设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(10),1810-1825
PublishedOnlineOctober2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1210194
Banach
˜
m
þ
†
ã
L
«
‡
¼
f
UUU
ZZZ
uuu
§§§
ÜÜÜ
HHH
4
ï
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
,
4
ï
4
²
Â
v
F
Ï
µ
2022
c
9
20
F
¶
¹
^
F
Ï
µ
2022
c
10
19
F
¶
u
Ù
F
Ï
µ
2022
c
10
26
F
Á
‡
©
8
´
ò
Hilbert
˜
m
þ
˜
5
Ÿ
í
2
Banach
˜
m
þ
.
©
Ä
k
‰
Ñ
†
ã
9
Ù
Banach
L
«
½
Â
,
'
u
Â
:
†
u
:
‡
¼
f
±
9
C
¼
f
½
Â
,
|
^
m
N
½
n
,
“
ê
Ó
½
n
½
Â
,
`
²
üa
‡
¼
f
Œ
Ï
L
C
¼
f
ï
á
˜
‡
ª
,
,
?
Ø
†
ã
Banach
L
«
ƒ
m
g
Ó
8
†
Ù
3
‡
¼
fŠ
^
e
Banach
L
«
ƒ
m
g
Ó
8
é
A
‡
¼
f
N
“
ê
5
Ÿ
,
y
²
‡
¼
f
N
´
‡
“
ê
Ó
"
'
…
c
Banach
˜
m
§
†
ã
§
L
«
§
‡
¼
f
TheReflectionFunctorsof
RepresentationsofQuiverson
BanachSpaces
JiahuaQue,YunnanZhang
SchoolofMathematicsandStatistics,FujianNormalUniversity,FuzhouFujian
Received:Sep.20
th
,2022;accepted:Oct.19
th
,2022;published:Oct.26
th
,2022
©
Ù
Ú
^
:
U
Z
u
,
Ü
H
.Banach
˜
m
þ
†
ã
L
«
‡
¼
f
[J].
n
Ø
ê
Æ
,2022,12(10):1810-1825.
DOI:10.12677/pm.2022.1210194
U
Z
u
§
Ü
H
Abstract
ThepurposeofthispaperistoextendsomepropertiesofHilbertspacestoBanach
spaces.ThispapergavethedefinitionsofthequiversandtheirBanachrepresenta-
tions,thedefinitionsofthereflectionfunctorsatthesinksandthesources,andthe
definitionsofcontravariantfunctors.Byusingtheopenmappingtheorem,algebraic
isomorphismandotherdefinitiontheorems,itisshownthattwokindsofreflection
functorscanestablishanequalitythroughcovariantfunctors.Italsodiscussedthe
algebraic properties ofthereflectionfunctormapcorrespondingtotheautomorphism
setsbetweentheBanachrepresentationsofthequiversandtheirBanachrepresenta-
tionsundertheactionofthereflectionfunctors.Itprovedthatthereflectionfunctor
mapisanalgebraicisomorphism.
Keywords
BanachSpaces,Quivers,Representations,ReflectionFunctors
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Γ
´
†
ã
,Gabriel([1])
ï
Ä
k
•
‘
‚
5
˜
m
þ
†
ã
L
«
,
Í
¶
Gabriel
½
n
:
k
•
ë
Ï
†
ã
=
kk
•
õ
Ø
Œ
L
«
¿
‡
^
‡
´
Ù
.
Ã
•
ã
´
Dynkin
ã
A
n
,
D
n
,
E
6
,
E
7
,
E
8
ƒ
˜
.
d
[2–8]
u
Ð
k
•
‘
‚
5
˜
m
þ
†
ã
L
«
n
Ø
.[9,10]
ï
Ä
X“
ê
œ
/
e
Ã
¡
‘
‚
5
˜
m
þ
†
ã
L
«
.[11]
3
Hilbert
˜
m
‰
Æ
e
ï
Ä
†
ã
Û
Ü
X
þ
L
«
.[12]
ï
Ä
Ã
¡
‘
Hilbert
˜
m
þ
†
ã
L
«
.Hilbert
˜
m
þ
†
ã
L
«
®
²
'
¿
©
ï
Ä
§
·
‚
ò
r
Hilbert
˜
m
þ
†
ã
L
«
í
2
Banach
˜
m
þ
§
¿
ï
Ä
§
‚
3
Banach
˜
m
þ
5
Ÿ
±
9
§
‚
ƒ
m
'
X
.
©
1
!
‰
Ñ
†
ã
9
Ù
Banach
L
«
½
Â
,
'
u
Â
:
†
u
:
‡
¼
f
±
9
C
¼
f
½
Â
,
¿
`
²
üa
‡
¼
f
Œ
Ï
L
C
¼
f
ï
á
˜
‡
ª
,
1
n
!
?
Ø
†
ã
Banach
L
«
ƒ
m
g
Ó
8
†
Ù
3
‡
¼
fŠ
^
e
Banach
L
«
ƒ
m
g
Ó
8
é
A
‡
¼
f
N
“
ê
5
Ÿ
,
y
²
‡
¼
f
N
´
‡
“
ê
Ó
.
e
¡
‰
Ñ
˜
½
Â
†
P
Ò
.
X
´
Banach
˜
m
,
±
X
∗
L
«
X
Ý
˜
m
.
X,Y
´
Banach
˜
m
,
±
B
(
X,Y
)
L
«
l
X
Y
¥
k
.
‚
5
Ž
f
N
,
{P
B
(
X,X
)=
B
(
X
).
X
þ
ð
Ž
f
P
•
I
.
DOI:10.12677/pm.2022.12101941811
n
Ø
ê
Æ
U
Z
u
§
Ü
H
T
∈
B
(
X,Y
),
±
ker(
T
) =
{
x
∈
X
:
Tx
=0
}
†
Im(
T
)=
{
Tx
:
x
∈
X
}
©
OL
«
T
"
˜
m
†
Š
•
.
J
´
k
•
•
I
8
.
(
X
i
)
i
∈
J
´
Banach
˜
m
x
,
P
‚
5
˜
m
M
i
∈
J
X
i
=
{
(
x
i
)
i
∈
J
:
x
i
∈
X
i
,i
∈
J
}
.
M
i
∈
J
X
i
þ
‰
ê
½
Â
•
:
k
(
x
i
)
i
∈
J
k
= (
X
i
∈
J
k
x
i
k
2
)
1
2
,
(
x
i
)
i
∈
J
∈
M
i
∈
J
X
i
,
K
M
i
∈
J
X
i
U
ì
þ
ã
‰
ê
¤
•
˜
‡
Banach
˜
m
,
Ù
Ý
˜
m
•
(
M
i
∈
J
X
i
)
∗
=
M
i
∈
J
X
∗
i
.
2.
†
ã
Banach
L
«
9
Ù
‡
¼
f
†
C
¼
f
!
‰
Ñ
†
ã
9
Ù
Banach
L
«
½
Â
,
'
u
Â
:
†
u
:
‡
¼
f
±
9
C
¼
f
½
Â
,
¿
`
²
üa
‡
¼
f
Œ
Ï
L
C
¼
f
ï
á
˜
‡
ª
.
Ä
k
‰
Ñ
†
ã
9
Ù
Banach
L
«
½
Â
.
½
Â
2.1
[12]
V
´
‡
:
8
,
E
⊆
V
×
V
,
N
s
,
r
:
E
→
V
÷
v
:
é
?
¿
α
=(
a,b
)
∈
E
,
s
(
α
) =
a
,
¡
•
α
|
,
r
(
α
)=
b
,
¡
•
α
Š
,
¡
o
|
Γ=(
V,E,s,r
)
•
˜
‡
†
ã
,
¡
V
•
º:
8
,
E
•
†
Þ
8
.
w
,
†
ã
´
‡
k
•
ã
.
e
V
,
E
Ñ
´
k
•
8
,
K
¡
†
ã
Γ
•
k
•
†
ã
.
½
Â
2.2
Γ=(
V,E,s,r
)
´
†
ã
,
e
X
=(
X
v
)
v
∈
V
´
Banach
˜
m
x
,
f
=(
f
α
)
α
∈
E
,
Ù
¥
f
α
∈
B
(
X
s
(
α
)
,X
r
(
α
)
),
K
¡
(
X,f
)
´
Γ
Banach
L
«
.
e
é
?
¿
v
∈
V
,
X
v
=0,
K
P
X
=(
X
v
)
v
∈
V
=0,
d
ž
¡
Banach
L
«
(
X,f
)
•
"
L
«
,
P
•
(
X,f
) = 0.
e
¡
‰
Ñ
†
ã
Banach
L
«
ƒ
m
Ó
†
Ó
Ü
¤
½
Â
.
½
Â
2.3
Γ=(
V,E,s,r
)
´
†
ã
,(
X,f
)
,
(
Y,g
)
´
Γ
Banach
L
«
,
T
=(
T
v
)
v
∈
V
´
k
.
‚
5
Ž
f x
,
Ù
¥
T
v
∈
B
(
X
v
,Y
v
).
e
é
?
¿
α
∈
E
,
T
r
(
α
)
f
α
=
g
α
T
s
(
α
)
,
K
¡
T
´
l
(
X,f
)
(
Y,g
)
Ó
.
P
Ó
8
Hom
((
X,f
)
,
(
Y,g
)) =
{
l
(
X,f
)
(
Y,g
)
Ó
}
.
g
Ó
8
End
((
X,f
)) =
Hom
((
X,f
)
,
(
X,f
))
.
P
"
g
Ó
0= (0
v
)
v
∈
V
,
ð
g
Ó
I
= (
I
v
)
v
∈
V
.
DOI:10.12677/pm.2022.12101941812
n
Ø
ê
Æ
U
Z
u
§
Ü
H
Ú
n
2.4
Γ = (
V,E,s,r
)
´
†
ã
,(
X,f
)
,
(
Y,g
)
,
(
Z,h
)
´
Γ
Banach
L
«
.
(1)
T
∈
Hom
((
Y,g
)
,
(
Z,h
)),
S
∈
Hom
((
X,f
)
,
(
Y,g
)),
é
?
¿
v
∈
V
,
P
(
TS
)
v
=
T
v
S
v
,
P
TS
= ((
TS
)
v
)
v
∈
V
,
¡
•
T
Ú
S
Ü
¤
,
K
TS
∈
Hom
((
X,f
)
,
(
Z,h
));
(2)
T,S
∈
Hom
((
X,f
)
,
(
Y,g
)),
é
?
¿
v
∈
V
,
P
(
T
+
S
)
v
=
T
v
+
S
v
,
P
T
+
S
= ((
T
+
S
)
v
)
v
∈
V
,
¡
•
T
Ú
S
Ú
,
K
T
+
S
∈
Hom
((
X,f
)
,
(
Y,g
));
(3)
λ
∈
C
,
T
∈
Hom
((
X,f
)
,
(
Y,g
)),
é
?
¿
v
∈
V
,
P
(
λT
)
v
=
λT
v
,
P
λT
=((
λT
)
v
)
v
∈
V
,
¡
•
T
ê
(
λ
)
¦
,
K
λT
∈
Hom
((
X,f
)
,
(
Y,g
)).
y
²
d
½
Â
Œ
†
y
w
,
†
ã
Banach
L
«
U
ì
þ
ã
Ó
89
Ù
Ü
¤
¤
˜
‡
‰
Æ
,
=
k
·
K
2.5
Γ =(
V,E,s,r
)
´
†
ã
,
K
Γ
¤
k
Banach
L
«
U
ì
½
Â
2.3
¥
Ó
8
†
Ú
n
2.4
¥
Ü
¤
¤
˜
‡
‰
Æ
,
P
•
BRep
(Γ).
e
¡
‰
Ñ
†
ã
Banach
L
«
Ó
!
†
Ú
!
Ø
Œ
©
)
Ú
Œ
D
4½
Â
.
½
Â
2.6
Γ = (
V,E,s,r
)
´
†
ã
.
(1)
(
X,f
)
,
(
Y,g
)
´
Γ
Banach
L
«
.
e
•
3
l
(
X,f
)
(
Y,g
)
þ
Ó
T
,
=
T
=(
T
v
)
v
∈
V
∈
Hom
((
X,f
)
,
(
Y,g
)),
…
é
?
¿
v
∈
V
,
T
v
∈
B
(
X
v
,Y
v
)
´
Ó
Ž
f
,
K
¡
(
X,f
)
†
(
Y,g
)
Ó
,
P
•
(
X,f
)
∼
=
(
Y,g
).
(2)
(
X,f
)
,
(
Y,g
)
,
(
Y
0
,g
0
)
´
Γ
Banach
L
«
.
e
é
?
¿
v
∈
V
,
?
¿
α
∈
E
,
X
v
=
Y
v
L
Y
0
v
,
f
α
=
g
α
L
g
0
α
,
K
P
X
=
Y
L
Y
0
,
f
=
g
L
g
0
,
d
ž
¡
(
X,f
)
´
(
Y,g
)
†
(
Y
0
,g
0
)
†
Ú
,
P
•
(
X,f
)
= (
Y
L
Y
0
,g
L
g
0
) = (
Y,g
)
L
(
Y
0
,g
0
).
(3)
(
X,f
)
´
Γ
š
"
Banach
L
«
.
e
(
X,f
)
Ó
u
Γ
ü
‡
š
"
Banach
L
«
†
Ú
,
K
¡
(
X,f
)
´
Œ
©
)
.
Ä
K
¡
(
X,f
)
´
Ø
Œ
©
)
.
e
5
‰
Ñ
†
ã
Banach
L
«
'
u
Â
:
†
u
:
‡
¼
f
±
9
C
¼
f
½
Â
,
¿
`
²
üa
‡
¼
f
Œ
Ï
L
C
¼
f
ï
á
˜
‡
ª
.
Ä
k
‰
Ñ
†
ã
¥
Â
:
†
u
:
9
Ù
ƒ
A
)
¤
#
†
ã
,
±
9
é
ó
†
ã
½
Â
.
½
Â
2.7
[12]
Γ = (
V,E,s,r
)
´
†
ã
,
v
∈
V
´
‡
º:
.
(1)
e
é
?
¿
α
∈
E
,
s
(
α
)
6
=
v
,
K
¡
v
´
Γ
Â
:
,
d
ž
P
E
v
=
{
α
∈
E
:
r
(
α
) =
v
}
.
(2)
e
é
?
¿
α
∈
E
,
r
(
α
)
6
=
v
,
K
¡
v
´
Γ
u
:
,
d
ž
P
E
v
=
{
α
∈
E
:
s
(
α
) =
v
}
.
F
⊆
V
×
V
´
‡
†
Þ
8
,
α
∈
F
.
e
α
:
x
→
y
,
P
α
:
y
→
x
.
P
F
=
{
α
:
α
∈
F
}
.
½
Â
2.8
[12]
Γ = (
V,E,s,r
)
´
†
ã
.
DOI:10.12677/pm.2022.12101941813
n
Ø
ê
Æ
U
Z
u
§
Ü
H
(1)
v
∈
V
´
Γ
Â
:
,
P
σ
+
v
(
V
) =
V
,
σ
+
v
(
E
) = (
E
\
E
v
)
S
E
v
,
-
†
ã
σ
+
v
(Γ) = (
σ
+
v
(
V
)
,σ
+
v
(
E
)
,s,r
)
.
(2)
v
∈
V
´
Γ
u
:
,
P
σ
−
v
(
V
) =
V
,
σ
−
v
(
E
) = (
E
\
E
v
)
S
E
v
,
-
†
ã
σ
−
v
(Γ) = (
σ
−
v
(
V
)
,σ
−
v
(
E
)
,s,r
)
.
(3)
P
V
=
V
,
E
=
{
α
:
α
∈
E
}
,
-
Γ
é
ó
†
ã
Γ = (
V,E,s,r
)
.
e
¡
‰
Ñ
†
ã
Banach
L
«
'
u
Â
:
†
u
:
‡
¼
f
±
9
C
¼
f
½
Â
.
Ä
k
‰
Ñ
d
†
ã
Γ
Banach
L
«
(
X,f
)
'
u
Â
:
v
p
σ
+
v
(Γ)
Banach
L
«
,(
X,f
)
'
u
u
:
v
p
σ
−
v
(Γ)
Banach
L
«
,
±
9
(
X,f
)
p
Γ
Banach
L
«
.
½
Â
2.9
Γ = (
V,E,s,r
)
´
k
•
†
ã
.
(1)
v
∈
V
´
Γ
Â
:
,(
X,f
)
´
Γ
Banach
L
«
.
-
k
.
‚
5
Ž
f
h
v
:
M
α
∈
E
v
X
s
(
α
)
→
X
v
,h
v
((
x
s
(
α
)
)
α
∈
E
v
) =
X
α
∈
E
v
f
α
(
x
s
(
α
)
)
,x
s
(
α
)
∈
X
s
(
α
)
.
-
Y
v
= ker
h
v
=
{
(
x
s
(
α
)
)
α
∈
E
v
∈
M
α
∈
E
v
X
s
(
α
)
:
X
α
∈
E
v
f
α
(
x
s
(
α
)
) = 0
}
.
é
u
∈
V
,
u
6
=
v
,
-
Y
u
=
X
u
.
β
∈
E
v
,
K
β
∈
E
v
,
…
s
(
β
)=
r
(
β
) =
v
,
r
(
β
) =
s
(
β
)
6
=
v
.
-
k
.
‚
5
Ž
f
g
β
:
Y
s
(
β
)
=
Y
v
→
Y
r
(
β
)
=
Y
s
(
β
)
=
X
s
(
β
)
,g
β
((
x
s
(
α
)
)
α
∈
E
v
) =
x
s
(
β
)
.
é
β
∈
E
\
E
v
,
K
s
(
β
)
6
=
v
,
r
(
β
)
6
=
v
,
-
g
β
=
f
β
∈
B
(
X
s
(
β
)
,X
r
(
β
)
) =
B
(
Y
s
(
β
)
,Y
r
(
β
)
).
½
Â
σ
+
v
(Γ)
Banach
L
«
Φ
+
Γ
,v
(
X,f
) = (
Y,g
)
,
Ù
¥
Y
= (
Y
u
)
u
∈
σ
+
v
(
V
)
,
g
= (
g
β
)
β
∈
σ
+
v
(
E
)
.
DOI:10.12677/pm.2022.12101941814
n
Ø
ê
Æ
U
Z
u
§
Ü
H
(2)
v
∈
V
´
Γ
u
:
,(
X,f
)
´
Γ
Banach
L
«
.
-
k
.
‚
5
Ž
f
b
h
v
:
M
α
∈
E
v
X
∗
r
(
α
)
→
X
∗
v
,
b
h
v
((
x
∗
r
(
α
)
)
α
∈
E
v
) =
X
α
∈
E
v
f
∗
α
(
x
∗
r
(
α
)
)
,x
∗
r
(
α
)
∈
X
∗
r
(
α
)
.
-
Y
v
= (ker
b
h
v
)
∗
,
Ù
¥
ker
b
h
v
=
{
(
x
∗
r
(
α
)
)
α
∈
E
v
∈
M
α
∈
E
v
X
∗
r
(
α
)
:
X
α
∈
E
v
f
∗
α
(
x
∗
r
(
α
)
) = 0
}
.
é
u
∈
V
,
u
6
=
v
,
-
Y
u
=
X
∗∗
u
.
β
∈
E
v
,
K
β
∈
E
v
,
…
s
(
β
)=
r
(
β
)
6
=
v
,
r
(
β
) =
s
(
β
) =
v
.
-
k
.
‚
5
Ž
f
g
β
:
Y
s
(
β
)
=
Y
r
(
β
)
=
X
∗∗
r
(
β
)
→
Y
r
(
β
)
=
Y
v
= (ker
b
h
v
)
∗
,
÷
v
:
é
?
¿
F
∈
X
∗∗
r
(
β
)
,
é
?
¿
(
x
∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
v
,
k
(
g
β
F
)((
x
∗
r
(
α
)
)
α
∈
E
v
) =
F
(
x
∗
r
(
β
)
)
.
é
β
∈
E
\
E
v
,
K
s
(
β
)
6
=
v
,
r
(
β
)
6
=
v
,
-
g
β
=
f
∗∗
β
∈
B
(
X
∗∗
s
(
β
)
,X
∗∗
r
(
β
)
) =
B
(
Y
s
(
β
)
,Y
r
(
β
)
).
½
Â
σ
−
v
(Γ)
Banach
L
«
Φ
−
Γ
,v
(
X,f
) = (
Y,g
)
,
Ù
¥
Y
= (
Y
u
)
u
∈
σ
−
v
(
V
)
,
g
= (
g
β
)
β
∈
σ
−
v
(
E
)
.
(3)
(
X,f
)
´
Γ
Banach
L
«
.
é
?
¿
u
∈
V
,
-
Y
u
=
X
∗
u
.
é
?
¿
β
∈
E
,
K
β
∈
E
,
-
g
β
=
f
∗
β
∈
B
(
X
∗
r
(
β
)
,X
∗
s
(
β
)
) =
B
(
X
∗
s
(
β
)
,X
∗
r
(
β
)
) =
B
(
Y
s
(
β
)
,Y
r
(
β
)
).
½
Â
Γ
Banach
L
«
Φ
∗
Γ
(
X,f
) = (
Y,g
)
,
Ù
¥
Y
= (
Y
u
)
u
∈
V
,
g
= (
g
β
)
β
∈
E
.
e
¡
‰
Ñ
d
†
ã
Γ
Banach
L
«
ƒ
m
Ó
'
u
Â
:
v
p
σ
+
v
(Γ)
Banach
L
«
ƒ
m
Ó
,
'
u
u
:
v
p
σ
−
v
(Γ)
Banach
L
«
ƒ
m
Ó
,
±
9
p
Γ
Banach
L
«
ƒ
m
Ó
.
Ú
n
2.10
Γ = (
V,E,s,r
)
´
k
•
†
ã
.
(1)
v
∈
V
´
Γ
Â
:
,(
X,f
),(
X
0
,f
0
)
´
Γ
Banach
L
«
,(
Y,g
)=Φ
+
Γ
,v
(
X,f
),(
Y
0
,g
0
)=
Φ
+
Γ
,v
(
X
0
,f
0
)
X
½
Â
2.9(1),
´
σ
+
v
(Γ)
Banach
L
«
.
T
∈
Hom
((
X,f
)
,
(
X
0
,f
0
)).
-
k
.
‚
5
Ž
f
S
v
:
Y
v
→
Y
0
v
,S
v
((
x
s
(
α
)
)
α
∈
E
v
) = (
T
s
(
α
)
(
x
s
(
α
)
))
α
∈
E
v
.
DOI:10.12677/pm.2022.12101941815
n
Ø
ê
Æ
U
Z
u
§
Ü
H
é
u
∈
V
,
u
6
=
v
,
-
S
u
=
T
u
∈
B
(
X
u
,X
0
u
)=
B
(
Y
u
,Y
0
u
),
K
S
=(
S
u
)
u
∈
V
∈
Hom
((
Y,g
)
,
(
Y
0
,g
0
)).
P
S
= Φ
+
Γ
,v
(
T
).
(2)
v
∈
V
´
Γ
u
:
,(
X,f
),(
X
0
,f
0
)
´
Γ
Banach
L
«
,(
Y,g
)=Φ
−
Γ
,v
(
X,f
),(
Y
0
,g
0
)=
Φ
−
Γ
,v
(
Y,f
0
)
X
½
Â
2.9(2),
´
σ
−
v
(Γ)
Banach
L
«
.
T
∈
Hom
((
X,f
)
,
(
X
0
,f
0
)).
-
k
.
‚
5
Ž
f
S
v
:
Y
v
= (ker
b
h
v
)
∗
→
Y
0
v
= (ker
b
h
0
v
)
∗
,
÷
v
:
é
?
¿
F
∈
Y
v
,
é
?
¿
(
x
0∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
0
v
,
k
(
S
v
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) =
F
((
T
∗
r
(
α
)
x
0∗
r
(
α
)
)
α
∈
E
v
)
.
é
u
∈
V
,
u
6
=
v
,
-
S
u
=
T
∗∗
u
∈
B
(
X
∗∗
u
,
(
X
0
u
)
∗∗
) =
B
(
Y
u
,Y
0
u
),
K
S
= (
S
u
)
u
∈
V
∈
Hom
((
Y,g
)
,
(
Y
0
,g
0
)).
P
S
= Φ
−
Γ
,v
(
T
).
(3)
(
X,f
),(
X
0
,f
0
)
´
Γ
Banach
L
«
,(
Y,g
)= Φ
∗
Γ
(
X,f
),(
Y
0
,g
0
)=Φ
∗
Γ
(
X
0
,f
0
)
X
½
Â
2.9(3),
´
Γ
Banach
L
«
.
T
∈
Hom
((
X,f
)
,
(
X
0
,f
0
)).
é
?
¿
u
∈
V
,
-
S
u
=
T
∗
u
∈
B
(
X
0∗
u
,X
∗
u
)
=
B
(
Y
0
u
,Y
u
),
K
S
= (
S
u
)
u
∈
V
∈
Hom
((
Y
0
,g
0
)
,
(
Y,g
)).
P
S
= Φ
∗
Γ
(
T
).
y
²
(1)
†
(3)
y
²
a
q
[12]
1
4
Ü
©
¥
‡
¼
f
Φ
+
v
†
C
¼
f
Φ
∗
¥
`
²
Œ
y
.
e
y
(2),
Ä
k
a
q
[12]
1
4
Ü
©
¥
‡
¼
f
Φ
−
v
¥
`
²
Œ
y
S
v
´
k
¿Â
…
S
v
∈
B
(
Y
v
,Y
0
v
).
é
?
¿
β
∈
E
v
,
K
β
∈
E
v
,
…
s
(
β
)=
r
(
β
)
6
=
v
,
r
(
β
)=
s
(
β
)=
v
.
é
?
¿
F
∈
X
∗∗
r
(
β
)
,
é
?
¿
(
x
0∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
0
v
,
k
(
S
r
(
β
)
g
β
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
S
v
g
β
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
g
β
F
)((
T
∗
r
(
α
)
x
0∗
r
(
α
)
)
α
∈
E
v
) =
F
(
T
∗
r
(
β
)
x
0∗
r
(
β
)
)
†
(
g
0
β
S
s
(
β
)
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
g
0
β
S
r
(
β
)
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
)
= (
g
0
β
T
∗∗
r
(
β
)
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
T
∗∗
r
(
β
)
F
)
x
0∗
r
(
β
)
=
F
(
T
∗
r
(
β
)
x
0∗
r
(
β
)
)
,
=
(
S
r
(
β
)
g
β
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
g
0
β
S
s
(
β
)
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
),
K
S
r
(
β
)
g
β
F
=
g
0
β
S
s
(
β
)
F
,
S
r
(
β
)
g
β
=
g
0
β
S
s
(
β
)
.
é
?
¿
β
∈
E
\
E
v
,
K
s
(
β
)
6
=
v
,
r
(
β
)
6
=
v
.
S
r
(
β
)
g
β
=
T
∗∗
r
(
β
)
f
∗∗
β
= (
T
r
(
β
)
f
β
)
∗∗
= (
f
0
β
T
s
(
β
)
)
∗∗
= (
f
0
β
)
∗∗
T
∗∗
s
(
β
)
=
g
0
β
S
s
(
β
)
.
n
þ
Œ
S
= (
S
u
)
u
∈
V
∈
Hom
((
Y,g
)
,
(
Y
0
,g
0
)).
†
ã
σ
+
v
(Γ)
U
ì
þ
ã
p
Banach
L
«
†
Ó
89
Ù
g
,
Ü
¤
Œ
˜
‡
d
BRep
(Γ)
'
u
Â
:
v
p
‰
Æ
BRep
(
σ
+
v
(Γ)),
?
Œ
½
Â
'
u
Â
:
‡
¼
f
.
†
ã
σ
−
v
(Γ)
U
ì
þ
ã
p
Banach
L
«
†
Ó
89
Ù
g
,
Ü
¤
Œ
˜
‡
d
BRep
(Γ)
'
u
u
:
v
p
‰
Æ
BRep
(
σ
−
v
(Γ)),
DOI:10.12677/pm.2022.12101941816
n
Ø
ê
Æ
U
Z
u
§
Ü
H
?
Œ
½
Â
'
u
u
:
‡
¼
f
.
†
ã
Γ
U
ì
þ
ã
p
Banach
L
«
†
Ó
89
Ù
g
,
Ü
¤
Œ
˜
‡
d
BRep
(Γ)
p
‰
Æ
BRep
(Γ),
?
Œ
½
Â
C
¼
f
.
½
Â
2.11
Γ = (
V,E,s,r
)
´
k
•
†
ã
.
(1)
v
∈
V
´
Γ
Â
:
.
½
Â
‡
¼
f
Φ
+
Γ
,v
:
BRep
(Γ)
→
BRep
(
σ
+
v
(Γ))
,
Ù
¥
é
BRep
(Γ)
¥
é
–
(
X,f
),(
Y,g
) = Φ
+
Γ
,v
(
X,f
)
X
½
Â
2.9(1),
´
BRep
(
σ
+
v
(Γ))
¥
é
–
,
é
BRep
(Γ)
¥
Ó
T
,
S
=Φ
+
Γ
,v
(
T
)
X
Ú
n
2.10(1),
´
BRep
(
σ
+
v
(Γ))
¥
Ó
,
BRep
(
σ
+
v
(Γ))
¥
Ó
Ü
¤
´
g
,
Ü
¤
,
X
Ú
n
2.4.
(2)
v
∈
V
´
Γ
u
:
.
½
Â
‡
¼
f
Φ
−
Γ
,v
:
BRep
(Γ)
→
BRep
(
σ
−
v
(Γ))
,
Ù
¥
é
BRep
(Γ)
¥
é
–
(
X,f
),(
Y,g
) = Φ
−
Γ
,v
(
X,f
)
X
½
Â
2.9(2),
´
BRep
(
σ
−
v
(Γ))
¥
é
–
,
é
BRep
(Γ)
¥
Ó
T
,
S
=Φ
−
Γ
,v
(
T
)
X
Ú
n
2.10(2),
´
BRep
(
σ
−
v
(Γ))
¥
Ó
,
BRep
(
σ
−
v
(Γ))
¥
Ó
Ü
¤
´
g
,
Ü
¤
,
X
Ú
n
2.4.
(3)
½
Â
C
¼
f
Φ
∗
Γ
:
BRep
(Γ)
→
BRep
(Γ)
,
Ù
¥
é
BRep
(Γ)
¥
é
–
(
X,f
),(
Y,g
)=Φ
∗
Γ
(
X,f
)
X
½
Â
2.9(3),
´
BRep
(Γ)
¥
é
–
,
é
BRep
(Γ)
¥
Ó
T
,
S
=Φ
∗
Γ
(
T
)
X
Ú
n
2.10(3),
´
BRep
(Γ)
¥
Ó
.
BRep
(Γ)
¥
Ó
Ü
¤
´
g
,
Ü
¤
,
X
Ú
n
2.4.
e
¡
‰
Ñ
!
Ì
‡
½
n
,
=
`
²
üa
‡
¼
f
Œ
Ï
L
C
¼
f
ï
á
˜
‡
ª
.
½
n
2.12
Γ =(
V,E,s,r
)
´
k
•
†
ã
,
v
∈
V
´
Γ
u
:
,
K
v
´
Γ
Â
:
,
σ
−
v
(Γ)=
σ
+
v
(Γ),
…
k
X
e
(
Ø
:
(1)
é
Γ
Banach
L
«
(
X,f
),
k
Φ
−
Γ
,v
(
X,f
) = Φ
∗
σ
+
v
(Γ)
(Φ
+
Γ
,v
(Φ
∗
Γ
(
X,f
)))
.
(2)
(
X,f
),(
X
0
,f
0
)
´
Γ
Banach
L
«
,
T
∈
Hom
((
X,f
)
,
(
X
0
,f
0
)),
K
Φ
−
Γ
,v
(
T
) = Φ
∗
σ
+
v
(Γ)
(Φ
+
Γ
,v
(Φ
∗
Γ
(
T
)))
.
y
²
du
σ
+
v
(
V
) =
V
=
σ
−
v
(
V
),
E
v
=
E
v
,
K
σ
+
v
(
E
) = (
E
\
E
v
)
[
E
v
= (
E
\
E
v
)
[
E
v
=
σ
−
v
(
E
)
,
DOI:10.12677/pm.2022.12101941817
n
Ø
ê
Æ
U
Z
u
§
Ü
H
σ
−
v
(Γ) =
σ
+
v
(Γ).
(1)
P
(
Z,ϕ
) = Φ
∗
Γ
(
X,f
)
´
Γ
Banach
L
«
,
K
Z
= (
Z
u
)
u
∈
V
= (
X
∗
u
)
u
∈
V
,ϕ
= (
ϕ
β
)
β
∈
E
= (
f
∗
β
)
β
∈
E
.
P
(
W,ψ
) = Φ
+
Γ
,v
(
Z,ϕ
)
´
σ
+
v
(Γ)
Banach
L
«
,
d
½
Â
Œ
±
†
y
W
v
= ker
b
h
v
=
{
(
x
∗
r
(
α
)
)
α
∈
E
v
∈
M
α
∈
E
v
X
∗
r
(
α
)
:
X
α
∈
E
v
f
∗
α
(
x
∗
r
(
α
)
) = 0
}
.
Ù
¥
b
h
v
X
½
Â
2.9(2),
u
∈
V
,
u
6
=
v
ž
,
W
u
=
Z
u
=
X
∗
u
.
é
β
∈
E
v
=
E
v
,
k
ψ
β
((
x
∗
r
(
α
)
)
α
∈
E
v
) =
x
∗
r
(
β
)
,x
∗
r
(
α
)
∈
X
∗
r
(
α
)
.
β
∈
E
\
E
v
ž
,
ψ
β
=
ϕ
β
=
f
∗
β
.
P
(
Y,g
) = Φ
∗
σ
+
v
(Γ)
(
W,ψ
)
´
σ
+
v
(Γ)
Banach
L
«
,
K
Y
= (
Y
u
)
u
∈
σ
+
v
(
V
)
= (
W
∗
u
)
u
∈
σ
+
v
(
V
)
,g
= (
g
β
)
β
∈
σ
+
v
(
E
)
= (
ψ
∗
β
)
β
∈
σ
+
v
(
E
)
.
Y
v
=
W
∗
v
= (ker
b
h
v
)
∗
,
…
u
∈
V
,
u
6
=
v
ž
,
Y
u
=
W
∗
u
=
X
∗∗
u
.
é
β
∈
E
v
,
k
β
∈
E
v
,
K
g
β
=
ψ
∗
β
∈
B
(
X
∗∗
r
(
β
)
,W
∗
v
) =
B
(
X
∗∗
r
(
β
)
,
(ker
b
h
v
)
∗
).
é
?
¿
F
∈
X
∗∗
r
(
β
)
,
é
?
¿
(
x
∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
v
=
W
v
,
k
(
g
β
F
)((
x
∗
r
(
α
)
)
α
∈
E
v
) = (
ψ
∗
β
F
)((
x
∗
r
(
α
)
)
α
∈
E
v
) =
F
(
ψ
β
((
x
∗
r
(
α
)
)
α
∈
E
v
)) =
F
(
x
∗
r
(
β
)
)
.
é
β
∈
E
\
E
v
,
K
β
∈
E
\
E
v
=
E
\
E
v
,
g
β
=
ψ
∗
β
=
f
∗∗
β
=
f
∗∗
β
.
Ï
d
(
Y,g
) = Φ
−
Γ
,v
(
X,f
),
=
Φ
−
Γ
,v
(
X,f
) = Φ
∗
σ
+
v
(Γ)
(Φ
+
Γ
,v
(Φ
∗
Γ
(
X,f
)))
.
(2)
P
R
= Φ
∗
Γ
(
T
),
Œ
R
= (
R
u
)
u
∈
V
∈
Hom
((
Z
0
,ϕ
0
)
,
(
Z,ϕ
)),
…
é
?
¿
u
∈
V
,
k
R
u
=
T
∗
u
:
Z
0
u
= (
X
0
u
)
∗
→
Z
u
=
X
∗
u
.
P
L
= Φ
+
Γ
,v
(
R
),
Œ
L
= (
L
u
)
u
∈
V
∈
Hom
((
W
0
,ψ
0
)
,
(
W,ψ
)),
d
½
Â
Œ
±
†
y
L
v
:
W
0
v
= ker
b
h
0
v
→
W
v
= ker
b
h
v
,L
v
((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
T
∗
r
(
α
)
x
0∗
r
(
α
)
)
α
∈
E
v
,
Ù
¥
(
x
0∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
0
v
.
u
∈
V
,
u
6
=
v
ž
,
k
L
u
=
R
u
=
T
∗
u
:
W
0
u
=
Z
0
u
= (
X
0
u
)
∗
→
W
u
=
Z
u
=
X
∗
u
.
DOI:10.12677/pm.2022.12101941818
n
Ø
ê
Æ
U
Z
u
§
Ü
H
P
S
= Φ
∗
σ
+
v
(Γ)
(
L
),
Œ
S
= (
S
u
)
u
∈
V
∈
Hom
((
Y,g
)
,
(
Y
0
,g
0
)),
…
é
?
¿
u
∈
V
,
k
S
u
=
L
∗
u
:
Y
u
=
W
∗
u
→
Y
0
u
= (
W
0
u
)
∗
.
S
v
=
L
∗
v
∈
B
(
Y
v
,Y
0
v
) =
B
(
W
∗
v
,
(
W
0
v
)
∗
) =
B
((ker
b
h
v
)
∗
,
(ker
b
h
0
v
)
∗
).
é
?
¿
F
∈
Y
v
,
é
?
¿
(
x
0∗
r
(
α
)
)
α
∈
E
v
∈
ker
b
h
0
v
,
k
(
S
v
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) = (
L
∗
v
F
)((
x
0∗
r
(
α
)
)
α
∈
E
v
) =
F
(
L
v
((
x
0∗
r
(
α
)
)
α
∈
E
v
)) =
F
((
T
∗
r
(
α
)
x
0∗
r
(
α
)
)
α
∈
E
v
)
.
u
∈
V
,
u
6
=
v
ž
,
S
u
=
L
∗
u
=
T
∗∗
u
.
Ï
d
S
= Φ
−
Γ
,v
(
T
),
=
Φ
−
Γ
,v
(
T
) = Φ
∗
σ
+
v
(Γ)
(Φ
+
Γ
,v
(Φ
∗
Γ
(
T
)))
.
3.
‡
¼
f
N
“
ê
5
Ÿ
½
Â
3.1
[12]
Γ=(
V,E,s,r
)
´
k
•
†
ã
,(
X,f
)
´
Γ
Banach
L
«
.
v
∈
V
´
Γ
Â
:
.
e
X
α
∈
E
v
Im
f
α
´
X
v
4
f
˜
m
,
K
¡
(
X,f
)
3
v
´
4
;
e
X
α
∈
E
v
Im
f
α
=
X
v
,
K
¡
(
X,f
)
3
v
´
÷
.
d
þ
ã
½
Â
†
Œ
X
e
·
K
3.2
Γ=(
V,E,s,r
)
´
k
•
†
ã
,(
X,f
)
´
Γ
Banach
L
«
.
v
∈
V
´
Γ
Â
:
,
h
v
X
½
Â
2.9(1),
K
(1)(
X,f
)
3
v
´
4
⇔
Im
h
v
´
X
v
4
f
˜
m
;
(2)(
X,f
)
3
v
´
÷
⇔
h
v
´
÷
.
Ú
n
3.3
Γ = (
V,E,s,r
)
´
k
•
†
ã
,(
X,f
)
´
Γ
Banach
L
«
.
v
∈
V
´
Γ
Â
:
,
K
Φ
+
Γ
,v
(
X,f
) = 0
⇔
é
?
¿
u
∈
V,u
6
=
v,
k
X
u
= 0
.
d
ž
,
(1)
e
(
X,f
)
„
´
Ø
Œ
©
)
,
K
X
v
∼
=
C
;
(2)
e
(
X,f
)
„
3
v
´
÷
,
K
(
X,f
) = 0.
y
²
P
Φ
+
Γ
,v
(
X,f
) = (
Y,g
),
Ù
¥
Y
v
= ker
h
v
,
h
v
X
½
Â
2.9(1),
…
u
∈
V
,
u
6
=
v
ž
,
Y
u
=
X
u
.
e
Φ
+
Γ
,v
(
X,f
) = 0,
K
é
?
¿
u
∈
V
,
u
6
=
v
,
k
X
u
=
Y
u
= 0.
e
é
?
¿
u
∈
V
,
u
6
=
v
,
k
X
u
=0,
K
Y
u
=
X
u
=0.
du
v
´
Γ
Â
:
,
K
é
?
¿
α
∈
E
v
,
s
(
α
)
6
=
v
,
X
s
(
α
)
= 0.
Ï
d
Y
v
= ker
h
v
⊆
M
α
∈
E
v
X
s
(
α
)
= 0,
=
Y
v
= 0.
l
Φ
+
Γ
,v
(
X,f
) = (
Y,g
) = 0.
d
ž
,
X
u
=
n
X
v
,u
=
v,
0
,u
6
=
v,
u
∈
V
,
…
é
?
¿
α
∈
E
,
k
f
α
= 0.
DOI:10.12677/pm.2022.12101941819
n
Ø
ê
Æ
U
Z
u
§
Ü
H
(1)
(
X,f
)
„
´
Ø
Œ
©
)
,
K
(
X,f
)
6
=0,
X
v
6
= 0.
e
dim
X
v
≥
2,
Œ
X
v
=
X
1
L
X
2
,
Ù
¥
X
1
,X
2
´
X
v
š
"
4
f
˜
m
.
-
Y
u
=
n
X
1
,u
=
v,
0
,u
6
=
v,
Z
u
=
n
X
2
,u
=
v,
0
,u
6
=
v,
u
∈
V,
…
é
?
¿
α
∈
E
,
-
g
α
=0,
h
α
=0.
-
Y
=(
Y
u
)
u
∈
V
,
g
=(
g
α
)
α
∈
E
,
Z
=(
Z
u
)
u
∈
V
,
h
=(
h
α
)
α
∈
E
,
K
(
Y,g
),(
Z,h
)
Ñ
´
Γ
š
"
Banach
L
«
,
…
(
X,f
)=(
Y,g
)
L
(
Z,h
),
ù
†
(
X,f
)
´
Ø
Œ
©
)
g
ñ
,
dim
X
v
= 1,
Ï
d
X
v
∼
=
C
.
(2)
(
X,f
)
„
3
v
´
÷
,
K
X
v
=
X
α
∈
E
v
Im
f
α
= 0,
X
= 0,
=
(
X,f
) = 0.
Ú
n
3.4
Γ=(
V,E,s,r
)
´
k
•
†
ã
,(
X,f
),(
Y,g
)
´
Γ
Banach
L
«
,
…
(
X,f
)
∼
=
(
Y,g
).
v
∈
V
´
Γ
Â
:
.
(1)
e
(
X,f
)
3
v
´
4
,
K
(
Y,g
)
3
v
•
´
4
;
(2)
e
(
X,f
)
3
v
´
÷
,
K
(
Y,g
)
3
v
•
´
÷
.
y
²
du
(
X,f
)
∼
=
(
Y,g
),
K
•
3
Ó
T
=(
T
u
)
u
∈
V
∈
Hom
((
X,f
)
,
(
Y,g
)),
=
é
?
¿
u
∈
V
,
T
u
∈
B
(
X
u
,Y
u
)
´
Ó
Ž
f
,
…
é
?
¿
α
∈
E
,
k
T
r
(
α
)
f
α
=
g
α
T
s
(
α
)
,
K
f
α
T
−
1
s
(
α
)
=
T
−
1
r
(
α
)
g
α
.
é
?
¿
α
∈
E
v
,
k
r
(
α
) =
v
,
q
é
?
¿
y
s
(
α
)
∈
Y
s
(
α
)
,
-
x
s
(
α
)
=
T
−
1
s
(
α
)
(
y
s
(
α
)
)
∈
X
s
(
α
)
,
=
y
s
(
α
)
=
T
s
(
α
)
(
x
s
(
α
)
),
K
X
α
∈
E
v
g
α
(
y
s
(
α
)
) =
X
α
∈
E
v
g
α
T
s
(
α
)
(
x
s
(
α
)
) =
X
α
∈
E
v
T
r
(
α
)
f
α
(
x
s
(
α
)
)
=
X
α
∈
E
v
T
v
f
α
(
x
s
(
α
)
) =
T
v
X
α
∈
E
v
f
α
(
x
s
(
α
)
)
∈
T
v
(
X
α
∈
E
v
Im
f
α
)
,
X
α
∈
E
v
Im
g
α
⊆
T
v
(
X
α
∈
E
v
Im
f
α
).
Ó
n
Œ
y
X
α
∈
E
v
Im
f
α
⊆
T
−
1
v
(
X
α
∈
E
v
Im
g
α
),
K
T
v
(
X
α
∈
E
v
Im
f
α
)
⊆
X
α
∈
E
v
Im
g
α
,
X
α
∈
E
v
Im
g
α
=
T
v
(
X
α
∈
E
v
Im
f
α
).
(1)
e
(
X,f
)
3
v
´
4
,
K
X
α
∈
E
v
Im
f
α
´
X
v
4
f
˜
m
.
du
T
v
´
Ó
Ž
f
,
K
X
α
∈
E
v
Im
g
α
=
T
v
(
X
α
∈
E
v
Im
f
α
)
´
Y
v
4
f
˜
m
,
(
Y,g
)
3
v
´
4
.
(2)
e
(
X,f
)
3
v
´
÷
,
K
X
α
∈
E
v
Im
f
α
=
X
v
.
du
T
v
´
Ó
Ž
f
,
K
X
α
∈
E
v
Im
g
α
=
T
v
(
X
α
∈
E
v
Im
f
α
)
=
T
v
(
X
v
) =
Y
v
,
(
Y,g
)
3
v
´
÷
.
Ú
n
3.5
Γ=(
V,E,s,r
)
´
k
•
†
ã
,(
X,f
)
´
Γ
Banach
L
«
.
v
∈
V
´
Γ
Â
:
,
K
N
Φ
+
Γ
,v
:
End
(
X,f
)
→
End
(Φ
+
Γ
,v
(
X,f
))
´
‡
“
ê
N
.
y
²
T
∈
End
(
X,f
),
S
∈
End
(
X,f
),
λ
∈
C
.
DOI:10.12677/pm.2022.12101941820
n
Ø
ê
Æ
U
Z
u
§
Ü
H
é
?
¿
(
x
s
(
α
)
)
α
∈
E
v
∈
Y
v
,
k
(Φ
+
Γ
,v
(
T
+
S
))
v
((
x
s
(
α
)
)
α
∈
E
v
) = ((
T
+
S
)
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
= ((
T
s
(
α
)
+
S
s
(
α
)
)
x
s
(
α
)
)
α
∈
E
v
= (
T
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
+(
S
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
= (Φ
+
Γ
,v
T
)
v
((
x
s
(
α
)
)
α
∈
E
v
)+(Φ
+
Γ
,v
S
)
v
((
x
s
(
α
)
)
α
∈
E
v
)
= ((Φ
+
Γ
,v
T
)
v
+(Φ
+
Γ
,v
S
)
v
)((
x
s
(
α
)
)
α
∈
E
v
) = (Φ
+
Γ
,v
T
+Φ
+
Γ
,v
S
)
v
((
x
s
(
α
)
)
α
∈
E
v
)
,
(Φ
+
Γ
,v
(
TS
))
v
((
x
s
(
α
)
)
α
∈
E
v
) = ((
TS
)
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
= (
T
s
(
α
)
S
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
= (Φ
+
Γ
,v
T
)
v
((
S
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
) = (Φ
+
Γ
,v
T
)
v
(Φ
+
Γ
,v
S
)
v
((
x
s
(
α
)
)
α
∈
E
v
) = ((Φ
+
Γ
,v
T
)(Φ
+
Γ
,v
S
))
v
((
x
s
(
α
)
)
α
∈
E
v
)
,
(Φ
+
Γ
,v
(
λT
))
v
((
x
s
(
α
)
)
α
∈
E
v
) = ((
λT
)
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
=
λ
(
T
s
(
α
)
x
s
(
α
)
)
α
∈
E
v
=
λ
(Φ
+
Γ
,v
T
)
v
((
x
s
(
α
)
)
α
∈
E
v
) = (
λ
Φ
+
Γ
,v
T
)
v
((
x
s
(
α
)
)
α
∈
E
v
)
,
K
(Φ
+
Γ
,v
(
T
+
S
))
v
= (Φ
+
Γ
,v
T
+Φ
+
Γ
,v
S
)
v
,
(Φ
+
Γ
,v
(
TS
))
v
= ((Φ
+
Γ
,v
T
)(Φ
+
Γ
,v
S
))
v
,
(Φ
+
Γ
,v
(
λT
))
v
= (
λ
Φ
+
Γ
,v
T
)
v
.
é
u
∈
V
,
u
6
=
v
,
k
(Φ
+
Γ
,v
(
T
+
S
))
u
= (
T
+
S
)
u
=
T
u
+
S
u
= (Φ
+
Γ
,v
T
)
u
+(Φ
+
Γ
,v
S
)
u
= (Φ
+
Γ
,v
T
+Φ
+
Γ
,v
S
)
u
,
(Φ
+
Γ
,v
(
TS
))
u
= (
TS
)
u
=
T
u
S
u
= (Φ
+
Γ
,v
T
)
u
(Φ
+
Γ
,v
S
)
u
= ((Φ
+
Γ
,v
T
)(Φ
+
Γ
,v
S
))
u
,
(Φ
+
Γ
,v
(
λT
))
u
= (
λT
)
u
=
λT
u
=
λ
(Φ
+
Γ
,v
T
)
u
= (
λ
Φ
+
Γ
,v
T
)
u
,
Φ
+
Γ
,v
(
T
+
S
) = Φ
+
Γ
,v
T
+Φ
+
Γ
,v
S,
Φ
+
Γ
,v
(
TS
) = Φ
+
Γ
,v
(
T
)Φ
+
Γ
,v
(
S
)
,
Φ
+
Γ
,v
(
λT
) =
λ
Φ
+
Γ
,v
(
T
)
.
n
þ
Œ
,Φ
+
Γ
,v
:
End
(
X,f
)
→
End
(Φ
+
Γ
,v
(
X,f
))
´
‡
“
ê
N
.
½
n
3.6
Γ=(
V,E,s,r
)
´
k
•
†
ã
,
v
∈
V
´
Γ
Â
:
,(
X,f
)
´
Γ
Banach
L
«
.
e
(
X,f
)
3
v
´
÷
,
K
N
Φ
+
Γ
,v
:
End
(
X,f
)
→
End
(Φ
+
Γ
,v
(
X,f
))
´
‡
“
ê
Ó
.
DOI:10.12677/pm.2022.12101941821
n
Ø
ê
Æ
U
Z
u
§
Ü
H
y
²
P
(
Y,g
) = Φ
+
Γ
,v
(
X,f
),
d
Ú
n
3.5
Œ
•
N
Φ
+
Γ
,v
:
End
(
X,f
)
→
End
(
Y,g
)
´
‡
“
ê
N
.
k
y
Φ
+
Γ
,v
´
ü
.
T
∈
End
(
X,f
)
÷
v
S
=Φ
+
Γ
,v
(
T
)=0.
u
∈
V
,
u
6
=
v
ž
,
k
T
u
=
S
u
=0.
du
v
´
Γ
Â
:
,
K
é
?
¿
α
∈
E
v
,
r
(
α
)=
v
,
s
(
α
)
6
=
v
,
T
s
(
α
)
=0.
é
?
¿
x
s
(
α
)
∈
X
s
(
α
)
,
d
u
T
∈
End
(
X,f
),
K
T
v
(
X
α
∈
E
v
f
α
(
x
s
(
α
)
)) =
T
r
(
α
)
(
X
α
∈
E
v
f
α
(
x
s
(
α
)
)) =
X
α
∈
E
v
T
r
(
α
)
f
α
(
x
s
(
α
)
) =
X
α
∈
E
v
f
α
T
s
(
α
)
(
x
s
(
α
)
) = 0
.
du
(
X,f
)
3
v
´
÷
,
=
X
α
∈
E
v
Im
f
α
=
X
v
,
K
T
v
= 0,
T
= (
T
u
)
u
∈
V
= 0,
¤
±
Φ
+
Γ
,v
´
ü
.
e
y
Φ
+
Γ
,v
´
÷
.
S
=(
S
u
)
u
∈
V
∈
End
(
Y,g
).
é
u
∈
V
,
u
6
=
v
,
-
T
u
=
S
u
.
du
é
?
¿
α
∈
E
v
,
s
(
α
)
6
=
v
,
qdu
(
X,f
)
3
v
´
÷
,
=
X
α
∈
E
v
Im
f
α
=
X
v
,
K
Œ
½
Â
Ž
f
T
v
:
X
v
→
X
v
:
T
v
(
X
α
∈
E
v
f
α
(
x
s
(
α
)
)) =
X
α
∈
E
v
f
α
T
s
(
α
)
(
x
s
(
α
)
)
,x
s
(
α
)
∈
X
s
(
α
)
.
e
•
3
x
0
s
(
α
)
∈
X
s
(
α
)
,
α
∈
E
v
,
¦
X
α
∈
E
v
f
α
(
x
s
(
α
)
) =
X
α
∈
E
v
f
α
(
x
0
s
(
α
)
),
K
h
v
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
) =
X
α
∈
E
v
f
α
(
x
s
(
α
)
−
x
0
s
(
α
)
) =
X
α
∈
E
v
f
α
(
x
s
(
α
)
)
−
X
α
∈
E
v
f
α
(
x
0
s
(
α
)
) = 0
Ù
¥
h
v
X
½
Â
2.9(1),
=
(
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
∈
ker
h
v
=
Y
v
.
S
v
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
)
∈
S
v
(
Y
v
)
⊆
Y
v
= ker
h
v
,
=
0 =
h
v
(
S
v
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
)) =
X
β
∈
E
v
f
β
g
β
(
S
v
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
))
.
é
?
¿
β
∈
E
v
,
K
r
(
β
) =
s
(
β
) =
v
,
s
(
β
) =
r
(
β
)
6
=
v
.
du
S
= (
S
u
)
u
∈
V
∈
End
(
Y,g
),
K
g
β
(
S
v
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
)) =
g
β
S
s
(
β
)
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
) =
S
r
(
β
)
g
β
((
x
s
(
α
)
−
x
0
s
(
α
)
)
α
∈
E
v
)
=
S
s
(
β
)
(
x
s
(
β
)
−
x
0
s
(
β
)
) =
T
s
(
β
)
(
x
s
(
β
)
−
x
0
s
(
β
)
)
,
0 =
X
β
∈
E
v
f
β
T
s
(
β
)
(
x
s
(
β
)
−
x
0
s
(
β
)
) =
X
β
∈
E
v
f
β
T
s
(
β
)
x
s
(
β
)
−
X
β
∈
E
v
f
β
T
s
(
β
)
x
0
s
(
β
)
,
=
X
β
∈
E
v
f
β
T
s
(
β
)
x
s
(
β
)
=
X
β
∈
E
v
f
β
T
s
(
β
)
x
0
s
(
β
)
,
T
v
´
(
½
.
w
,
T
v
´
‚
5
.
du
(
X,f
)
3
v
´
÷
,
K
h
v
´
÷
.
d
m
N
½
n
,
•
3
~
ê
M>
0,
¦
é
?
¿
(
x
s
(
α
)
)
α
∈
E
v
DOI:10.12677/pm.2022.12101941822
n
Ø
ê
Æ
U
Z
u
§
Ü
H
∈
M
α
∈
E
v
X
s
(
α
)
,
k
(
x
s
(
α
)
)
α
∈
E
v
k≤
M
k
h
v
((
x
s
(
α
)
)
α
∈
E
v
)
k
=
M
k
X
α
∈
E
v
f
α
(
x
s
(
α
)
)
k
.
du
Γ
´
k
•
†
ã
,
K
E
v
´
k
•
8
,
Œ
E
v
´
K
8
.
é
?
¿
x
∈
X
v
,
du
(
X,f
)
3
v
´
÷
,
=
X
α
∈
E
v
Im
f
α
=
X
v
,
K
•
3
(
x
s
(
α
)
)
α
∈
E
v
∈
M
α
∈
E
v
X
s
(
α
)
,
¦
x
=
X
α
∈
E
v
f
α
(
x
s
(
α
)
).
du
é
Ž
f
(
f
α
T
s
(
α
)
)
α
∈
E
v
∈
B
(
M
α
∈
E
v
X
s
(
α
)
,
M
α
∈
E
v
X
r
(
α
)
),
K
k
T
v
x
k
=
k
T
v
(
X
α
∈
E
v
f
α
(
x
s
(
α
)
))
k
=
k
X
α
∈
E
v
f
α
T
s
(
α
)
(
x
s
(
α
)
)
k≤
X
α
∈
E
v
k
f
α
T
s
(
α
)
(
x
s
(
α
)
)
k
≤
K
2
(
X
α
∈
E
v
k
f
α
T
s
(
α
)
(
x
s
(
α
)
)
k
2
)
1
2
=
K
2
k
((
f
α
T
s
(
α
)
)
α
∈
E
v
)((
x
s
(
α
)
)
α
∈
E
v
)
k
≤
K
2
k
(
f
α
T
s
(
α
)
)
α
∈
E
v
kk
(
x
s
(
α
)
)
α
∈
E
v
k≤
K
2
k
(
f
α
T
s
(
α
)
)
α
∈
E
v
k·
M
k
X
α
∈
E
v
f
α
(
x
s
(
α
)
)
k
=
K
2
M
k
(
f
α
T
s
(
α
)
)
α
∈
E
v
kk
x
k
,
T
v
∈
B
(
X
v
).
é
?
¿
α
∈
E
v
,
K
r
(
α
) =
v
.
é
?
¿
x
s
(
α
)
∈
X
s
(
α
)
,
-
x
s
(
γ
)
=
n
x
s
(
α
)
,γ
=
α,
0
,γ
6
=
α,
γ
∈
E
v
,
K
T
v
f
α
(
x
s
(
α
)
) =
T
v
(
X
γ
∈
E
v
f
γ
(
x
s
(
γ
)
)) =
X
γ
∈
E
v
f
γ
T
s
(
γ
)
(
x
s
(
γ
)
) =
f
α
T
s
(
α
)
(
x
s
(
α
)
)
,
=
T
r
(
α
)
f
α
=
T
v
f
α
=
f
α
T
s
(
α
)
.
é
?
¿
α
∈
E
\
E
v
,
K
s
(
α
)
6
=
v
,
r
(
α
)
6
=
v
,
T
r
(
α
)
f
α
=
S
r
(
α
)
g
α
=
g
α
S
s
(
α
)
=
f
α
T
s
(
α
)
.
Ï
d
T
= (
T
u
)
u
∈
V
∈
End
(
X,f
).
é
u
∈
V
,
u
6
=
v
,
k
S
u
=
T
u
= (Φ
+
Γ
,v
T
)
u
.
du
S
= (
S
u
)
u
∈
V
∈
End
(
Y,g
),
K
é
?
¿
(
x
s
(
α
)
)
α
∈
E
v
∈
DOI:10.12677/pm.2022.12101941823
n
Ø
ê
Æ
U
Z
u
§
Ü
H
Y
v
,
k
S
v
((
x
s
(
α
)
)
α
∈
E
v
)
∈
Y
v
.
qdu
é
?
¿
β
∈
E
v
,
k
r
(
β
) =
s
(
β
) =
v
,
s
(
β
) =
r
(
β
)
6
=
v
,
K
S
v
((
x
s
(
α
)
)
α
∈
E
v
) = (
g
β
S
v
((
x
s
(
α
)
)
α
∈
E
v
))
β
∈
E
v
= (
g
β
S
s
(
β
)
((
x
s
(
α
)
)
α
∈
E
v
))
β
∈
E
v
= (
S
r
(
β
)
g
β
((
x
s
(
α
)
)
α
∈
E
v
))
β
∈
E
v
= (
S
s
(
β
)
x
s
(
β
)
)
β
∈
E
v
= (
T
s
(
β
)
x
s
(
β
)
)
β
∈
E
v
= (Φ
+
Γ
,v
T
)
v
((
x
s
(
α
)
)
α
∈
E
v
)
,
=
S
v
= (Φ
+
Γ
,v
T
)
v
.
Φ
+
Γ
,v
(
T
) =
S
.
Ï
d
Φ
+
Γ
,v
´
÷
.
n
þ
¤
ã
,
N
Φ
+
Γ
,v
:
End
(
X,f
)
→
End
(Φ
+
Γ
,v
(
X,f
))
´
‡
“
ê
Ó
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(No.11971108)
"
ë
•
©
z
[1]Gabriel,P.(1972)UnzerlegbareDarstellungenI.
ManuscriptaMathematica
,
6
,71-103.
https://doi.org/10.1007/BF01298413
[2]Bernstein,I.N.,Gelfand,I.M.andPonomarev,V.A.(1973)CoxeterFunctorsandGabriel’s
Theorem.
RussianMathematicalSurveys
,
28
,17-32.
https://doi.org/10.1070/RM1973v028n02ABEH001526
[3]Brenner,S.(1967)EndomorphismAlgebrasofVectorSpaceswithDistinguishedSetsofSub-
spaces.
JournalofAlgebra
,
6
,100-114.https://doi.org/10.1016/0021-8693(67)90016-6
[4]Donovan,P.andFreislish,M.R.(1973)TheRepresentationTheoryofFiniteGraphsand
AssociatedAlgebras.In:
CarletonMathematicalLectureNotes
,Vol.5,CarletonUniversity,
Ottawa,1-119.
[5]Dlab,V.andRingel,C.M.(1976)IndecomposableRepresentationsofGraphsandAlgebras.
In:
MemoirsoftheAMS
,Vol.6,AmericanMathematicalSociety,Providence,RI.
https://doi.org/10.1090/memo/0173
[6]Gabriel, P. and Roiter,A.V. (1997)Representations of Finite-Dimensional Algebras. Springer-
Verlag,Berlin.https://doi.org/10.1007/978-3-642-58097-0
[7]Kac,V.G.(1980)InfiniteRootSystems,RepresentationsofGraphsandInvariantTheory.
InventionesMathematicae
,
56
,57-92.https://doi.org/10.1007/BF01403155
[8]Nazarova,L.A.(1973)RepresentationofQuiversofInfiniteType.
IzvestiyaAkademiiNauk
SSSR.SeriyaKhimicheskaya
,
37
,752-791.
[9]Krause,H.andRingel,C.M.(2000)InfiniteLengthModules.Birkhauser,Basel.
https://doi.org/10.1007/978-3-0348-8426-6
DOI:10.12677/pm.2022.12101941824
n
Ø
ê
Æ
U
Z
u
§
Ü
H
[10]Reiten, I.and Ringel,C.M.(2006) InfiniteDimensionalRepresentations ofCanonical Algebras.
CanadianJournalofMathematics
,
58
,180-224.https://doi.org/10.4153/CJM-2006-008-1
[11]Kruglyak,S.A.andRoiter,A.V.(2005)LocallyScalarRepresentationsofGraphsintheCat-
egoryofHilbertSpaces.
FunctionalAnalysisandItsApplications
,
39
,91-105.
https://doi.org/10.1007/s10688-005-0022-8
[12]Enomoto, M. and Watatani, Y. (2009)Indecomposable Representations of Quivers on Infinite-
DimensionalHilbertSpaces.
JournalofFunctionalAnalysis
,
256
,959-991.
https://doi.org/10.1016/j.jfa.2008.12.011
DOI:10.12677/pm.2022.12101941825
n
Ø
ê
Æ