设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(11),8355-8367
PublishedOnlineNovemb er2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.1111884
Äu‡Âñ8+¡ECahn-Hilliard•§g
·Ak•{
XXX©©©ýýý
1
,•••••••••
2
,ŠŠŠŠŠŠ___
3
,___÷÷÷
1∗
1
nóŒÆêÆÆ§ìÜ
2
S “‰ŒÆêƆÚOÆ§S Ä
3
ìÜUÆU†Äåó§X§ìÜA¥
ÂvFϵ2022c1028F¶¹^Fϵ2022c1123F¶uÙFϵ2022c1130F
Á‡
Cahn-Hilliard•§•oš‚5 ‡©•§§3Ôn§)Ô§zÆˆ‡+•Ñk2•A
^§ÏdïÄÙꊕ{äk¢SA^dŠ"©ÏL©ÛCahn-Hilliard•§˜«êŠ
‚ª§y²ÙØOÚÃ^‡Uþ-½5§¿…JÑ˜‡ÄuØO˜mÚžm
g·Aüѧ=‡Âñ8+¡E£superconvergentclusterrecovery§{¡•SCR¤•{§^
uꊦ)Cahn-Hilliard•§§TüÑ̇gŽ´ÄuØO(J5››‚Œ§l
Œ±kü$Oޤ§•ÏLŽ~y²SCRŽ{p5Ú-½5"
'…c
ØO§Cahn-Hilliard•§§g·A§SCR§k•{
TheSCR-BasedAdaptiveFiniteElement
MethodfortheCahn-HilliardEquation
WenyanTian
1
,YaoyaoChen
2
,ZhaoxiaMeng
3
,Hong’enJia
1∗
1
CollegeofMathematics,TaiyuanUniversityofTechnology,TaiyuanShanxi
2
SchoolofMathematicsandStatistics,AnhuiNormalUniversity,WuhuAnhui
3
DepartmentofEnergyandPowerEngineering,ShanxiInstituteofEnergy,JinzhongShanxi
∗ÏÕŠö
©ÙÚ^:X©ý,•••,ŠŠ_,_÷.Äu‡Âñ8+¡ECahn-Hilliard•§g·Ak•{[J].A^êÆ
?Ð,2022,11(11):8355-8367.DOI:10.12677/aam.2022.1111884
X©ý
Received:Oct.28
th
,2022;accepted:Nov.23
rd
,2022;published:Nov.30
th
,2022
Abstract
TheCahn-Hilliardequationisafourth-ordernonlinearpartialdifferentialequation
withawiderangeofapplicationsinvariousfieldssuchasphysics,biology,andchem-
istry,soitisofpracticalapplicationtostudyitsnumericalmethods.Inthisstudy,
weanalyzedtheCahn-Hilliardequationinasecond-ordernumericalformat,demon-
strateditserrorestimateandunconditionalenergystability,andsuggestedaspatial
andtemporaladaptivestrategybasedontheposteriorerrorestimate,namelythe
superconvergentclusterrecovery(SCR)method,fornumericalsolutions.
Keywords
Error Estimate,TheCahn-Hilliard Equation,Adaptive,SCR,FiniteElement Method
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ïÄCahn-Hilliard•§ULãXeµ





u
t
= −ε∆
2
u+
1
ε
∆f(u)(x,t) ∈Ω×(0,T],
∂
n
u= ∂
n
(−ε∆u+
1
ε
f(u)) = 0,(x,t) ∈∂Ω×(0,T],
u(x,0) = u
0
x∈Ω.
(1.1)
3þã•§¥§ΩL«R
d
(d= 2,3)¥äkLipschitz>.∂Ωk.•¶nL«Ω ü {
•þ¶u L«ƒ |Cþ¶f(u)´˜‡š‚5¼ê¶ε´˜‡~ê¶t´•ªžm"
Cahn-Hilliard•§åu1958cCahnÚHillardmM5Ø©[1]§£ã9寥ü«ÔŸ
ƒp*Ñy–§ Œ±^5[N¥E,ƒ©lÚozy–[2–5](Xµá‰ÆÚ6NÄå
Æ¥)"
î8•ާNõŠöéCahn-Hilliard•§ƒ'nØ9Ùꊕ{?1ïÄ"BarrettÚElliott
JÑ^NÚšNk••{5ïÄCahn-Hilliard•§[6–8]"ShenÚXuJÑCahn-Hilliard•
§Iþ9ÏCþ(SAV)•{[9]"ZhaoÚXiaoòL¡k•{(SFEM)†-½ŒÛª•{ƒ(
Ü[10]§Ù¥æ^g·A•{?1ïÄ"3[11]¥g·A•{éAНK?1ïÄ"
3[12]¥§òÄuSCRØO Žf^uƒ|Cþڄݼê˜mlÑ"3[13]¥§ æ
DOI:10.12677/aam.2022.11118848356A^êÆ?Ð
X©ý
^g·AžmÚ•{éCahn-Hilliard•§?1ïÄ"
3©ïÄ.¥§duëêε).¡´I‡'Ù§Ü©æ^•°[‚y©§
±9êŠ[I‡é•žmâUˆ-½G§Ïæ^g·AüÑ"©¤¦^SCR{•
дdHuangÚYi[14]JÑ§¿…òÙA^uAllen-Cahn•§[15]"©(Xeµ312!
¥§JÑCahn-Hilliard•§lÑ‚ª[16]§©ÛÃ^‡Uþ-½5ÚØO"3
13!¥§0SCRŽfžmÚ˜mlÑzØOf"314!¥§ÏLA‡êŠŽ~`²
g·A§Sk5"
2.Uþ-½lÑ.
•;•3z‡žmÚ•þ¦)o•§§Ú\˜‡#Cþµ=:−ε∆u+
1
ε
f(u)¿ò(1.1)
L«•µ











u
t
= ∆µ(x,t) ∈Ω×(0,T],
µ= −ε∆u+
1
ε
f(u)(x,t) ∈Ω×(0,T],
∂
n
u= ∂
n
µ= 0(x,t) ∈∂Ω×(0,T],
u(x,0) = u
0
x∈Ω,
(2.1)
Ù¥ε>0´˜‡ëê§“LáƒmLÞ.¡þݧuL«ƒ|Cþ§u
0
∈H
1
(Ω)(t=0)´
Щ^‡§š‚5‘f(u)=F
0
(u)§Ù¥F(u)=
1
4
(u
2
−1)
2
´˜‡V²³¼ê"¢Sþ§Cahn-
Hilliard•§Œ±wŠ´gdU¼êE(u)H
−1
−FÝ6µE(u)=
R
Ω
(
1
ε
F(u)+
ε
2
|∇u|
2
)dx§¿
Œ±íÑCahn-Hilliard•§÷v±eUþ5Ƶ
d
dt
E(u) = −
Z
Ω
|∇(−ε∆u+
1
ε
f(u))|
2
dx≤0,(2.2)
ù¿›XgdUE(u)3žmþ÷vUþPòA5E(u)(t
n+1
) ≤E(u)(t
n
),∀n∈N"
3!¥§••BQã0˜ò3©¥¦^ÎÒ"IOSobolev˜mò^H
m
=
W
m,2
(Ω)5L«§H
m
éA‰êŒ ±^k·k
m
5L«§L
2
‰êÚSÈ©O^k·kÚ(·,·)L«"
d§^k·k
∞
L«L
∞
‰ê"
T
h
= {e
h
}´•Ω¥/G5Kn/§h´¤ke
h
ƒ¥•Œ†»"-V
h
•©ã‚5ëY
¼êƒéAk•‘˜m§˜mV
h
ļê´IOLagrangeļêφ
z
(z∈N
h
§Ù¥N
h
“Ln
/º:8Ü)µV
h
= {v∈H
1
(Ω) :v|
e
h
∈P
1
(e
h
),∀e
h
∈T
h
},Óž§½ÂV
0
h
= V
h
T
H
1
0
(Ω)"d
§éu¢êp≥0Ú÷v^‡¤kv(t)§½Â±e‰êµkvk
L
p
(0,T;X)
= (
R
T
0
kv(t)k
p
X
dt)
1
2
.
(2.1)f/ª•µ¦)u∈L
∞
(0,T;H
1
(Ω))§w∈L
2
(0,T,;H
1
(Ω))§
(
(u
t
,w)+(∇µ,∇w) = 0∀w∈H
1
(Ω),
(µ,v) = ε(∇u,∇v)+
1
ε
(f(u),v)∀v∈H
1
(Ω).
(2.3)
(2.3)ŒlÑ‚ª•µ¦)u
h
∈C
1
(0,T;V
h
)¥§¦



(u
h,t
,w
h
)+(∇µ
h
,∇w
h
) = 0∀w
h
∈V
h
,
(µ
h
,v
h
) = ε(∇u
h
,∇v
h
)+
1
ε
(f(u
h
),v
h
)∀v
h
∈V
h
.
(2.4)
DOI:10.12677/aam.2022.11118848357A^êÆ?Ð
X©ý
ò[0,T]þ!©••0 = t
0
<t
1
<...<t
N
= T•N©§=I
n
:= (t
n−1
,t
n
]"4tL«žmÚ•§
¿…kT= N4t,n= 1,...,N"3dÄ:þlÑ‚ª•µ¦)u
n
h
∈V
n
h
,n= 1,2,...,N§







(
u
n
h
−Π
n
u
n−1
h
4t
,w
h
)+(∇µ
n−
1
2
h
,∇w
h
) = 0∀w
h
∈V
n
h
,
(µ
n−
1
2
h
,v
h
) = ε(∇
c
u
n
h
,∇v
h
)+
1
ε
(f(u
n
h
,u
n−1
h
),v
h
)∀v
h
∈V
n
h
,
(2.5)
Ù¥
c
u
n
h
§Úf(u
n
h
,u
n−1
h
)©O½Â•µ
c
u
n
h
=
u
n
h
+Π
n
u
n−1
h
2
,
f(u
n
h
,u
n−1
h
) =
(u
n
h
)
3
+(u
n
h
)
2
Π
n
u
n−1
h
+u
n
h
(Π
n
u
n−1
h
)
2
+(Π
n
u
n−1
h
)
3
4
−
u
n
h
+Π
n
u
n−1
h
2
,
(2.6)
µ
n−
1
2
´¥:t
n−
1
2
= (t
n−1
+t
n
)/2CqЧΠ
n
“LŠk•˜mV
h
"
½n2.1.lÑ‚ª(2.5)-(2.6)´Ã^‡Uþ-½§Ù)÷v
E(u
n
h
) ≤E(u
n−1
h
),∀n≥1.
y².-w
h
= 4tµ
n−
1
2
Úv
h
= u
n
−u
n−1
3(2.5)¥
4tk∇µ
n−
1
2
h
k
2
+E(u
n
h
)−E(u
n−1
h
) = 0,
ù¿›X¤JÑlÑ‚ª(2.5)-(2.6)±UþP~5"
•ÑØO§òýÝKŽf½Â•P
h
: H
1
→V
h
§§÷v±e^‡
(∇(P
h
v−v),∇α
h
) = 0,∀α
h
∈V
h
.(2.7)
l©z[17]¥§±eü‡Øª¤á§
kv−P
h
vk≤Ch
2
kvk
2
,k(v−P
h
v)
t
k≤Ch
2
kv
t
k
2
.(2.8)
••BOާ½Â±eØ¼ê§
˜e
n
= P
h
u(t
n
)−u
n
h
,ˆe
n
= u(t
n
)−P
h
u(t
n
),
¯e
n−
1
2
= P
h
µ(t
n−
1
2
)−µ
n−
1
2
h
,ˇe
n−
1
2
= µ(t
n−
1
2
)−P
h
µ(t
n−
1
2
).
ÏL‘È©{‘VÐmª†Young’sØª§N´[18]
kR
n
1
k
2
≤4t
3
Z
t
n
t
n−1
ku
ttt
(t)k
2
dt,kR
n
2
k
2
≤4t
3
Z
t
n
t
n−1
ku
tt
(t)k
2
2
dt,(2.9)
Ù¥
R
n
1
=
u(t
n
)−u(t
n−1
)
4t
−u
t
(t
n−
1
2
),R
n
2
= −4(
u(t
n
)+u(t
n−1
)
2
−u(t
n−
1
2
)).
DOI:10.12677/aam.2022.11118848358A^êÆ?Ð
X©ý
½n2.2.-u
n
h
†u(t
n
)©O´(2.5)-(2.6)Ú(2.1))"@o§éuu∈C
2
(0,T;H
2
(Ω))§k
ku
k
h
−u(t
k
)k+(
4t
ε
k
X
n=0
kµ
n−
1
2
h
−µ(t
n−
1
2
)k
2
)
1
2
6C(ε,T)(K
1
(ε,u)4t
2
+K
2
(ε,u)h
2
),
Ù¥
C(ε,T) ∼exp(T\ε),
K
1
(ε,u) =
√
ε(ku
ttt
k
L
2
(0,T;L
2
)
+ku
tt
k
L
2
(0,T;H
2
)
)+
1
√
ε
(ku
tt
k
L
2
(0,T;L
2
)
+ku
2
t
k
L
2
(0,T;L
2
)
),
K
2
(ε,u) = ku
0
k
2
+
√
εku
t
k
L
2
(0,T;H
2
)
+
1
√
ε
kµk
C(0,T;H
2
)
+kuk
C(0,T;H
2
)
.
y².òt
n−
1
2
?f/ª(2.3)~(2.5)§
1
4t
(˜e
n
−˜e
n−1
,w
h
)+(∇¯e
n−
1
2
,∇w
h
) = (R
n
1
−
1
4t
(I−P
h
)(u(t
n
)−u(t
n−1
)),w
h
),
(¯e
n−
1
2
+ ˇe
n−
1
2
,v
h
) =
ε
2
(∇˜e
n
+∇˜e
n−1
,v
h
)+ε(4R
n
2
,v
h
)+
1
ε
(f(u(t
n−
1
2
))−f(u
n
h
,u
n−1
h
),v
h
),
,©Ow
h
=
1
2
ε4t(˜e
n
+ ˜e
n−1
)Úv
h
= 4t¯e
n−
1
2
§¿òþãü‡ªƒ\
k˜e
n
k
2
−k˜e
n−1
k
2
+
24t
ε
k¯e
n−
1
2
k
2
= 4t(R
n
1
,˜e
n
+ ˜e
n−1
)−(I−P
h
)(u(t
n
)−u(t
n−1
),˜e
n
+ ˜e
n−1
)−24t(R
n
2
,¯e
n−
1
2
)
+
24t
ε
2
(f(u(t
n−
1
2
))−f(u
n
h
,u
n
n−1
),¯e
n−
1
2
)−
24t
ε
(ˇe
n−
1
2
,¯e
n−
1
2
)
:= I+II+III+IV+V,
¦^‘kεCauchyØªÚYoung’sØª§5OI,II,IIIÚVµ
I≤4tkR
n
kk˜e
n
+ ˜e
n−1
k≤
ε4t
4
2
Z
t
n
t
n−1
ku
ttt
(t)k
2
dt+
4t
2ε
k˜e
n
k
2
+
4t
2ε
k˜e
n−1
k
2
,
II≤k(I−P
h
)(u(t
n
)−u(t
n−1
))kk˜e
n
+ ˜e
n−1
k
≤
ε
2
Z
t
n
t
n−1
k(I−P
h
)u
t
(t)k
2
dt+
1
2ε
k˜e
n
k
2
+
1
2ε
k˜e
n−1
k
2
,
III≤34tεkR
n
2
k
2
+
4t
3ε
k¯e
n−
1
2
k
2
≤3ε4t
4
Z
t
n
t
n−1
ku
tt
(t)k
2
2
dt+
4t
3ε
k¯e
n−
1
2
k
2
,
V≤
24t
ε
(
√
3kˇe
n−
1
2
k)(
1
√
3
k¯e
n−
1
2
k) ≤
34t
ε
kˇe
n−
1
2
k
2
+
4t
3ε
k¯e
n−
1
2
k
2
.
DOI:10.12677/aam.2022.11118848359A^êÆ?Ð
X©ý
•{üå„§{•u(t
n
) = u
n
Úu(t
n−
1
2
) = u
n−
1
2
§©Û1o‘IVµ
IV=
24t
ε
2
(
u
n
h
−u
n−1
h
2
−u
n−
1
2
+(u
n−
1
2
)
3
−
(u
n
h
)
3
+(u
n
h
)
2
u
n−1
h
h
+u
n
h
(u
n−1
h
)
2
+(u
n−1
h
)
3
4
)
=
24t
ε
2
[(
u
n
h
−u
n−1
h
2
−u
n−
1
2
)+((u
n−
1
2
)
3
−(
u
n
−u
n−1
2
)
3
)+((
u
n
−u
n−1
2
)
3
−g
n
)
+(g
n
−
(u
n
h
)
3
+(u
n
h
)
2
u
n−1
h
+u
n
h
(u
n−1
h
)
2
+(u
n−1
h
)
3
4
,¯e
n−
1
2
)]
:=
24t
ε
2
(IV
1
+IV
2
+IV
3
+IV
4
,¯e
n−
1
2
),
Ù¥
g
n
=
(u
n
)
3
+(u
n
)
2
u
n−1
+u
n
(u
n−1
)
2
+(u
n−1
)
3
4
.
UY^‘È©{‘VÐm§Cauchy-SchwarzØªÚ(2.9)é±þo‘?1©Û§ѵ
kIV
1
k= k
−˜e
n
−ˆe
n
−˜e
n−1
−ˆe
n−1
+u
n
+u
n−1
2
−u
n−
1
2
k
≤k
˜e
n
+ ˜e
n−1
2
k+k
ˆe
n
+ ˆe
n−1
2
k+4t
3
Z
t
n
t
n−1
ku
tt
(t)k
2
dt,
kIV
2
k≤k3ξ
2
1
(
u
n
+u
n−1
2
−u
n−
1
2
)k≤3ξ
2
1
4t
3
Z
t
n
t
n−1
ku
tt
(t)k
2
dt,
kIV
3
k= k
(u
n
)
3
−(u
n
)
2
u
n−1
−u
n
(u
n−1
)
2
+(u
n−1
)
3
8
k
= k
((u
n
)
2
−(u
n−1
)
2
)(u
n
−u
n−1
)
8
k≤k
ξ
2
4
(u
n
−u
n−1
)
2
k≤
ξ
2
4
4t
3
Z
t
n
t
n−1
ku
2
t
(t)k
2
dt,
Ù¥ξ
1
u(u
n
+u
n−1
)/2Úu
n−
1
2
ƒm§ξ
2
uu
n
Úu
n−1
ƒm§ζ
1
Úζ
2
uu
n−1
Úu
n
ƒm§
kIV
4
k=
1
4
k
2
3
(u
n
)
3
+
1
3
(u
n
+u
n−1
)
3
+
2
3
(u
n−1
)
3
−
2
3
(u
n
h
)
3
+
1
3
(u
n
h
+u
n−1
h
)
3
+
2
3
(u
n−1
h
)
3
k
= k
1
6
((u
n
)
3
−(u
n
h
)
3
)+
1
6
((u
n−1
)
3
−(u
n−1
h
)
3
)+
1
12
((u
n
+u
n−1
)
3
−(u
n
h
+u
n−1
h
)
3
)k
≤
1
2
kξ
2
3
(u
n
−u
n
h
)k+
1
2
kξ
2
4
(u
n−1
−u
n−1
h
)k+
1
4
kξ
2
5
(u
n
−u
n
h
+u
n−1
−u
n−1
h
)k
≤C(ku
n−1
−u
n−1
h
k+ku
n
−u
n
h
k) ≤C(kˆe
n−1
k+k˜e
n−1
k+kˆe
n
k+k˜e
n
k),
Ù¥ξ
3
uu
n
Úu
n−1
ƒm§ξ
4
uu
n−1
Úu
n−1
h
ƒm§ξ
5
uu
n
+u
n−1
Úu
n
h
+u
n−1
h
ƒm"•
yξ
3
§ξ
4
§ξ
5
•3§I‡÷v^‡ku
n
h
k
∞
≤C, ∀1 ≤n≤N[19]"
DOI:10.12677/aam.2022.11118848360A^êÆ?Ð
X©ý
e5§òØªIV
i
,i= 1,2,3,4Ü¿•IV§Ñ
IV≤
24t
ε
2
(kIV
1
k+kIV
2
k+kIV
3
k+kIV
4
k)k¯e
n−
1
2
k
≤
34t
ε
(k
˜e
n
+ ˜e
n−1
2
k+k
ˆe
n
+ ˆe
n−1
2
k+4t
3
Z
t
n
t
n−1
ku
tt
(t)k
2
dt+3ξ
2
1
4t
3
Z
t
n
t
n−1
ku
tt
(t)k
2
dt
+
ξ
2
4
4t
3
Z
t
n
t
n−1
ku
2
t
(t)k
2
dt+C(kˆe
n−1
k+k˜e
n−1
k+kˆe
n
k+k˜e
n
k))
2
+
4t
3ε
k¯e
n−
1
2
k
2
≤
C4t
4
ε
Z
t
n
t
n−1
ku
tt
(t)k
2
dt+
C4t
4
ε
Z
t
n
t
n−1
ku
2
t
(t)k
2
dt
+C(kˆe
n−1
k
2
+k˜e
n−1
k
2
+kˆe
n
k
2
+k˜e
n
k
2
)+
4t
3ε
k¯e
n−
1
2
k
2
.
ÏLÜ¿ù‘I,II,III,IV,V§¿ln= 1,...,k(k≤T/4t)?1¦Ú§(Ü(2.8)
k˜e
k
k
2
−k˜e
0
k
2
+
4t
ε
k
X
n=1
k¯e
n−
1
2
k
2
≤
1
2
4t
4
εku
ttt
(t)k
2
L
2
(0,T;L
2
)
+
ε
2
Ch
4
ku
t
(t)k
2
L
2
(0,T;H
2
)
+
34t
ε
k
X
n=1
kˇe
n−
1
2
k
2
+
C4t
4
ε
ku
tt
(t)k
2
L
2
(0,T;L
2
)
+C
4t
4
ε
ku
2
t
(t)k
L
2
(0,T;L
2
)
+3ε4t
4
ku
tt
(t)k
2
L
2
(0,T;H
2
)
+C
k
X
n=1
(kˆe
n−1
k
2
+k˜e
n−1
k
2
+kˆe
n
k
2
+k˜e
n
k
2
).
•§A^lÑGronwallÚnÚnØª5¤y²"
3.ÄuØOSCR
SCR•{´éæ:+¥)Š?1‚5õ‘ª[ܧ,?1¦§•¡E:þ
¡EFÝ"žmlÑzØOŽf´dü‡žmÚ•ƒmêŠCqŠƒ½Â§˜ml
ÑzØOŽf´dFݽÂ§=êŠF݆¡EF݃[14]"3e©¥ò{‡0XÛ¼
¡EFݧ©•ü‡Ú½"
Ú½1:éu ˜‡Sܺ:z=z
0
∈N
h
T
Ω§¡EFݧ¦ŒUÀJé¡©Ùuz±Œ
:z
i
= (x
i
,y
i
)§1 ≤i≤n(–4‡)§˜„5`ÀJG!:Ly••ûÐ"
½ÂSCRŽfG
h
: V
h
→V
h
×V
h
•µ
(G
h
u
h
)(z) = ∇p
z
(x,y).
DOI:10.12677/aam.2022.11118848361A^êÆ?Ð
X©ý
4K
z
“Làõ>/:§é˜‡‚5õ‘ªp
z
(x,y)§÷v±e^‡
p
z
(x,y) = argmin
p
1
∈P
1
n
X
i=0
(p
1
(z
i
)−u
h
(z
i
))
2
,
•;•hÚåOŽØ-½§F½ÂXe
F:(x,y) →(ξ,η) =
(x,y)−(x
0
,y
0
)
h
,
Ù¥h= max{|x
i
−x
0
|,|y
i
−y
0
|: 1 ≤i≤n}§@o[Üõ‘ªŒ±•
p
z
(x,y) = P
T
a=
ˆ
P
T
ˆa,
¿…P
T
= (1,x,y),
ˆ
P
T
= (2,ξ,η)§
a
T
= (a
1
,a
2
,a
3
),ˆa
T
= (ˆa
1
,ˆa
2
,ˆa
3
).
Xê•þˆaŒ±ÏL‚5•§(½A
T
Aˆa=A
T
u§Ù¥
A=






1ξ
0
η
0
1ξ
1
η
1
.
.
.
.
.
.
.
.
.
1ξ
n
η
n






andu=






u(z
0
)
u(z
1
)
.
.
.
u(z
n
)






.
•§ÏLþã©Û¡EFÝ
G
h
u= ∇p
z
=
a
2
a
3
!
=
1
h
ˆa
2
ˆa
3
!
Ú½2:ÏL3ΩþŠG
h
u¡EFÝ
G
h
u=
X
z∈N
h
G
h
u(z)φ
z
.
^η
n
t
Úη
h,e
h
©OŠ•žmÚ˜mlÑzØ•I§,3Ž{¥NžmÚ•Ú‚·A5§
η
n
t
:= ku
n
h
−Π
n
u
n−1
h
k,η
h,e
h
:= kG
h
u
h
−∇u
h
k
0,e
h
, η
2
h
=
X
e
h
∈T
h
η
2
h,e
h
3SCRlÑzL§¥§žmÚ•‘XØOCzCz§‚Œ•ŠâžmÚ•Cz§
¤±z•#˜‡t
n
Ò¬#‚§¿3T‚þUY#˜mV
h
§Ù¥Π
n
“L
Šk•˜mV
h
"
4.ꊢ
!¥§ÏLꊎ~邪(2.5)-(2.6)3ØÓЊ^‡e?1["
DOI:10.12677/aam.2022.11118848362A^êÆ?Ð
X©ý
Ž~4.1.éuCahn-Hilliard•§(2.1)§-Ω = [−1,1]×[−1,1]§ε=0.01§ÐŠXeµ
u
0
(x,y) =tanh


x
2
+y
2
−0.15
2

/ε

×
tanh


(x−0.31)
2
+y
2
−0.15
2

/ε

×tanh


(x+0.31)
2
+y
2
−0.15
2

/ε

×
tanh


x
2
+(y−0.31)
2
−0.15
2

/ε

×tanh


x
2
+(y+0.31)
2
−0.15
2

/ε

×
tanh


(x−0.31)
2
+(y−0.31)
2
−0.15
2

/ε

×
tanh


(x−0.31)
2
+(y+0.31)
2
−0.15
2

/ε

×
tanh


(x+0.31)
2
+(y−0.31)
2
−0.15
2

/ε

×
tanh


(x+0.31)
2
+(y+0.31)
2
−0.15
2

/ε

(4.1)
ã1Ы38‡ØÓžmÚ•e˜X‚g·A(J9ÙêŠ)§Œ±wÑ‚[z´
ÎÜ"Y²85K§!:êþ5"lã2¥Uþ‘žmCz~§!:ê±9 ž
mÚ••¬‘žmCzCz",3Uþ¯„üzã§žmÚ•Œ±ÓPêŠ)
Cz§ˆ-½Gž§žmÚ•¬CŒ"
Figure1.Resultsofgridadaptiveandnumericalsolutions
ã1.Ž~4.1(CH),‚g·AÚêŠ)(J
DOI:10.12677/aam.2022.11118848363A^êÆ?Ð
X©ý
Figure2.Fromlefttoright:Distributionofenergy,nodesandtimesteps
ã2.Ž~4.1(CH),l†m:Uþ!!:ÚžmÚ•©Ùœ¹
Ž~4.2.3ëê•Ω = [−1,1]×[−1,1]§ε= 0.01§ò±eЊA^3(2.1)
u
0
(x,y) =tanh


(x−0.3)
2
+y
2
−0.25
2

/ε

tanh


(x+0.3)
2
+y
2
−0.3
2

/ε

,(4.2)
3ã3¥§w«ØÓžmÚ•eg·A‚ÚƒAêŠ)"²wwÑ‚C†·A"
Y²85K"d3ã4¥Œ±*lÑžmCzL§§ùL²Uþ‘žmP~"ã4Ð
«žm†!:ê/žmÚ•ƒm'X"3êŠ[@Ïã§êŠ)Cz´džm
Ú•5ÓP§XÚˆ-½žžmÚ•¬C'5•Œ"
Figure3.Resultsofgridadaptiveandnumericalsolutions
ã3.Ž~4.2(CH),‚g·AÚêŠ)(J
DOI:10.12677/aam.2022.11118848364A^êÆ?Ð
X©ý
Figure4.Fromlefttoright:Distributionofenergy,nodesandtimesteps
ã4.Ž~4.2(CH),l†m:Uþ!!:ÚžmÚ•©Ùœ¹
5.(Ø
©éuCahn-Hilliard•§lÑ‚ ª§y²Ù´Ã^‡Uþ-½¿…žmÚ˜m
þþäk°Ý",½ÂžmÚ˜mlÑŽf§|^ÄuSCRg·A•{?1ž˜lѧ
•ÏLꊢ5y²T•{k5"
—
3daìÜŽ8I3ÆÄ7‘8(No.2021-029)†ìÜŽ‰EÜŠ6;‘‘8(No.20210404
1101019)|±§±9•ïÄI[g,‰ÆÄ7‘8(No.12201010)Ü©|±"
Ä7‘8
ìÜŽ8I3ÆÄ7‘8(No.2021-029)¶ìÜŽ‰EÜŠ6;‘‘8(No.202104041101019)¶
I[g,‰ÆÄ7‘8(No.12201010)"
ë•©z
[1]Cahn, J.andHilliard, J.(1958)FreeEnergyofa NonuniformSystem.I.InterfacialFreeEnergy.
TheJournalofChemicalPhysics,28,258-267.https://doi.org/10.1063/1.1744102
[2]Karma,A.andRappel,W.J.(1998)QuantitativePhase-FieldModelingofDendriticGrowth
inTwoandThreeDimensions.PhysicalReviewE,57,4323-4349.
https://doi.org/10.1103/PhysRevE.57.4323
[3]Allen,S.andCahn,J.(1979)AMicroscopicTheoryforAntiphaseBoundaryMotionandIts
ApplicationtoAntiphaseDomainCoarsening.ActaMaterialia,27,1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[4]Kobayashi, R. (1993) Modeling and NumericalSimulationsof DendriticCrystal Growth. Phys-
icaD:NonlinearPhenomena,63,410-423.https://doi.org/10.1016/0167-2789(93)90120-P
DOI:10.12677/aam.2022.11118848365A^êÆ?Ð
X©ý
[5]Gurtin,M.,Polignone, D. and Vinals,J.(1996) Two-Phase Binary Fluids and Immiscible Flu-
idsDescribed by anOrder Parameter. MathematicalModelsandMethodsinAppliedSciences,
6,815-831.https://doi.org/10.1142/S0218202596000341
[6]Barret,J.,Blowey,J.andGarcke,H.(1999)FiniteElementApproximationoftheCahn-
HilliardEquationwithDegenerateMobility.SIAMJournalonNumericalAnalysis,37,286-
318.https://doi.org/10.1137/S0036142997331669
[7]Elliott,C.andFrench,D.(1989)ANonconformingFinite-ElementMethodfortheTwo-
DimensionalCahn-HilliardEquation.SIAMJournalonNumericalAnalysis,26,884-903.
https://doi.org/10.1137/0726049
[8]Elliott,C.andFrench,D.(1987)NumericalStudiesoftheCahn-HilliardEquationforPhase
Separation.IMAJournalofAppliedMathematics,38,97-128.
https://doi.org/10.1093/imamat/38.2.97
[9]Shen,J.,Xu,J.andYang,J.(2018)TheScalarAuxiliaryVariable(SAV)Approachfor
GradientFlows.JournalofComputationalPhysics,353,407-416.
https://doi.org/10.1016/j.jcp.2017.10.021
[10]Zhao,S.,Xiao,X.andFeng,X.(2020)AnEfficientTimeAdaptivityBasedonChemical
PotentialforSurfaceCahn-HilliardEquationUsingFiniteElementApproximation.Applied
MathematicsandComputation,369,ArticleID:124901.
https://doi.org/10.1016/j.amc.2019.124901
[11]Mao,D.,Shen,L.andZhou,A.(2006)AdaptiveFiniteElementAlgorithmsforEigenvalue
ProblemsBasedonLocalAveragingTypeaPosterioriErrorEstimates.AdvancesinCompu-
tationalMathematics,25,135-160.https://doi.org/10.1007/s10444-004-7617-0
[12]Chen,Y.,Huang,Y.andYi,N.(2021)ADecoupledEnergyStableAdaptiveFiniteEle-
mentMethodforCahn-Hilliard-Navier-StokesEquations.CommunicationsinComputational
Physics,29,1186-1212.https://doi.org/10.4208/cicp.OA-2020-0032
[13]Zhang,Z.andQiao,Z.(2012)AnAdaptiveTime-SteppingStrategyfortheCahn-Hilliard
Equation.CommunicationsinComputationalPhysics,11,1261-1278.
https://doi.org/10.4208/cicp.300810.140411s
[14]Huang,Y.andYi,N.(2010)TheSuperconvergentClusterRecoveryMethod.JournalofSci-
entificComputing,44,301-322.https://doi.org/10.1007/s10915-010-9379-9
[15]Chen,Y.,Huang,Y.andYi,N.(2019)ASCR-BasedErrorEstimationandAdaptiveFinite
Element Method for theAllen-Cahn Equation. ComputersandMathematicswithApplications,
78,204-223.https://doi.org/10.1016/j.camwa.2019.02.022
[16]Guillen-Gonzalez,F.andTierra,G.(2014)SecondOrderSchemesandTime-StepAdaptivity
for Allen-Cahn and Cahn-HilliardModels. ComputersandMathematicswithApplications, 68,
821-846.https://doi.org/10.1016/j.camwa.2014.07.014
[17]Feng, X. and Prohl, A. (2004) Error Analysisof a Mixed Finite Element Method for the Cahn-
HilliardEquation.NumerischeMathematik,99,47-84.
https://doi.org/10.1007/s00211-004-0546-5
DOI:10.12677/aam.2022.11118848366A^êÆ?Ð
X©ý
[18]Shen,J.andYang,X.(2010)NumericalApproximationsofAllen-CahnandCahn-Hilliard
Equations.DiscreteandContinuousDynamicalSystems,28,1669-1691.
https://doi.org/10.3934/dcds.2010.28.1669
[19]Li,C.,Huang,Y.andYi,N.(2019)AnUnconditionallyEnergyStableSecondOrderFinite
ElementMethod forSolving theAllen-Cahn Equation.JournalofComputationalandApplied
Mathematics,353,38-48.https://doi.org/10.1016/j.cam.2018.12.024
DOI:10.12677/aam.2022.11118848367A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.