设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(12),2081-2105
PublishedOnlineDecember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1212225
äk™êAÚBeddington-DeAngelis
õU‡Až˜ +SÓ .-½5
Ú©©Û
www
Ü“‰ŒÆêƆÚOÆ,[‹=²
ÂvFϵ2022c1117F¶¹^Fϵ2022c1215F¶uÙFϵ2022c1222F
Á‡
¿ÚÓ ´)Æ¥²~Ñy˜«y–§üÔ«öƒ Ók•]ž§Ó öÚ 
•´‘±Ó ö- XÚ¤7I"ïÄ +SÓ öÚ 3öÓ˜ ]ž´ÄŒU
•´š~k¿Â"©ïÄäk™êAž˜ +SÓ .-½5†Hopf©|§
T.•¹±Beddington-DeAngelisõU‡A•AÔ«ƒpZ6§Ñ +SÓ
öÚ •^‡§ù´ÏL?زï:•35§ÛÜÚÛìC-½5±9˜—±È5
5 ¢y§Ù¥²ï:-½5^‡´ÏLo äÊìÅ•{Úâ‘[â¼"•§·‚
±™êÏf•©|ëê§ˆ²ï:?Hopf©|•3^‡"
'…c
 +SÓ .§Beddington-DeAngelis.õU‡A§™êA§-½5§Hopf©|
StabilityandBifurcationAnalysisofa
SpatiotemporalIntraguildPredation
ModelwithFearEffectand
Beddington-DeAngelisFunctional
Response
©ÙÚ^:w.äk™êAÚBeddington-DeAngelisõU‡Až˜ +SÓ .-½5Ú©©
Û[J].nØêÆ,2022,12(12):2081-2105.DOI:10.12677/pm.2022.1212225
w
XiaoningWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Nov.17
th
,2022;accepted:Dec.15
th
,2022;published:Dec.22
nd
,2022
Abstract
Competitionandpredationareacommonphenomenoninecology.Whentwospecies
compete for the samelimited resources,the coexistence of predator and prey isneces-
sarytosustainthepredator-preysystem.Itisofgreatsignificancetostudywhether
predatorsandpreycancoexistinaintraguildpredationmodelwhencompetingfor
thesameresource.Inthispaper,westudythestabilityandHopfbifurcationofa
spatiotemporalintraguildpredationmodelwithafeareffect,theconditionsforthe
coexistenceofpredatorandpreyinaintraguildpredationmodelarederivedbydis-
cussingtheexistenceofequilibriumpoints,localandglobalasymptoticstabilityand
uniform persistence,the conditionof stability of equilibrium point is obtained by Lya-
punovmethod andHelvetz criterion.Finally,wetake thefearfactorasthebranching
parameterandobtaintheconditionsfortheexistenceofHopfbifurcationateach
equilibriumpoint.
Keywords
IntraguildPredationModel,Beddington-DeAngelis Functional Response, Fear Effect,
Stability,HopfBifurcation
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3g,‚¸¥,Ø¿ÚÓ , +SÓ ( Intraguildpredation,{¡IGP)´,˜«Ê
H•3u)XÚ«+mƒpŠ^y–,ÙK•ØNÀ.3IGPXÚ¥,IGÓ ö±IG 
DOI:10.12677/pm.2022.12122252082nØêÆ
w
• ,¿†IG ƒp¿,ö•],lIGÓ ö,IG Ú•]¤˜‡{ü
 Ô.é +SÓ XÚïÄ•@Œ±Jˆ©[1–3],ÆöPolis,McCormick,MyerÚ
HoltÄgJÑ +SÓ XÚVg.31997c©[4]¥)ÔÆ[HoltÚPolisïá˜‡
{ü +SÓ XÚ.,L²•kIG ´•]`³¿öž,¤k«+â¬
•,ù`²3nØþ +SÓ XÚ¥n«+•´š~(J,¢S)ÔXÚ¥†ƒЃ
‡,ùÒ)˜‡Ø.Ï,y3NõÆöl)Ôˆ‡Ýé©[4]¥.?1?ÚÖ¿,
5)ºnØÚy¢ƒmgñ.Ïd, +SÓ XÚïÄäk-‡nØdŠÚy¢¿Â.
3Ó - XÚ¥,õU‡A¼ê´4Ù-‡|¤Ü©.•£ãÓ ö‡NžÑÇ‘
—ÝFÝCz,®²JÑˆ«a.õU‡A¼ê.Ù¥•)²;Holling-I.,II.
ÚIII.õU‡A[5–7],Beddington-DeAngelis(BD).õU‡A[8,9]ÚÙ¦˜a.[10,11].
Holling.õU‡AbÓ öžÑÇ=•6 —Ý,BD.õU‡AKbÓ öžÑÇ•
ÉÓ ömƒpZ6K•,=BDõU‡A¼ê••6uÓ ö—Ý.ïÄL²,š‚5õU‡
A4Œ/K• XÔ«mƒpŠ^(J,AO´ Ô¥•¹n‡$–n‡±þÔ«ž[12–17].é
uIGP.,KangÚWedekin[18]bHollingIII.õU‡A,ù´ÄuSchaber<¢
(JwÍ[Ü[19].‘XHollingI.ÚHollingII.õU‡A·Ü,·b3IGP.¥y²
´ŒU[20,21].d,äkBDõU‡A¼ê).ŒþïÄ[22–26].,,duE,5,
éäkBDõU‡AIGP.ïăék•[27–32].
Š5¿´,©[27–30]¥b½IG é•]Ó Ç†IGÓ ö—ÝÃ'"ùŒ
UØU‡NIGÓ öéÓ ÇK•.dun‡Ô«(•],IG ÚIGÓ ö)•Ó˜‚
¸,IG ÚIGÓ öÑÏé Ôž,ùn‡Ô«ŒU¬Óžƒ‘,Ïd ùn‡Ô«Ñ¬K
•|¢Ç[6].˜•¡,·‚Ñ•)XÚ¥K•Ó - XÚÄåÆK•σkéõ,~ X
2o[33,34],í›Z6[35],öÜŠ[36],«+-”[37],Ù¥ éÓ ö™êÒ´Ù¥
ƒ˜[38–40].Ïd,Äu±þ•Ä,©yò•]éIG ™ê±9ˆÔ«‘Å* ÑB
\.[32]¥?1?˜ÚïÄ.©[32].•:

















dR
dτ
= r
1
R(1−
R
K
)−
c
1
RN
1+A
1
R+A
2
N+A
3
P
−
c
2
RP
1+A
1
R+A
2
N+A
3
P
,
dN
dτ
=
ε
1
c
1
RN
1+A
1
R+A
2
N+A
3
P
−
c
2
NP
1+A
1
R+A
2
N+A
3
P
−η
1
N,
dP
dτ
=
ε
2
c
2
RP
1+A
1
R+A
2
N+A
3
P
+
ε
3
c
3
NP
1+A
1
R+A
2
N+A
3
P
−η
2
P,
(1.1)
ùp,R(τ),N(τ)ÚP(τ)©OL«3τž••],IG ÚIGÓ ö«+—Ý.ëê
r
1
,K©OL«•]SO•ÇÚ‚¸«1å.A
1
,A
2
,A
3
©OL«•],IG Ú
IGÓ öZ6A.c
1
,c
2
,c
3
©OL«IG ,IGÓ öé•]•ŒÓ DZ9IG
Ó öéIG •ŒÓ Ç,ε
1
,ε
2
,ε
3
©OL«IG ,IGÓ öé•]=zDZ9
IGÓ öéIG =zÇ,η
1
,η
2
©O“LIG ÚIGÓ ög,kÇ.
3T.¥,·‚b•]du³ùIG —•]êþeü,IG )•
=ÉÙIGÓ öK•,lò™êÏfh(f,N) =
1
1+fN
¦XÚ(1.1)¥,Ù¥fL«•]
DOI:10.12677/pm.2022.12122252083nØêÆ
w
éIG ™ê§Ý,?U.Xe:





















dR
dτ
=
r
1
R
1+fN
(1−
R
K
)−
c
1
RN
1+A
1
R+A
2
N+A
3
P
−
c
2
RP
1+A
1
R+A
2
N+A
3
P
,
dN
dτ
=
ε
1
c
1
RN
1+A
1
R+A
2
N+A
3
P
−
c
2
NP
1+A
1
R+A
2
N+A
3
P
−η
1
N,
dP
dτ
=
ε
2
c
2
RP
1+A
1
R+A
2
N+A
3
P
+
ε
3
c
3
NP
1+A
1
R+A
2
N+A
3
P
−η
2
P,
(1.2)
••Bå„,Ú\±eÃþjCþÚëê§±~XÚ(1.2)¥ëêêþ:
t= r
1
τ,u=
R
N
,v=
c
1
r
1
N,w=
c
2
r
1
P,k=
r
1
f
c
1
,e
1
=
ε
1
c
1
K
r
1
,e
2
=
ε
2
c
2
K
r
1
,
c=
c
3
c
2
,ε=
ε
3
c
2
c
1
,a= A
1
K,b
1
=
A
2
r
1
c
1
,b
2
=
A
3
r
1
c
2
,δ
1
=
η
1
r
1
,δ
2
=
η
2
r
2
,
ŒòXÚ(1.2)z•



























du
dt
= u(
1−u
1+kv
−
v+w
1+au+b
1
v+b
2
w
),
dv
dt
= v(
e
1
u−cw
1+au+b
1
v+b
2
w
−δ
1
),
dw
dt
= w(
e
2
u+εcv
1+au+b
1
v+b
2
w
−δ
2
),
u(0) ≥0,v(0) ≥0,w(0)) ≥0,
(1.3)
d,3«+üz?§¥,‚¸σ—˜m©ÙØþ!5.Ïd,ò*ÑÚ\äk
Beddington-DeAngelisõU‡AIGP.(1.3)¥.©,·‚•Ä6þu"Neumann>
.^‡eg*Ñ.:





































u
t
−d
1
∆u= u(
1−u
1+kv
−
v+w
1+au+b
1
v+b
2
w
),x∈Ω,t>0,
v
t
−d
2
∆v= v(
e
1
u−cw
1+au+b
1
v+b
2
w
−δ
1
),x∈Ω,t>0,
w
t
−d
3
∆w= w(
e
2
u+εcv
1+au+b
1
v+b
2
w
−δ
2
),x∈Ω,t>0,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x) ≥0,v(x,0) = v
0
(x) ≥0,w(x,0) = w
0
(x) ≥0,x∈Ω.
(1.4)
Ω´R
N
(N≥1)¥äk1w>.∂Ωk.«•;ν´>.∂Ωü {•þ; d
1
,d
2
,d
3
>0
L«Ô«g*ÑXê,g*Ñ‘‡N‡Nlp ßÝ•$ßÝ*Ñ,Њu
0
(x),v
0
(x),w
0
(x)•Ω
þëY¼ê§b.¥¤këêþ•~ê.
DOI:10.12677/pm.2022.12122252084nØêÆ
w
e¡·‚½Â
F(E) = (f
1
(E),f
2
(E),f
3
(E))
>
=











u(
1−u
1+kv
−
v+w
1+au+b
1
v+b
2
w
)
v(
e
1
u−cw
1+au+b
1
v+b
2
w
−δ
1
)
w(
e
2
u+εcv
1+au+b
1
v+b
2
w
−δ
2
)











.
©|„(Xe:12!?ØžmXÚ)•35Úk.5,Œ1²ï:ÛÜÚÛ
-½5,±9©ÛXÚ(1.3)Hopf©.13!—åuž˜XÚ©Û:?ØXÚ(1.4))
±È5Ú²ï:ÛÜ-½5.14!‰Ñ(Ø.
2.XÚ(1.3)Ä審Û
2.1.ØC5Úk.5
½n1XÚ(1.3)¤k)3R
3
+
= {(u,v,w) : u(t) >0,v(t) >0,w(t) >0}S•3…±5.
y²(u(t),v(t),w(t))•X Ú(1.3)),éN´wÑ, f
1
,f
2
,f
3
´R
3
+
þë Y¼ê…´Û
ÜLipschitizianëY.Ïd,÷vЊ^‡(u(0),v(0),w(0))≥(0,0,0)XÚ(1.3)¤k)3
R
3
+
={(u,v,w) : u(t) >0,v(t) >0,w(t) >0}S• 3…•˜,?L²é∀t>0¤k)•3…
±5.
½n23R
3
+
SXÚ(1.3)¤k)Ñ´˜—k..
y²(u(t),v(t),w(t))•XÚ(1.3)?¿˜‡),Ï•
du
dt
≤u
1−u
1+kv
≤u(1−u),d'n
Œ,lim
t→∞
u(t) ≤1,=é∀
1
>0, ∃T
1
,t>T
1
ž,ku(t) ≤1+
1
.
l(1.3)1‡•§§·‚k
dv
dt
+δ
1
v=
(e
1
u−cw)v
1+au+b
1
v+b
2
w
≤
e
1
uv
b
1
v
≤
e
1
(1+
1
)
b
1
ŠâGronwall’sØª[41]§·‚k
0 <v(t) <
e
1
(1+
1
)(1−e
−δ
1
t
)
b
1
δ
1
+v(0)e
−δ
1
t
.d'nŒ,lim
t→∞
v(t) ≤
e
1
(1+
1
)
δ
1
b
1
,=é∀
2
>0, ∃T
2
,t>max{T
1
,T
2
}ž,k
v(t) ≤
e
1
(1+
1
)
δ
1
b
1
+
2
.
l(1.3)1n‡•§,·‚k
dw
dt
+δ
2
w=
(e
2
u+εcv)w
1+au+b
1
v+b
2
w
≤
(e
2
u+εcv)w
b
2
w
≤
e
2
(1+
1
)+cε[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
DOI:10.12677/pm.2022.12122252085nØêÆ
w
ŠâGronwall’sØª[41]§·‚k
0 <w(t) <
e
2
(1+
1
)+cε[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
(1−e
−δ
2
t
)+w(0)e
−δ
2
t
d'nŒ,lim
t→∞
w(t) ≤
e
2
(1+
1
)+cε[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
,=é∀
3
>0, ∃T
3
,t>max{T
1
,T
2
,T
3
}ž,k
w(t) ≤
e
2
(1+
1
)+cε[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
+
3
≤
[(1+
1
)(e
2
+
εce
1
b
1
δ
1
)+εc
2
]
b
2
δ
2
+
3
.
XÚ(1.3)¤k)˜—k.¿•ªªu±e«•:
Θ =

(u,v,w) ∈R
3
+
: u(t) ≤1+
1
,v(t) ≤
e
1
(1+
1
)
b
1
,w(t) ≤
(1+
1
)(e
2
+
e
1
cε
b
1
δ
1
)+cε
2
b
2
δ
2
+
3
,∀
1
,
2
,
3
>0

2.2.²ï:•35
XÚ(1.3)k±eäk)Ô¿ÂŒ1²ï:.
(i)o•3²…²ï:E
0
= (0,0,0)ÚŒ²…²ï:E
1
= (1,0,0);
(ii) Ù¦>.²ï:±E
2
=(u
2
,v
2
,0),u
2
,v
2
>0,E
3
=(u
3
,0,w
3
),u
3
,w
3
>0/ª‰Ñ.-
<
i
=
e
i
δ
i
(1+a)
,i= 1,2,@o<
1
´3ÃIGÓ ö£Ô«w¤œ¹e,IG (Ô«v)Ä2)
ê,<
2
´3ÃIG œ¹e,IGÓ öÄ2)ê.
IGÓ öØ•3ž,=w= 0,XÚ(1.3)òz•±eÓ ö- XÚ:











du
dt
= u(
1−u
1+kv
−
v
1+au+b
1
v
),
dv
dt
= v(
e
1
u
1+au+b
1
v
−δ
1
),
e<
1
>1,KXÚ(1.3¤k•˜E
2
= (u
2
,v
2
,0)/ª>.²ï:,v
2
÷v±e•§:
A
1
v
2
2
+B
1
v
2
−C
1
= 0
Ù¥
A
1
= e
1
b
2
1
δ
2
1
+kδ
1
(e
1
−aδ
1
)
2
>0,
B
1
= δ
1
(e
1
−aδ
1
)
2
+2e
1
b
1
δ
2
1
−e
1
b
1
δ
1
(e
1
−aδ
1
),
C
1
= e
1
δ
1
(e
1
−δ
1
−aδ
1
) >0,
Kv
2
=
−B
1
+
√
B
2
1
+4A
1
C
1
2A
1
>0,u
2
=
δ
1
(1+b
1
v
2
)
e
1
−aδ
1
(0 <u
2
<1).
DOI:10.12677/pm.2022.12122252086nØêÆ
w
aq/,IG Ø•3ž,=v=0,e<
2
>1,Ku
3
=
(aδ
2
+b
2
e
2
−e
2
)+
√
(aδ
2
+b
2
e
2
−e
2
)
2
+4b
2
e
2
δ
2
2b
2
e
2
,
w
3
=
e
2
u
3
(1−u
3
)
δ
2
(0 <u
3
<1).
(iii)eE
∗
= (u
∗
,v
∗
,w
∗
)•XÚ(1.3)~ê²ï:,Kk±e•§:
u(
1−u
1+kv
−
v+w
1+au+b
1
v+b
2
w
) = 0(1.3a)
v(
e
1
u−cw
1+au+b
1
v+b
2
w
−δ
1
) = 0(1.3b)
w(
e
2
u+εcv
1+au+b
1
v+b
2
w
−δ
2
) = 0(1.3c)
d(1.3b)Ú(1.3c),w=
[(e
1
δ
2
−e
2
δ
1
)u−cεδ
1
v]
cδ
2
,òÙ“\(1.3b), (1.3c)¥
v=
[(e
2
−aδ
2
)c+b
2
(e
2
δ
1
−e
1
δ
2
)]u−cδ
2
c[b
1
δ
2
−ε(c+b
2
δ
1
)]
w=
εcδ
1
−[(e
1
−aδ
1
)cε+b
1
(e
2
δ
1
−e
1
δ
2
)]u
c[b
1
δ
2
−ε(c+b
2
δ
1
)]
½Â
Λ
v
:= e
2
−aδ
2
+
b
2
(e
2
δ
1
−e
1
δ
2
)
c
,
Λ
w
:= e
1
−aδ
1
+
b
1
(e
2
δ
1
−e
1
δ
2
)
cε
.u∈S
v
ž,v>0,
S
v
=



















(
δ
2
Λ
v
,∞), L>0,Λ
v
>0;
(0,∞), L<0,Λ
v
≤0;
(0,
δ
2
Λ
v
), L<0,Λ
v
>0.
(1)
aq/,u∈S
w
ž,w>0,
S
w
=



















(0,∞), L>0,Λ
w
≤0;
(0,
δ
1
Λ
w
), L>0,Λ
w
>0;
(
δ
2
Λ
w
,∞), L<0,Λ
w
>0.
(2)
-L= b
1
δ
2
−ε(c+b
2
δ
1
),M= (e
2
−aδ
2
)c+b
2
(e
2
δ
1
−e
1
δ
2
),N= (e
1
−aδ
1
)cε+b
1
(e
2
δ
1
−e
1
δ
2
),K
v=
Mu−cδ
2
cL
(1.3d)
DOI:10.12677/pm.2022.12122252087nØêÆ
w
w=
εcδ
1
−Nu
cL
(1.3e)
ò(1.3d), (1.3e)“\(1.3a)¥'uuLˆªXe:
f(u) = A
2
u
2
+B
2
u+C
2
= 0(0 <u<1)
A
2
= ac
2
L
2
+kM
2
+cb
1
ML−cb
2
NL−kMN,
B
2
= c
2
(1−a)L
2
+c
2
(εb
2
δ
1
−b
1
δ
2
)L+ck(εδ
1
−2δ
2
)M+ckδ
2
N+c(1−b
1
)LM−c(1−b
2
)LN,
C
2
= c
2
εδ
1
(1−b
2
)L−c
2
δ
2
(1−b
1
)L−c
2
L
2
−kεc
2
δ
1
δ
2
−c
2
kδ
2
2
,
(H
1
)<
1
>1 ><
2
,L6= 0…S
E
= S
v
∩S
w
6= ∅¤áž,XÚ(1.3)–õkü‡~ê²ï:,äN
Xe:f(0) = C
2
,f(1) = A
2
+B
2
+C
2
,
(a)eA
2
C
2
>0,∆ = B
2
2
−4A
2
C
2
>0,u= −
B
2
2A
2
,
C
2
(A
2
+B
2
+C
2
)>0ž,u
∗
1
=
−B
2
−
√
B
2
2
−2A
2
C
2
2A
2
,u
∗
2
=
−B
2
+
√
B
2
2
−2A
2
C
2
2A
2
.KXÚ(1.3)•3ü‡
~ê²ï:,©O•E
∗
1
= (u
∗
1
,v
∗
1
,w
∗
1
),E
∗
2
= (u
∗
2
,v
∗
2
,w
∗
2
);
C
2
(A
2
+ B
2
+ C
2
)<0ž,ku
∗
1
=
−B
2
−
√
B
2
2
−2A
2
C
2
2A
2
,KXÚ(1.3)•k˜‡~ê²ï:E
∗
1
=
(u
∗
1
,v
∗
1
,w
∗
1
).
(b) eA
2
C
2
<0, C
2
(A
2
+B
2
+C
2
) <0ž,ku
∗
2
=
−B
2
+
√
B
2
2
−2A
2
C
2
2A
2
,KX Ú(1.3)•k˜‡
~ê²ï:E
∗
2
= (u
∗
2
,v
∗
2
,w
∗
2
).
(c)eA
2
C
2
>0,∆=B
2
2
−4A
2
C
2
=0ž,u
∗
3
=−
B
2
2A
2
,KXÚ(1.3)~ê²ï:•
E
∗
3
= (u
∗
3
,v
∗
3
,w
∗
3
).
(d)eA
2
C
2
= 0,
A
2
= 0,−B
2
2
<B
2
C
2
<0ž, u
∗
4
= −
C
2
B
2
,KXÚ(1.3)~ê²ï:•E
∗
4
= (u
∗
4
,v
∗
4
,w
∗
4
);
C
2
= 0,−A
2
2
<A
2
B
2
<0ž, u
∗
5
= −
B
2
A
2
,KXÚ(1.3)~ê²ï:•E
∗
5
= (u
∗
5
,v
∗
5
,w
∗
5
).
2.3.²ï:ÛÜ-½5
XÚ(1.3)3(u,v,w)?JacobiÝXe
J=




J
11
J
12
J
13
J
21
J
22
J
23
J
31
J
32
J
33




,(3)
Ù¥
J
11
=
1−2u
1+kv
−
(v+w)(1+b
1
v+b
2
w)
(1+au+b
1
v+b
2
w)
2
,J
12
=−[
ku(1−u)
(1+kv)
2
+
u(1+au)+(b
2
−b
1
)uw
(1+au+b
1
v+b
2
w)
2
],J
13
=
(b
2
−b
1
)uv−u(1+au)
(1+au+b
1
v+b
2
w)
2
,
J
21
=
e
1
v(1+b
1
v)+vw(ac+e
1
b
2
)
(1+au+b
1
v+b
2
w)
2
,J
22
=
(e
1
u−cw)(1+au+b
2
w)
(1+au+b
1
v+b
2
w)
2
−δ
1
,J
23
=−
cv(1+b
1
v)+uv(ac+e
1
b
2
)
(1+au+b
1
v+b
2
w)
2
,J
31
=
e
2
w(1+b
1
v+b
2
w)−acεvw
(1+au+b
1
v+b
2
w)
2
,J
32
=
cεw(1+b
2
w)+uw(acε−b
1
e
2
)
(1+au+b
1
v+b
2
w)
2
,J
33
=
(e
2
u+εcv)(1+au+b
1
v)
(1+au+b
1
v+b
2
w)
2
−δ
2
.
DOI:10.12677/pm.2022.12122252088nØêÆ
w
e¡ÏLOŽXÚ(1.3)3z‡²ï:?JacobiÝAŠ,5(½ù²ï:-½5.
½n3(i) ²…²ï:E
0
= (0,0,0)´Ã^‡Ø-½.
(ii)emax{<
1
,<
2
}<1,KŒ²…²ï:E
1
= (1,0,0)´ÛÜìC-½;ÄKE
1
´Ø-½
.
y²(i) XÚ(1.3)3²ï:E
0
?JacobiÝ•
J
E
0
=






100
0−δ
1
0
00−δ
2






.(4)
Ý(4)AŠ•λ
(0)
1
= 1 >0,λ
(0)
2
= −δ
1
Úλ
(0)
3
= −δ
2
.Ïd,²ï:E
0
´Ø-½.
(ii)XÚ(1.3)3²ï:E
1
?JacobiÝ•
J
E
1
=







−1−
1
1+a
−
1
1+a
0
e
1
1+a
−δ
1
0
00
e
2
1+a
−δ
2







.(5)
Ý(5)A•§•
(λ+1)

λ−(
e
1
1+a
−δ
1
)

λ−(
e
2
1+a
−δ
2
)

= 0.
¤±, Ý(5) AŠ•λ
(1)
1
= −1,λ
(1)
2
=
e
1
1+a
−δ
1
= δ
1
(<
1
−1),λ
(1)
3
=
e
2
1+a
−δ
2
= δ
2
(<
2
−1).
max{<
1
,<
2
}<1ž,²ï:E
1
´ÛÜìC-½;‡ƒ,E
1
´Ø-½.
½n4b<
1
>1,k>b
1
¤á,eλ
(2)
1
<0,T
(2)
<0,KÃIGÓ ö²ï:E
2
(u
2
,v
2
,0)´
ÛÜìC-½;eλ
(2)
1
>0½T
(2)
>0,KE
2
(u
2
,v
2
,0)´Ø-½.
y²XÚ(1.3)3²ï:E
2
?JacobiÝ•
J
E
2
=






a
11
a
12
a
13
a
21
a
22
a
23
00a
33






.(6)
Ù¥
a
11
=
1
1+kv
2
h
aδ
1
(1−u
2
)
e
1
−u
2
i
,a
12
= −
h
ku
2
(1−u
2
)
(1+kv
2
)
2
+
δ
1
e
1
−
b
1
δ
1
(1−u
2
)
e
1
(1+kv
2
)
i
,
a
13
=
(b
2
−b
1
)u
2
v
2
−u
2
(1+au
2
)
(1+au
2
+b
1
v
2
)
2
,a
21
= (e
1
−aδ
1
)
1−u
2
1+kv
2
,a
22
= −
b
1
δ
1
(1−u
2
)
1+kv
2
,
a
23
= −
cv
2
(1+b
1
v
2
)+u
2
v
2
(e
1
b
2
+ac)
(1+au
2
+b
1
v
2
)
2
,a
33
=
e
2
δ
1
e
1
−δ
2
+
εc(1−u
2
)
1+kv
2
.
DOI:10.12677/pm.2022.12122252089nØêÆ
w
Ý(6)A•§•
(λ−a
33
)

λ
2
−(a
11
+a
22
)λ+a
11
a
22
−a
12
a
21

= 0
-D
(2)
= a
11
a
22
−a
12
a
21
=
1−u
2
1+kv
2
h
δ
1
(k−b
1
)(1−u
2
)
(1+kv
2
)
2
+
b
1
δ
1
u
2
1+kv
2
+
δ
1
(e
1
−aδ
1
)
e
1
i
,
T
(2)
= a
11
+a
22
=
δ
1
(
a
e
1
−b
1
)(1−u
2
)−u
2
1+kv
2
,λ
(2)
1
=
e
2
δ
1
e
1
−δ
2
+
εc(1−u
2
)
1+kv
2
,
d‰ˆ½nŒλ
(2)
2
+λ
(2)
3
=T
(2)
,λ
(2)
2
λ
(2)
3
=D
(2)
>0.λ
(2)
1
<0…T
(2)
<0ž,Ý(6)A
Šλ
(2)
2
,λ
(2)
3
äkK¢Ü,Ïd,²ï:E
2
´ÛÜìC-½;λ
(2)
1
>0½T
(2)
>0ž,²ï:
E
2
´Ø-½.
½n5b<
2
>1,e<
2
><
1
…aδ
2
<b
2
e
2
,KÃIG ²ï:E
3
(u
3
,0,w
3
)´ÛÜìC-
½;e<
1
><
2
,δ
1
(<
1
−<
2
) >c(1−u
3
)<
2
½e
2
u
3
<(aδ
2
−b
2
e
2
)(1−u
3
) ž,²ï:E
3
(u
3
,0,w
3
)
´Ø-½.
y²XÚ(1.3)3²ï:E
3
?JacobiÝ•
J
E
3
=






b
11
b
12
b
13
0b
22
0
b
31
b
32
b
33






.(7)
Ù¥
b
11
=
aδ
2
e
2
(1−u
3
)−u
3
,b
12
= (1−u
3
)(
b
1
δ
2
e
2
−ku
3
)−
δ
2
e
2
,b
13
= −
δ
2
[1−b
2
(1−u
3
)]
e
2
,
b
22
=
e
1
δ
2
−e
2
δ
1
e
2
−c(1−u
3
),b
31
= (e
2
−aδ
2
)(1−u
3
),b
32
= (εc−b
1
δ
2
)(1−u
3
),b
33
= −b
2
δ
2
(1−u
3
).
Ý(7)A•§•
(λ−b
22
)

λ
2
−(b
11
+b
33
)λ+b
11
b
33
−b
13
b
31

= 0.
-D
(3)
= b
11
b
33
−b
13
b
31
= δ
2
(1−u
3
)
p
(e
2
−b
2
e
2
−aδ
2
)
2
+4b
2
e
2
δ
2
>0,
T
(3)
= b
11
+b
33
= (
aδ
2
e
2
−b
2
)(1−u
3
)−u
3
,λ
(3)
1
=
e
1
δ
2
−e
2
δ
1
e
2
−c(1−u
3
).
d‰ˆ½nŒλ
(3)
2
+ λ
(3)
3
=T
(3)
,λ
(3)
2
λ
(3)
3
=D
(3)
>0.λ
(3)
1
<0…T
(2)
<0,=<
2
><
1
…
aδ
2
<b
2
e
2
ž,Ý(7)AŠλ
(3)
2
,λ
(3)
3
äkK¢Ü,Ïd,²ï:E
3
´ÛÜìC-½;
λ
(3)
1
>0½T
(3)
>0,=<
1
><
2
,δ
1
(<
1
−<
2
) >c(1−u
3
)<
2
½e
2
u
3
<(aδ
2
−b
2
e
2
)(1−u
3
)ž,²ï
:E
3
´Ø-½.
½n6e~ê²ï:E
∗
(u
∗
,v
∗
,w
∗
)÷v±e^‡µ
(H
2
)εc>b
1
δ
2
,1+kv
∗
>b
i
(1−u
∗
),e
i
>aδ
i
(i= 1,2)
(H
3
)1+au
∗
+b
1
v
∗
+b
2
w
∗
>a(1−u
∗
)
(H
4
)b
2
δ
2
(e
1
−aδ
1
) >(e
2
−aδ
2
)(c+b
2
δ
1
)
(H
5
)b
1
δ
1
[(1+kv
∗
)−b
1
(1−u
∗
)]v
∗
>(εc−b
1
δ
2
)[(1+kv
∗
)−b
2
(1−u
∗
)]w
∗
DOI:10.12677/pm.2022.12122252090nØêÆ
w
K~ê²ï:E
∗
(u
∗
,v
∗
,w
∗
)´ÛÜìC-½.
y²XÚ(1.3)3²ï:E
∗
?JacobiÝ•
J
E
∗
=






c
11
c
12
c
13
c
21
c
22
c
23
c
31
c
32
c
33






.(8)
Ù¥
c
11
=
u
∗
1+kv
∗
h
a(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗
−1
i
,c
12
= −
u
∗
1+kv
∗
h
k(1−u
∗
)
1+kv
∗
+
(1+kv
∗
)−b
1
(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗
i
,
c
13
=
u
∗
1+kv
∗
h
b
2
(1−u
∗
)−(1+kv
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗
i
,c
21
=
(e
1
−aδ
1
)v
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
,c
22
= −
b
1
δ
1
v
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
<0,
c
23
= −
(c+b
2
δ
1
)v
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
<0,c
31
=
(e
2
−aδ
2
)w
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
,c
32
=
(εc−b
1
δ
2
)
1+au
∗
+b
1
v
∗
+b
2
w
∗
,
c
33
= −
b
2
δ
2
w
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
<0.
Ý(8)A•§•
λ
3
+P
1
λ
2
+P
2
λ+P
3
= 0.(9)
Ù¥
P
1
= −(c
11
+c
22
+c
33
)
=
u
∗
1+kv
∗

1−
a(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗

+
b
1
δ
1
v
∗
+b
2
δ
2
w
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
,
P
2
= c
11
c
22
+c
11
c
33
+c
22
c
33
−c
12
c
21
−c
13
c
31
−c
23
c
32
=
u
∗
(b
1
δ
1
v
∗
+b
2
δ
2
w
∗
)
(1+kv
∗
)(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
+
k(e
1
−aδ
1
)(1−u
∗
)u
∗
v
∗
(1+kv
∗
)
2
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
+
u
∗
{(1+kv
∗
)[(e
1
−aδ
1
)v
∗
+(e
2
−aδ
2
)w
∗
]−(1−u
∗
)(b
1
e
1
v
∗
+b
2
e
2
w
∗
)}
(1+kv
∗
)(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
+
[b
1
b
2
δ
1
δ
2
+(cε−b
1
δ
2
)(c+b
2
δ
1
)]v
∗
w
∗
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
,
P
3
= c
11
(c
23
c
32
−c
22
c
33
)+c
12
(c
21
c
33
−c
23
c
31
)+c
13
(c
22
c
31
−c
32
c
21
)
= −
u
∗
1+kv
∗

a(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗
−1

[(c+b
2
δ
1
)(cε−b
1
δ
2
)+b
1
b
2
δ
1
δ
2
]v
∗
w
∗
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
−
u
∗
1+kv
∗

k(1−u
∗
)
1+kv
∗
+
(1+kv
∗
)−b
1
(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗

[(e
2
−aδ
2
)(c+b
2
δ
1
)−b
2
δ
2
(e
1
−aδ
2
)]v
∗
w
∗
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
−
u
∗
1+kv
∗

b
2
(1−u
∗
)−(1+kv
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗

[b
1
δ
1
(e
2
−aδ
2
)+(e
1
−aδ
1
)(εc−b
1
δ
2
)]v
∗
w
∗
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
.
DOI:10.12677/pm.2022.12122252091nØêÆ
w
d^‡(H
2
)Υ,
sgn(J
E
∗
) =





−−−
+−−
++−





.(10)
d^‡(H
2
)(H
3
)(H
4
)Υ,P
1
>0,P
3
>0.
P
1
P
2
−P
3
= c
2
11
(−c
22
−c
33
)+c
2
22
(−c
11
−c
33
)+c
2
33
(−c
11
−c
22
)
+c
12
(c
23
c
31
+c
11
c
21
)+c
21
(c
13
c
32
+c
22
c
12
)+c
22
(c
23
c
32
−c
11
c
33
)
+c
33
(c
23
c
32
−c
11
c
22
+c
13
c
31
)+c
11
c
13
c
31
(11)
d^‡(H
5
)†(10)ÎÒŒ•,
c
13
c
32
+c
22
c
12
=
(εc−b
1
δ
2
)[b
2
(1−u
∗
)−(1+kv
∗
)]u
∗
w
∗
(1+kv
∗
)(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
+
b
1
δ
1
u
∗
v
∗
(1+kv
∗
)(1+au
∗
+b
1
v
∗
+b
2
w
∗
)

k(1−u
∗
)
1+kv
∗
+
(1+kv
∗
)−b
1
(1−u
∗
)
1+au
∗
+b
1
v
∗
+b
2
w
∗

=
u
∗
{b
1
δ
1
[(1+kv
∗
)−b
1
(1−u
∗
)]v
∗
−(εc−b
1
δ
2
)[(1+kv
∗
)−b
2
(1−u
∗
)]w
∗
}
(1+kv
∗
)(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
2
+
kb
1
δ
1
(1−u
∗
)u
∗
v
∗
(1+kv
∗
)
2
(1+au
∗
+b
1
v
∗
+b
2
w
∗
)
>0
lP
1
P
2
−P
3
>0.
Ïd,^‡(H
2
) (H
3
) (H
4
) (H
5
)¤áž, P
1
>0, P
3
>0, P
1
P
2
−P
3
>0,dRouth-Hurwitz
â[42]Œ•,A•§(9)ŠþäkK¢Ü,?XÚ(1.3)~ê²ï:E
∗
´ÛÜìC-
½.‡ƒ,A•§(9)ŠØkK¢Ü…¢ÜØ•",Ïd~ê²ï:E
∗
´Ø-½.
2.4.~ê²ï:Û-½5
ù˜Ü©·‚̇ïĦ~ê²ï:E
∗
(u
∗
,v
∗
,w
∗
)3R
3
+
SÛìC-½¿©^‡.
½n7e(H
3
)†±e^‡
(H
6
)aδ
i
(1+kv
∗
)−b
i
e
i
(1−u
∗
) >0
(H
7
)2b
1
δ
1
(1+kv
∗
)
2
<k(1−u
∗
)[aδ
1
(1+kv
∗
)−b
1
e
1
(1−u
∗
)]
(H
8
)
4b
1
b
2
e
1
e
2
δ
1
δ
2
>[e
1
(cε−b
1
δ
2
)−e
2
(c+b
2
δ
1
)]
2
e
2
(c+b
2
δ
1
) >e
1
(cε−b
1
δ
2
)
b
1
e
1
δ
1
[aδ
2
(1+kv
∗
)−b
2
e
2
(1−u
∗
)] >[e
2
(c+b
2
δ
1
)−e
1
(εc−b
1
δ
2
)][b
1
e
1
(1−u
∗
)−aδ
1
(1+kv
∗
)]
DOI:10.12677/pm.2022.12122252092nØêÆ
w
¤á,K~ê²ï:E
∗
(u
∗
,v
∗
,w
∗
)3R
3
+
={(u,v,w) : u(t) >0,v(t) >0,w(t) >0}S´Ûì
C-½.
y²3R
3
+
= {(u,v,w) : u(t) >0,v(t) >0,w(t) >0}S½ÂLyapunov¼ê•
V= (u−u
∗
−u
∗
ln
u
u
∗
)+
1
e
1
(v−v
∗
−v
∗
ln
v
v
∗
)+
1
e
2
(w−w
∗
−w
∗
ln
w
w
∗
)
(12)
éª(12)÷XXÚ(1.3))'užmt¦Œ
dV
dt
= (
u−u
∗
u
)
du
dt
+(
v−v
∗
v
)
dv
dt
+(
w−w
∗
w
)
dw
dt
duE
∗
´XÚ(1.3)~ê²ï:,k
v
∗
+w
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
=
1−u
∗
1+kv
∗
,
e
1
u
∗
−cw
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
= δ
1
,
e
2
u
∗
+εcv
∗
1+au
∗
+b
1
v
∗
+b
2
w
∗
= δ
2
.
,,uv
∗
−uv
∗
= v
∗
(u−u
∗
)−u
∗
(v−v
∗
), u
∗
v−uv
∗
= u
∗
(v−v
∗
)−v
∗
(u−u
∗
)
vw
∗
−v
∗
w= w
∗
(v−v
∗
)−v
∗
(w−w
∗
), v
∗
w−vw
∗
= v
∗
(w−w
∗
)−w
∗
(v−v
∗
)
uw
∗
−u
∗
w= w
∗
(u−u
∗
)−u
∗
(w−w
∗
), u
∗
w−uw
∗
= u
∗
(w−w
∗
)−w
∗
(u−u
∗
).
²L{üOŽ,
(
u−u
∗
u
)
du
dt
= −

1
1+kv
−
a(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)
2
−

k(1−u
∗
)
(1+kv)(1+kv
∗
)
+
(1+kv
∗
)−b
1
(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)(v−v
∗
)
−

(1+kv
∗
)−b
2
(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)(w−w
∗
)
1
e
1
(
v−v
∗
v
)
dv
dt
=
e
1
−aδ
1
e
1
(1+au+b
1
v+b
2
w)
(u−u
∗
)(v−v
∗
)−
b
1
δ
1
e
1
(1+au+b
1
v+b
2
w)
(v−v
∗
)
2
−
c+b
2
δ
1
e
1
(1+au+b
1
v+b
2
w)
(v−v
∗
)(w−w
∗
)
1
e
2
(
w−w
∗
w
)
dw
dt
=
e
2
−aδ
2
e
2
(1+au+b
1
v+b
2
w)
(u−u
∗
)(w−w
∗
)−
b
2
δ
2
e
2
(1+au+b
1
v+b
2
w)
(w−w
∗
)
2
+
cε−b
1
δ
2
e
2
(1+au+b
1
v+b
2
w)
(v−v
∗
)(w−w
∗
)
DOI:10.12677/pm.2022.12122252093nØêÆ
w
l
dV
dt
= −

1
1+kv
−
a(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)
2
−
b
1
δ
1
e
1
(1+au+b
1
v+b
2
w)
(v−v
∗
)
2
−
b
2
δ
2
e
2
(1+au+b
1
v+b
2
w)
(w−w
∗
)
2
+

e
1
−aδ
1
e
1
(1+au+b
1
v+b
2
w)

(u−u
∗
)(v−v
∗
)
+

−
k(1−u
∗
)
(1+kv)(1+kv
∗
)
−
(1+kv
∗
)−b
1
(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)(v−v
∗
)
+

e
2
−aδ
2
e
2
(1+au+b
1
v+b
2
w)
−
(1+kv
∗
)−b
2
(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)

(u−u
∗
)(w−w
∗
)
+

cε−b
1
δ
2
e
2
(1+au+b
1
v+b
2
w)
−
c+b
2
δ
1
e
1
(1+au+b
1
v+b
2
w)

(v−v
∗
)(w−w
∗
)
-l
11
= −
h
1
1+kv
−
a(1−u
∗
)
(1+kv
∗
)(1+au+b
1
v+b
2
w)
i
,l
12
= l
21
=
1
2
h
b
1
e
1
(1−u
∗
)−aδ
1
(1+kv
∗
)
e
1
(1+kv
∗
)(1+au+b
1
v+b
2
w)
−
k(1−u
∗
)
(1+kv)(1+kv
∗
)
i
,
l
22
= −
b
1
δ
1
e
1
(1+au+b
1
v+b
2
w)
,l
13
= l
31
=
1
2
h
b
2
e
2
(1−u
∗
)−aδ
2
(1+kv
∗
)
e
2
(1+kv
∗
)(1+au+b
1
v+b
2
w)
i
,
l
33
= −
b
2
δ
2
e
2
(1+au+b
1
v+b
2
w)
,l
23
= l
32
=
1
2
h
e
1
(cε−b
1
δ
2
)−e
2
(c+b
2
δ
1
)
e
1
e
2
(1+au+b
1
v+b
2
w)
i
.
L=






l
11
l
12
l
13
l
12
l
22
l
23
l
13
l
23
l
33






.
d(H
6
)(H
7
)Υ,



l
11



<0.






l
11
l
12
l
12
l
22






= l
11
l
22
−l
2
12
=
2e
1
(1+kv)(1+au+b
1
v+b
2
w)
{
2b
1
δ
1
(1+kv
∗
)
2
−k(1−u
∗
)[aδ
1
(1+kv
∗
)−b
1
e
1
(1−u
∗
)]
}
4e
2
1
(1+kv)
2
(1+kv
∗
)(1+au+b
1
v+b
2
w)
2
−
4ab
1
e
1
δ
1
(1−u
∗
)(1+kv
∗
)(1+kv)
2
4e
2
1
(1+kv)
2
(1+kv
∗
)(1+au+b
1
v+b
2
w)
2
−
(1+kv)
2
[b
1
e
1
(1−u
∗
)−aδ
1
(1+kv
∗
)]
2
4e
2
1
(1+kv)
2
(1+kv
∗
)(1+au+b
1
v+b
2
w)
2
−
e
2
1
k
2
(1−u
∗
)
2
(1+au+b
1
v+b
2
w)
2
4e
2
1
(1+kv)
2
(1+kv
∗
)(1+au+b
1
v+b
2
w)
2
<0
d(H
6
)(H
8
)Υ,








l
11
l
12
l
13
l
12
l
22
l
23
l
13
l
23
l
33








= l
11
l
22
l
33
+2l
12
l
13
l
23
−l
11
l
2
23
−l
22
l
2
13
−l
33
l
2
12
=
{
[e
1
(cε−b
1
δ
2
)−e
2
(c+b
2
δ
1
)]
2
−4b
1
b
2
e
1
e
2
δ
1
δ
2
}
(1+kv)(1+kv
∗
)[(1+kv
∗
)(1+au+b
1
v+b
2
w)−a(1−u
∗
)(1+kv)]
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
+
[e
1
(cε−b
1
δ
2
)−e
2
(c
+
b
2
δ
1
)][b
1
e
1
(1−u
∗
)−aδ
1
(1+kv
∗
)](1+kv)
2
[b
2
e
2
(1−u
∗
)−aδ
2
(1+kv
∗
)]
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
DOI:10.12677/pm.2022.12122252094nØêÆ
w
+
b
1
e
1
δ
1
(1+kv)
2
[b
2
e
2
(1−u
∗
)−aδ
2
(1+kv
∗
)]
2
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
+
b
2
e
2
δ
2
(1+kv)[b
1
e
1
(1−u
∗
)−aδ
1
(1+kv
∗
)]
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
−
ke
1
(1+kv)(1−u
∗
)[e
1
(cε−b
1
δ
2
)−e
2
(c
+
b
2
δ
1
)][b
2
e
2
(1−u
∗
)−aδ
2
(1+kv
∗
)](1+au+b
1
v+b
2
w)
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
+
b
2
e
1
e
2
kδ
2
(1−u
∗
)(1+au+b
1
v+b
2
w)
4e
2
1
e
2
2
(1+kv)
2
(1+kv
∗
)
2
(1+au+b
1
v+b
2
w)
3
<0.
P˜u=u−u
∗
,˜v=v−v
∗
,˜w=w−w
∗
,l
dV
dt
=(˜u,˜u,˜w)
>
L(˜u,˜u,˜w)≤0.…=u=u
∗
,
v= v
∗
,w= w
∗
ž,
dV
dt
= 0,dLaSalleC©Ún[43],·‚E
∗
3R
3
+
S´ÛìC-½.
2.5.Hopf©|
ù˜Ü©·‚±™êÏfkŠ•©|ëê,$^Sotomayor½n[44]?؈²ï:?u)Hopf
©|^‡.
½n8©|ëêkL.Šk= k
1
ž,XÚ(1.3)Œ7ÃIGÓ ö²ï:E
2
²{ ¿Ê
Å©|,ùpk
1
÷vµQ
1
(k
1
)=a
11
(k
1
) +a
22
(k
1
)=0,λ
c
1
=
p
a
11
(k
1
)a
22
(k
1
)−a
12
(k
1
)a
21
(k
1
)
det(J(E
2
))|
k=k
1
= s
3
(k
1
) >0,
dλ
a
1
dk
|
k=k
1
=
σ
1
ϕ−2σ
2
ψ
σ
2
1
−4σ
2
2
6= 0.
y²λ(k)=λ
a
1
(k)+ iλ
c
1
(k)•(λ−a
33
)[λ
2
−(a
11
+a
22
)λ+a
11
a
22
−a
12
a
21
]=0A
Š,òλ(k)“\¿©l¢ÜÚJÜ,







λ
3
a
1
−3λ
a
1
λ
2
c
1
+s
1
(λ
2
c
1
−λ
2
a
1
)+s
2
λ
a
1
−s
3
= 0,
3λ
c
1
λ
2
a
1
−λ
3
c
1
−2s
1
λ
a
1
λ
c
1
+s
2
λ
c
1
= 0,
(13)
s
1
= a
11
(k)+a
22
(k)+a
33
(k),
s
2
= a
11
(k)a
22
(k)−a
12
(k)a
21
(k)+a
33
(k)[a
11
(k)+a
22
(k)],
s
3
= a
33
(k)[a
11
(k)a
22
(k)−a
12
(k)a
21
(k)].
AŠ¢Ü•"ž,TAŠ´Ý,ÃIGÓ ö²ï:E
2
Ï)Hopf©|”
§-½5.½ÂHopf©|.Š•k
1
,Òkλ
a
1
(k
1
) = 0…λ
c
1
(k
1
) 6= 0,“\(13)ªXe
•§|:







s
1
λ
2
c
1
−s
3
= 0
−λ
3
c
1
+s
2
λ
c
1
= 0
Q
1
= a
11
(k
1
)+a
22
(k
1
) =0ž,ks
1
= a
33
(k
1
),Kλ
c
1
=
p
a
11
(k
1
)a
22
(k
1
)−a
12
(k
1
)a
21
(k
1
),l
det(J(E
2
))|
k=k
1
= s
3
(k
1
) >0.é(13)ªü>'uëêk¦









(3λ
2
a
1
−3λ
2
c
1
−2s
1
λ
a
1
+s
2
)
dλ
a
1
dk
+(2s
1
λ
c
1
−6λ
a
1
λ
c
1
)
dλ
c
1
dk
= (λ
2
a
1
−λ
2
c
1
)
ds
1
dk
−λ
a
1
ds
2
dk
+
ds
3
dk
(3λ
2
a
1
−3λ
2
c
1
−2s
1
λ
a
1
+s
2
)
dλ
c
1
dk
+(6λ
a
1
λ
c
1
−2s
1
λ
c
1
)
dλ
a
1
dk
= 2λ
a
1
λ
c
1
ds
1
dk
−λ
c
1
ds
2
dk
duλ
a
1
= 0,¿-σ
1
= s
2
3λ
2
c
1
,σ
2
= 2s
1
λ
c
1
,ϕ=
ds
3
dk
−λ
2
c
1
ds
1
dk
,ψ=−λ
c
1
ds
2
dk
.Kþª•§|C
DOI:10.12677/pm.2022.12122252095nØêÆ
w
•λ
c
1
(k
1
) 6= 0,“\(13)ªXe•§|:









σ
1
dλ
a
1
dk
+σ
2
dλ
c
1
dk
= ϕ
σ
1
dλ
c
1
dk
−σ
2
dλ
a
1
dk
= ψ
)
dλ
a
1
dk
|
k=k
1
=
σ
1
ϕ−2σ
2
ψ
σ
2
1
−4σ
2
2
6= 0,y..
íØ©|ëêkL.Šk=k
2
ž,XÚ(1.3)Œ7ÃIG ²ï:E
3
²{¿Ê
Å©|,ùpk
2
÷vµQ
2
(k
2
)=b
11
(k
2
) + b
33
(k
2
)=0,λ
c
2
=
p
b
11
(k
2
)b
33
(k
2
)−b
13
(k
2
)b
31
(k
2
)
det(J(E
3
))|
k=k
2
= s
3
(k
2
) >0,
dλ
a
2
dk
|
k=k
2
=
σ
1
ϕ−2σ
2
ψ
σ
1
2
−4σ
2
2
6= 0.
½n9e±e^‡¤á
(H
9
)
(i)P
1
(k
∗
) >0,P
3
(k
∗
) >0
(ii)Q(k
∗
) = P
1
(k
∗
)P
2
(k
∗
)−P
3
(k
∗
) = 0
(iii)
dQ(k)
dk
|
k=k
∗
6= 0
…©|ëêk²L.Šk
∗
ž,XÚ(1.3)Œ7~ê²ï:E
∗
)Hopf©|.
y²d^‡(H
9
)¥(i)(ii)Ñ,k= k
∗
ž,(9)ªk˜‡KŠÚü‡XJŠ,K(9)ªÒ˜
½Œ±¤(λ
2
+P
2
)(λ+P
1
) = 0/ª,¿Ñn‡Š•λ
1
= −P
1
,λ
2
= i
√
P
2
,λ
3
= −i
√
P
2
.é
¤k©|ëêŠk,AŠλ
23
/ª•λ
2
= α(k)+iβ(k),λ
3
= α(k)−iβ(k),α(k)•¢Ü,ò
λ(k) = α(k)+iβ(k)“\(9)ª¥

α(k)+iβ(k)

3
+P
1
(k)

α(k)+iβ(k)

2
+P
2

α(k)+iβ(k)

+P
3
= 0
(14)
é(13)ªü>'u©|ëêk¦¿©l¢ÜÚJÜ±e•§|









l
1
dα(k)
dk
−l
2
dβ(k)
dk
+l
3
(k) = 0
l
2
dα(k)
dk
+l
1
dβ(k)
dk
+l
4
(k) = 0
Ù¥
l
1
(k) = P
2
(k)+2P
1
(k)α(k)+3

α(k)
2
−β(k)
2

,l
2
(k) = 2

P
1
(k)+3α(k)

β(k),
l
3
(k) =

α(k)
2
−β(k)
2

P
1
(k)+α(k)P
2
(k)+P
3
(k),l
4
(k) =

2α(k)P
1
(k)+P
2
(k)

β(k).
)
dα(k)
dk
|
k=k
∗
= Re

dλ(k)
dk

k=k
∗
= −

l
1
(k)l
3
(k)+l
2
(k)l
4
(k)
l
1
(k)
2
+l
2
(k)
2

k=k
∗
DOI:10.12677/pm.2022.12122252096nØêÆ
w
=
"
P
2
(k)P
1
(k)+P
1
(k)P
2
(k)−P
3
(k)
2

P
1
(k)
2
+P
2
(k)
2

#
k=k
∗
= −



dQ(k)
dk
2

P
1
(k)
2
+P
2
(k)
2




k=k
∗
6= 0.
3.g*ÑXÚ(1.4)Ä審Û
3.1.±È5Úk.5
•ïÄØCáÚ••35,XÚ(1.4))k.5Ú±È5¦^±eÚn[45].
Ún1
f(s)és≥0´C
1
a¼ê,d>0, η≥0´~ê,?,4T∈[0,∞),
Φ ∈C
2,1
(Ω×(T,∞))∩C
1,0
(Ω×[T,∞))´¼ê.
(i)eΦ÷v







Φ
t
−d∆Φ ≤Φ
1+η
f(Φ)(θ−Φ),(x,t) ∈Ω×(T,∞)
Φ
v
= 0,(x,t) ∈∂Ω×(T,∞)
~êθ>0,Klim
t→∞
supmax
Ω
Φ(.,t) ≤θ.
(ii)eΦ÷v







Φ
t
−d∆Φ ≥Φ
1+η
f(Φ)(θ−Φ),(x,t) ∈Ω×(T,∞)
Φ
v
= 0,(x,t) ∈∂Ω×(T,∞)
~êθ>0,Klim
t→∞
infmin
Ω
Φ(.,t) ≥θ.
½n10 XÚ(1.4)3R
+
3
S¤k)´˜—k.¿•ª?\ØCáÚ•
P
=[0,1] ×
h
0,
e
1
b
1
δ
1
i
×
h
0,
εce
1
+b
1
e
2
δ
1
b
1
b
2
δ
1
δ
2
i
.
y²·‚7Ly²é∀t>0,

u(x,0),v(x,0),w(x,0)

∈
P
,

u(x,t),v(x,t),w(x,t)

∈
P
.
†Œ±wu(x,t)>0,v(x,t)>0,w(x,t)>0,Ïd§ Њu(x,0),v(x,0)Úw(x,0)´šK,
ylXÚ(1.4)1˜‡•§¥,·‚
u
t
−∆u≤u(1−u),
dÚn1¥(i)•,
lim
t→∞
supmax
Ω
u(x,t) ≤1.
=é∀>0,∃t
1
>0,t>t
1
,(x,t) ∈Ω×[t
1
,∞]ž,¦u(x,t) ≤1+.
DOI:10.12677/pm.2022.12122252097nØêÆ
w
Ïd,3(x,t) ∈Ω×[t
1
,∞]þ,v•§÷v
v
t
−d
2
∆v≤v

e
1
(1+)
1+a(1+)+b
1
v
−δ
1

≤

e
1
(1+)
b
1
−δ
1
v

= δ
1

e
1
(1+)
b
1
δ
1
−v

dÚn1¥(i)•,
lim
t→∞
supmax
Ω
v(x,t) ≤
e
1
b
1
δ
1
.
=é∀
1
,∃t
2
>t
1
,t>t
2
,(x,t) ∈Ω×[t
2
,∞]ž,¦v(x,t) ≤
e
1
b
1
δ
1
+
1
.
Ïd,3(x,t) ∈Ω×[t
2
,∞]þ,w•§÷v
w
t
−d
3
∆w≤w

e
2
(1+)+cε(
e
1
b
1
δ
1
+
1
)
b
2
w
−δ
2

≤δ
2



h
e
2
(1+)+cε

e
1
b
1
δ
1
+
1
i
b
2
δ
2
−w



du,
1
´?¿,2A^Ún1(i),
lim
t→∞
supmax
Ω
w(x,t) ≤
e
2
+
εce
1
b
1
δ
1
b
2
δ
2
=
εce
1
+b
1
e
2
δ
1
b
1
b
2
δ
1
δ
2
.
½Âéuäk šKЊ…(u(x,0),v(x,0),w(x,0))6=0XÚ(1.4),e∃σ
0
,σ
1
,σ
2
þ•~
ê,¦XÚ(1.4))u(x,t),v(x,t),w(x,t)÷v
lim
t→∞
infmin
Ω
(u,t) ≥σ
0
,lim
t→∞
infmin
Ω
(v,t) ≥σ
1
,lim
t→∞
infmin
Ω
(w,t) ≥σ
2
,K¡XÚ(1.4)´±È.
½n11el
u
=1−
(b
1
+b
2
)(b
1
δ
1
−ke
1
)
b
2
1
b
2
δ
1
>0,l
v
=
b
1
e
1
δ
1
δ
2
l
u
−(c+b
2
δ
1
)[b
1
δ
1
(δ
2
+aδ
2
+e
2
)+εce
1
]
b
2
1
δ
1
δ
2
(c+b
2
δ
1
)
>0,
l
w
=
e
2
δ
1
l
u
+εcδ
1
l
v
−δ
1
δ
2
(1+a)−e
1
δ
2
b
2
δ
1
δ
2
>0,KXÚ(1.4)´±È.
Ï•
u
t
−d
1
∆u= u

1−u
1+kv
−
v+w
1+au+b
1
v+b
2
w

≥u(
1−u
1+kv
−
1
b
1
−
1
b
2
)
≥u

b
1
δ
1
(1−u)
b
1
δ
1
+ke
1
−
b
1
+b
2
b
1
b
2

≥
b
1
δ
1
u
b
1
δ
1
+ke
1

1−
(b
1
+b
2
)(b
1
δ
1
+ke
1
)
b
2
1
b
2
δ
1
−u

,
…-l
u
= 1−
(b
1
+b
2
)(b
1
δ
1
+ke
1
)
b
2
1
b
2
δ
1
>0,KdÚn1(ii)•,
lim
t→∞
infmin
Ω
(u,t) ≥1−
(b
1
+b
2
)(b
1
δ
1
+ke
1
)
b
2
1
b
2
δ
1
=é∀0 <
(0)
<l
u
,∃t
0
,t>t
0
,(x,t) ∈Ω×[t
0
,∞]ž,¦u(x,t) ≥l
u
−
(0)
.
3(x,t) ∈Ω×[t
0
,∞]þ,XÚ(1.4)1‡'uv•§÷v:
v
t
−d
2
∆v≥v

b
1
e
1
δ
1
δ
2
(l
u
−
(0)
)
b
1
δ
1
δ
2
(1+a)+(b
1
e
2
δ
1
+εce
1
)+b
2
1
δ
2
δ
2
v)
−
c+b
2
δ
1
b
2

≥
b
2
1
δ
1
δ
2
(c+b
2
δ
1
)v
b
2
[b
1
δ
1
δ
2
(1+a)+(b
1
e
2
δ
1
+εce
1
)+b
2
1
δ
1
δ
2
v]

b
1
e
1
δ
1
δ
2
l
u
−(c+b
2
δ
1
)[b
1
δ
1
(δ
2
+aδ
2
+e
2
)+εce
1
]
b
2
1
δ
1
δ
2
(c+b
2
δ
1
)
−v

DOI:10.12677/pm.2022.12122252098nØêÆ
w
-l
v
=
b
1
e
1
δ
1
δ
2
l
u
−(c+b
2
δ
1
)[b
1
δ
1
(δ
2
+aδ
2
+e
2
)+εce
1
]
b
2
1
δ
1
δ
2
(c+b
2
δ
1
)
>0,dÚn1(ii)•,
lim
t→∞
infmin
Ω
(v,t) ≥
b
1
e
1
δ
1
δ
2
l
u
−(c+b
2
δ
1
)[b
1
δ
1
(δ
2
+aδ
2
+e
2
)+εce
1
]
b
2
1
δ
1
δ
2
(c+b
2
δ
1
)
=é∀
(1)
>0,∃t
(1)
0
>t
0
,t>t
(1)
0
,(x,t) ∈Ω×

t
(1)
0
,∞

ž,¦v(x,t) ≥l
v
−
(1)
.
aq/,XÚ(1.4)1n‡'uw•§÷v:
w
t
−d
3
∆w≥w

e
2
δ
1
(l
u
−
(0)
)+εcδ
1
(l
v
−
(1)
)
δ
1
(1+a)+e
1
+b
2
δ
1
w
−δ
2

≥
b
2
δ
1
δ
2
w
δ
1
(1+a)+e
1
+b
2
δ
1
w

e
2
δ
1
(l
u
−
(0)
)+εcδ
1
(l
v
−
(1)
)−δ
1
δ
2
(1+a)−e
1
δ
2
b
2
δ
1
δ
2
−w

-l
w
=
e
2
δ
1
l
u
+εcδ
1
l
v
−δ
1
δ
2
(1+a)−e
1
δ
2
b
2
δ
1
δ
2
>0,dÚn1(ii)•,
lim
t→∞
infmin
Ω
(w,t) ≥
e
2
δ
1
l
u
+εcδ
1
l
v
−δ
1
δ
2
(1+a)−e
1
δ
2
b
2
δ
1
δ
2
y..
3.2.ÛÜ-½5
ù˜Ü©,?ØXÚ(1.4)~ê²ï-½5,éN´wXÚ(1.4)~ê²ï
:†XÚ(1.3)˜—.yL«E=

u(x,t),v(x,t),w(x,t)

>
,F(E)=

f
1
(E),f
2
(E),f
3
(E)

>
,
D= diag(d
1
,d
2
,d
3
),XÚ(1.4)3E
∗
?‚5z/ªXe:





E
t
= LE,x∈Ω,
n·∇E= 0,x∈∂Ω.
L= D∆+J
E
∗
.
0=µ
0
<µ
1
<µ
2
<...<µ
n
<...,´ΩþäkàgNeumann>.^‡ −∆ŽfA
Š,E(µ
i
)•H
1
(Ω)þµ
i
(i=0,1,2,...)éAA˜m, X•[H
1
(Ω)]þ

C
1
(
¯
Ω)

3
4•,
X
ij
= {cφ
ij
|c∈R
3
},{φ
ij
: j= 1,2,3,...,dimE(µ
i
)}´X
i
˜|IOÄ,K
X=
∞
M
i=1
X
i
,X
i
=
dim[E(µ
i
)]
M
j=1
X
ij
.
éz˜‡i≥1,X
i
3ŽfLe´ØC,…é,‡i≥15`,λ´ŽfLAŠ…=§
´Ý−µ
i
D+J
E
∗
AŠž,TAŠ¿éAX
i
¥˜‡A•þ.−µ
i
D+J
E
∗
A•§•
Ψ
i
(λ) = λ
3
+P
1i
λ
2
+P
2i
λ+P
3i
= 0
(15)
DOI:10.12677/pm.2022.12122252099nØêÆ
w

P
1i
= (d
1
+d
2
+d
3
)µ
i
+P
1
P
2i
= (d
1
d
2
+d
1
d
3
+d
2
d
3
)µ
2
i
−[c
11
(d
2
+d
3
)+c
22
(d
1
+d
3
)+c
33
(d
1
+d
2
)]µ
i
+P
2
P
3i
= d
1
d
2
d
3
µ
3
i
−(d
1
d
2
c
33
+d
1
d
3
c
22
+d
2
d
3
c
11
)µ
2
i
+[d
1
(c
22
c
33
−c
23
c
32
)+d
2
(c
11
c
33
−c
13
c
31
)+d
3
(c
11
c
22
−c
12
c
21
)]µ
i
+P
3
= q
1
µ
3
i
+q
2
µ
2
i
+q
3
µ
i
+q
4
.
Q
i
= P
1i
P
2i
−P
3i
= m
1
µ
3
i
+m
2
µ
2
i
+m
3
µ
i
+m
4

m
1
= (d
1
+d
2
)(d
1
+d
3
)(d
2
+d
3
)−d
1
d
2
d
3
>0
m
2
= −2(d
1
d
2
+d
1
d
3
+d
2
d
3
)(c
11
+c
22
+c
33
)−d
2
1
(c
22
+c
33
)−d
2
2
(c
11
+c
33
)−d
2
3
(c
11
+c
22
)
m
3
= d
1

2(c
11
c
22
+c
11
c
33
+c
22
c
33
)−c
12
c
21
−c
13
c
31
+c
2
22
+c
2
33

+d
2

2(c
11
c
22
+c
11
c
33
+c
22
c
33
)−c
12
c
21
−c
13
c
31
+c
2
11
+c
2
33

+d
3

2(c
11
c
22
+c
11
c
33
+c
22
c
33
)−c
23
c
32
−c
13
c
31
+c
2
11
+c
2
22

m
4
= P
1
P
2
−P
3
.
d(10)¥ÎÒŒ•m
2
,m
3
,m
4
þŒu",kQ
i
>0,Ïd,P
1i
,P
2i
,P
3i
>0,dRouth-Hurwitz
OKŒ••§(15)n‡ŠÑäkK¢Ü,éz‡i≥1.
-λ= µ
i
ζ,K
Ψ
i
(λ) = µ
3
i
ζ
3
+P
1i
µ
2
i
ζ
2
+P
2i
µ
i
ζ+P
3i
:=
e
Ψ
i
(ζ)
4µ
i
−→∞,i−→∞ž,
lim
t→∞
e
Ψ
i
(ζ)
µ
3
i
= ζ
3
+(d
1
+d
2
+d
3
)ζ
2
+(d
1
d
2
+d
1
d
3
+d
2
d
3
)ζ+d
1
d
2
d
3
:=
e
Ψ(ζ)
w,,
e
Ψ(ζ) = 0kn‡Š−d
1
,−d
2
,−d
3
, dëY5•∃i
0
, ¦
e
Ψ
i
(ζ) = 0n‡Šζ
1i
,ζ
2i
,ζ
3i
÷v
Re{ζ
1i
},Re{ζ
2i
},Re{ζ
3i
}≤−
d
2
,∀i≥i
0
,ùpd= min{d
1
,d
2
,d
3
},KRe{λ
1i
},Re{λ
2i
},Re{λ
3i
}≤
−µ
i
d
2
≤−
d
2
,∀i≥i
0
.-
−
e
d= max

Re{λ
1i
},Re{λ
2i
},Re{λ
3i
}≤−µ
i
d
2
≤−
d
2

DOI:10.12677/pm.2022.12122252100nØêÆ
w
K
e
d>0,…Re{λ
1i
},Re{λ
2i
},Re{λ
3i
}≤−µ
i
d
2
≤−
d
2
≤−d= min

e
d,
d
2

<0,∀i≥1dLŽ
fAŠ|¤Ì uŒ²¡Re{λ≤−d}S.Ïd,dDanHenry[46]½n5.1.1,·‚k±
eE
∗
-½5(J.
½n12e^‡(H
2
)-(H
6
)¤á,Kg*ÑXÚ(1.4)~ê²ï:E
∗
´ÛÜìC-½.
5:þã½n L²g*ÑXÚŒUجU CXÚ-½5,•Ò´`§g*ÑØU)Turing
Ø-½5.
4.(Ø
©•)ºIG ÚIGÓ ö|¢Çé¤9n‡Ô«,=É™êZ6•]
,IG ,IGÓ ö•65,•Ä3àgNewman>.^‡eäk™êAÚBedington-
DeAngelisõU‡Až˜ +SÓ ..éuù‡IGP.§·‚Ñ¤kŒ1²ï:
•35Ú(ÛÜ/Û)-½5^‡,•)²…²ï:!>.²ï:Ú~ê²ï:.d,„
±™êÏf•ëêHopf©|^‡.ÏLïÄuy,žmXÚ(1.3)Œ1²ï:•´ž˜X
Ú(1.4)Œ1²ï:.,,·‚l½n6Ú9Œ±w,ÃØ*Ñ´Ä•3,~ê²ï:Û
Ü-½5^‡¿vkÉ*ÑK•.
½n10ž˜XÚ(1.4)˜—±È5•3•ý«XÉ™êK••],IG ,IGÓ
önÔ«Œ±•.
©?1î‚nØínØy,lnØþ5`äkŒ15Úž5,Øvƒ?´"äN
ꊩÛ.
Ä7‘8
I[g,䮀7(Nos.11761063)"
ë•©z
[1]Polis,G.A.andMcCormick,S.J.(1987)IntraguildPredationandCompetitionamongDesert
Scorpions.Ecology,68,332-343.https://doi.org/10.2307/1939264
[2]Polis,G.A., Myers, C.A.andHolt, R.D.(1989) TheEcology andEvolutionofIntraguildPreda-
tion:Potential Competitors That Eat Each Other. Annual ReviewofEcologyandSystematics,
20,297-330.https://doi.org/10.1146/annurev.es.20.110189.001501
[3]Polis,G.A.andHolt,R.D.(1992)IntraguildPredation:TheDynamicsofComplexTrophic
Interactions.TrendsinEcologyandEvolution,7,151-154.
https://doi.org/10.1016/0169-5347(92)90208-S
DOI:10.12677/pm.2022.12122252101nØêÆ
w
[4]Holt,R.D.andPolis,G.A.(1997)ATheoreticalFrameworkforIntraguildPredation.The
AmericanNaturalist,149,745-764.https://doi.org/10.1086/286018
[5]Holling,C.S.(1959)TheComponentsofPredationasRevealedbyaStudyofSmall-Mammal
PredationoftheEuropeanPineSawfly.TheCanadianEntomologist,91,293-320.
https://doi.org/10.4039/Ent91293-5
[6]Holling,C.S.(1959)SomeCharacteristicsofSimpleTypesofPredationandParasitism.The
CanadianEntomologist,91,385-398.https://doi.org/10.4039/Ent91385-7
[7]Holling, C.S.(1966) TheFunctional Response ofInvertebrate Predatorsto PreyDensity. Mem-
oirsoftheEntomologicalSocietyofCanada,98,5-86.
https://doi.org/10.4039/entm9848fv
[8]Beddington,J.R.(1975)MutualInterference betweenParasitesorpredatorsandItsEffecton
SearchingEfficiency.JournalofAnimalEcology,44,331-340.
https://doi.org/10.2307/3866
[9]DeAngelis, D.L.,Goldstein, R.A.andNeill, R.(1975)AModel forTrophicInteraction.Ecology,
56,881-892.https://doi.org/10.2307/1936298
[10]Kratina,P.,Vos,M.,Bateman, A. andAnholt,B.R. (2009) Functional ResponsesModifiedby
PredatorDensity.Oecologia,159,425-433.https://doi.org/10.1007/s00442-008-1225-5
[11]Skalski, G.T.andGilliam, J.F.(2001) FunctionalResponseswithPredator Interference:Viable
AlternativestotheHollingTypeIIModel.Ecology,82,3083-3092.
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[12]Hsu,S.-B.,Ruan,S.andYang,T.-H.(2013)OntheDynamicsofTwo-Consumers-One-
ResourceCompetingSystemswithBeddington-DeAngelisFunctionalResponse.Discreteand
ContinuousDynamicalSystemsB,18,2331-2353.
https://doi.org/10.3934/dcdsb.2013.18.2331
[13]Hsu,S.-B.,Ruan,S.andYang,T.-H.(2015)AnalysisofThreeSpeciesLotka-VolterraFood
Web ModelswithOmnivory.JournalofMathematicalAnalysisandApplications,426, 659-687.
https://doi.org/10.1016/j.jmaa.2015.01.035
[14]Lin,G.,Ji,J.,Wang,L.andYu,J.(2021)MultitypeBistabilityandLongTransientsina
DelayedSpruceBudwormPopulation Model.JournalofDifferentialEquations,283,263-289.
https://doi.org/10.1016/j.jde.2021.02.034
[15]Seo,G.andWolkowicz,G.S.K.(2018)Sensitivity of theDynamicsoftheGeneralRosenzweig-
MacArthurModelto theMathematical Formof theFunctionalResponse:ABifurcation The-
oryApproach.JournalofMathematicalBiology,76,1873-1906.
https://doi.org/10.1007/s00285-017-1201-y
[16]Shu,H.,Hu,X.,Wang,L.andWatmough,J.(2015)DelayInducedStabilitySwitch,Multi-
TypeBistabilityandChaosinanIntraguildPredationModel.Journal of Mathematical Biology,
71,1269-1298.https://doi.org/10.1007/s00285-015-0857-4
DOI:10.12677/pm.2022.12122252102nØêÆ
w
[17]Yuan,Y.(2012)ACoupledPlanktonSystemwithInstantaneousandDelayedPredation.
JournalofBiologicalDynamics,6,148-165.https://doi.org/10.1080/17513758.2010.544409
[18]Kang,Y.andWedekin,L.(2013)DynamicsofaIntraguildPredationModelwithGeneralist
orSpecialistPredator.JournalofMathematicalBiology,67,1227-1259.
https://doi.org/10.1007/s00285-012-0584-z
[19]Schauber,E.M.,Ostfeld,R.S.andJones,C.G.(2004)Type3FunctionalResponseofMiceto
GypsyMothPupae:IsItStabilizing?Oikos,107,592-602.
https://doi.org/10.1111/j.0030-1299.2004.13606.x
[20]Han,R.andDai,B.(2017)SpatiotemporalDynamicsandSpatialPatterninaDiffusive
IntraguildPredationModelwithDelayEffect.AppliedMathematicsandComputation,312,
177-201.https://doi.org/10.1016/j.amc.2017.05.053
[21]Sen,D.,Ghorai,S.andBanerjee,M.(2018)ComplexDynamicsofaThreeSpeciesPrey-
PredatorModelwithIntraguildPredation.EcologicalComplexity,34,9-22.
https://doi.org/10.1016/j.ecocom.2018.02.002
[22]Cantrell,R.S.andCosner,C.(2001)OntheDynamicsofPredator-PreyModelswiththe
Beddington-DeAngelisFunctionalResponse.JournalofMathematicalAnalysisandApplica-
tions,257,206-222.https://doi.org/10.1006/jmaa.2000.7343
[23]Hwang, T.W.(2003) Global Analysisof thePredator-Prey System withBeddington-DeAngelis
FunctionalResponse.JournalofMathematicalAnalysisandApplications,281,395-401.
https://doi.org/10.1016/S0022-247X(02)00395-5
[24]Hwang,T.W.(2004)UniquenessofLimitCyclesofthePredator-PreySystemwithBeddington-
DeAngelis Functional Response. JournalofMathematicalAnalysis andApplications, 290, 113-
122.https://doi.org/10.1016/j.jmaa.2003.09.073
[25]Liu, S.,Beretta,E. andBreda, D.(2010) Predator-Prey Model ofBeddington-DeAngelis Type
withMaturationandGestationDelays.NonlinearAnalysis:RealWorldApplications,11,
4072-4091.https://doi.org/10.1016/j.nonrwa.2010.03.013
[26]Tripathi, J.P., Abbas, S. andThakur, M. (2015)Dynamical Analysis ofa Prey-Predator Model
withBeddington-DeAngelisTypeFunctionResponseIncorporatingaPreyRefuge.Nonlinear
Dynamics,80,177-196.https://doi.org/10.1007/s11071-014-1859-2
[27]Cantrell, R.S., Cao, X.,Lam, K.Y. and Xiang, T.(2017) A PDEModel of Intraguild Predation
withCross-Diffusion.DiscreteandContinuousDynamicalSystemsB,22,3653-3661.
https://doi.org/10.3934/dcdsb.2017145
[28]Han,R.,Dai,B.andWang,L.(2018)DelayInducedSpatiotemporalPatternsinaDiffusive
IntraguildPredationModelwithBeddington-DeAngelisFunctionalResponse.Mathematical
BiosciencesandEngineering,15,595-627.https://doi.org/10.3934/mbe.2018027
DOI:10.12677/pm.2022.12122252103nØêÆ
w
[29]Han,R.,Dai,B.andChen,Y.(2019)PatternFormationinaDiffusiveIntraguildPredation
ModelwithNonlocalInteractionEffects.AIPAdvances,9,ArticleID:035046.
https://doi.org/10.1063/1.5084948
[30]Wei,H.(2019)AMathematicalModelofIntraguildPredationwithPreySwitching.Mathe-
maticsandComputersinSimulation,165,107-118.
https://doi.org/10.1016/j.matcom.2019.03.004
[31]Zhang,G.H.andWang,X.L.(2018)ExtinctionandCoexistenceofSpeciesforaDiffusiveIn-
traguild Predation ModelwithB-D FunctionalResponse. DiscreteandContinuousDynamical
SystemsB,23,3755-3786.https://doi.org/10.3934/dcdsb.2018076
[32]Ji,J.P.andWang,L.(2022)CompetitiveExclusionandCoexistenceinanIntraguildPreda-
tionModelwithBeddington-DeAngelisFunctionalResponse.CommunicationsinNonlinear
ScienceandNumericalSimulation,107,ArticleID:106192.
https://doi.org/10.1016/j.cnsns.2021.106192
[33]Raw,S.N.andTiwari,B.(2022)AMathematicalModelofIntraguildPredationwithPrey
Refugeand CompetitivePredators.InternationalJournalofAppliedandComputationalMath-
ematics,8,ArticleNo.157.https://doi.org/10.1007/s40819-022-01366-6
[34]Mendon¸ca,J.P.,Iram,G.andLyra,M.L.(2020)PreyRefugeandMorphologicalDefense
MechanismsasNonlinearTriggersinanIntraguildPredationFoodWeb.Communicationsin
NonlinearScienceandNumericalSimulation,90,ArticleID:105373.
https://doi.org/10.1016/j.cnsns.2020.105373
[35]Xu,W.J.,Wu,D.Y.,Gao,J.andShen,C.S.(2022)MechanismofStableSpeciesCoexistence
inFoodChainSystems:StrengthofOdorDisturbanceandGroupDefense.Chaos,Solitons
andFractals,8,ArticleID:100073.https://doi.org/10.1016/j.csfx.2022.100073
[36]Capone,F.,Carfora,M.F.,DeLuca,R.Torcicollo,I.(2019)TuringPatternsinaReaction-
DiffusionSystemModelingHuntingCooperation.MathematicsandComputersinSimulation,
165,172-180.https://doi.org/10.1016/j.matcom.2019.03.010
[37]He,M.X. andLi,Z.(2022)Stability ofaFearEffect Predator-PreyModelwithMutualInter-
ferenceorGroupDefense.JournalofBiologicalDynamics,16,1480-1498.
https://doi.org/10.1080/17513758.2022.2091800
[38]Mainul,H.,Nikhil,P.,Sudip,S.andJoydev,C.(2020)FearInducedStabilizationinan
IntraguildPredationModel.InternationalJournalofBifurcationandChaos,30,ArticleID:
2050053.https://doi.org/10.1142/S0218127420500534
[39]Pijush,P.,Nikhil,P.,Sudip,S.andJoydev,C.(2019)AThreeSpeciesFoodChainMod-
elwithFearInducedTrophicCascade.InternationalJournalofAppliedandComputational
Mathematics,5,ArticleNo.100.https://doi.org/10.1007/s40819-019-0688-x
[40]Shi, R.X. and Hu, Z.H. (2022) Dynamics of Three-Species Food Chain Model with Two Delays
ofFear.ChineseJournalofPhysics,77,678-698.https://doi.org/10.1016/j.cjph.2021.06.020
DOI:10.12677/pm.2022.12122252104nØêÆ
w
[41]Birkhoff,G.andRota,G.C.(1989)OrdinaryDifferentialEquations.JohnWiley&SonsInc.,
Boston.
[42]Liu,W.M. (1994)Criterionof HopfBifurcations withoutUsingEigenvalues. JournalofMath-
ematicalAnalysisandApplications,182,250-256.
https://doi.org/10.1006/jmaa.1994.1079
[43]Lasalle,J.P.(1960)SomeExtensionsofLyapunov’sSecondMethod.IRETransactionson
CircuitTheory,7,520-527.https://doi.org/10.1109/TCT.1960.1086720
[44]Sotomayor, J.(1973) GenericBifurcations ofDynamical Systems, AcademicPress, Cambridge,
MA.
[45]Wang,M.andPang,P.Y.(2008)GlobalAsymptoticStabilityofPositiveSteadyStatesofa
Diffusive Ratio-Dependent Prey-Predator Model. AppliedMathematicsLetters,21, 1215-1220.
https://doi.org/10.1016/j.aml.2007.10.026
[46]Henry, D.(1981)GeometricTheoryofSemilinear ParabolicEquations.Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0089647
DOI:10.12677/pm.2022.12122252105nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.