)
.
Ó
ž
-
Y
=
ζ
“
\
(7)
ª
¥
,
k
g
(
∇
X
Dρ,ζ
) =
ση
(
X
)
,
(9)
Ù
¥
σ
=
4
nρ
−
∆
ρ
1
−
2
n
.
,
˜
•
¡
3
(6)
ª
¥
-
Y
=
Z
=
ζ
(
L
V
R
)(
X,ζ
)
ζ
=
g
(
∇
X
Dρ,ζ
)
ζ
−
g
(
∇
ζ
Dρ,ζ
)
X
+
η
(
X
)
∇
ζ
Dρ
+
∇
X
Dρ.
(10)
‰
(4)
ª
¦
÷
V
•
•
Lie
ê
¿
ò
(8)
ª
“
\
(
L
V
R
)(
X,ζ
)
ζ
= 2
ρ
(
−
X
−
η
(
X
)
ζ
)
.
(11)
Ï
d
ò
(9)
ª
Ú
(11)
ª
“
\
(10)
ª
¥
k
∇
X
Dρ
= 2
ρ
(
−
X
−
η
(
X
)
ζ
)
−
σX.
(12)
3
(12)
ª
¥
,
-
X
=
e
i
,
¿
é
i
¦
Ú
k
∆
ρ
= 4
nρ
,
l
σ
= 0.
Ï
d
k
∇
X
Dρ
= 2
ρ
(
−
X
−
η
(
X
)
ζ
)
.
(13)
,
é
L
V
η
=
ρη
ü
>
¦
‡
©
d
(
d
´
‡
©
Ž
f
),
5
¿
d
Ú
L
V
Œ
†
^
S
,
u
´
k
L
V
dη
=
dρ
∧
η.
Ï
•
dη
3
M
¥
´
•
"
,
¤
±
k
dρ
= (
ζρ
)
η.
‰
þ
ª
?
1
‡
©
,
Ï
•
d
2
= 0,
¤
±
é
∀
X
∈
X
(
M
)
Œ
±
X
(
ζρ
) =
−
ζ
(
ζρ
)
η
(
X
)
.
d
ž
,
|
^
(3)
ª
∇
ζ
ζ
=0,
…
3
(13)
ª
¥
-
X
=
ζ
Œ
±
Ñ
∇
ζ
Dρ
=0,
é
ζρ
=
g
(
ζ,Dρ
)
¦
÷
ζ
•
•
C
ê
k
ζ
(
ζρ
)= 0,
=
ζρ
´
˜
‡
~
ê
.
u
´
-
Dρ
=
Kζ
(
Ù
¥
K
=
ζρ
),
é
Ù
¦
÷
X
•
•
C
ê
,
Š
â
(3)
ª
k
∇
X
Dρ
=
K
(
−
X
−
η
(
X
)
ζ
)
.
ò
þ
ª
†
(13)
ª
ƒ
'
Œ
±
w
Ñ
K
=2
ρ
=
constant
,
ρ
=
constant
,
?
˜
Ú
ρ
=0,
Ï
d
V
DOI:10.12677/pm.2022.12101781653
n
Ø
ê
Æ
¸Ú
9
§
4
ï
¤
´
Killing
•
þ
|
,
½
n
y
.
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(12161078)
§
[
‹
Ž
p
Æ
M
#
U
å
J
,
‘
8
(2019B-045)
§
[
‹
Ž
‰
EO
y
]
Ï
‘
8
(20JR5RA515)
"
ë
•
©
z
[1]Cao,H.D.,Sun,X.andZhang,Y.(2012)OntheStructureofGradientYamabeSolitons.
MathematicalResearchLetters
,
19
,767-774.https://doi.org/10.4310/MRL.2012.v19.n4.a3
[2]Daskalopoulos, P.andSesum, N.(2013)TheClassificationofLocallyConformallyFlatYamabe
Solitons.
AdvancesinMathematics
,
240
,346-369.https://doi.org/10.1016/j.aim.2013.03.011
[3]Chen,B.Y.andDeshmukh,S.(2018)YamabeandQuasi-YamabeSolitonsonEuclideanSub-
manifolds.
MediterraneanJournalofMathematics
,
15
,ArticleNo.194.
https://doi.org/10.1007/s00009-018-1237-2
[4]Ma,L.andCheng,L.(2011)PropertiesofCompleteNon-CompactYamabeSolitons.
Annals
ofGlobalAnalysisandGeometry
,
40
,379-387.https://doi.org/10.1007/s10455-011-9263-3
[5]Hsu,S.Y.(2018)ANoteonCompactGradientYamabeSolitons.
MathematicalAnalysisand
Applications
,
388
,725-726.https://doi.org/10.1016/j.jmaa.2011.09.062
[6]Barbosa,E.andRibeiro,E.(2013)OnConformalSolutionsoftheYamabeFlow.
Archivder
Mathematik
,
101
,79-89.https://doi.org/10.1007/s00013-013-0533-0
[7]Upadhyay, M.D. andDube, K.K. (1976) AlmostContactHyperbolic(
f,g,η,ξ
)-Structure.
Acta
MathematicaAcademiaeScientiarumHungarica
,
28
,13-15.
https://doi.org/10.1007/BF01902485
[8]Kenmotsu, K. (1972) A Class of AlmostContact RiemannianManifolds.
TohokuMathematical
Journal
,
24
,93-103.https://doi.org/10.2748/tmj/1178241594
[9]Ghosh,A.(2021)RicciAlmostSolitonandAlmostYamabeSolitononKenmotsuManifold.
Asian-EuropeanJournalofMathematics
,
14
,4-20.
https://doi.org/10.1142/S1793557121501308
[10]Pankaj,S.K.andChaubey,G.A.(2021)YamabeandGradientYamabeSolitonson3-
DimensionalHyperbolicKenmotsuManifolds.
DifferentialGeometry-DynamicalSystems
,
23
,
176-184.
[11]Yano,K.(1970)IntegralFormulasinRiemannianGeometry.MarcelDekker,NewYork.
DOI:10.12677/pm.2022.12101781654
n
Ø
ê
Æ