设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(12),2081-2105
PublishedOnlineDecember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1212225
ä
k
™
ê
A
Ú
Beddington-DeAngelis
õ
U
‡
A
ž
˜
+
S
Ó
.
-
½
5
Ú
©
©
Û
www
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
,
[
‹
=
²
Â
v
F
Ï
µ
2022
c
11
17
F
¶
¹
^
F
Ï
µ
2022
c
12
15
F
¶
u
Ù
F
Ï
µ
2022
c
12
22
F
Á
‡
¿
Ú
Ó
´)
Æ
¥
²
~Ñ
y
˜
«
y–
§
ü
Ô
«
ö
ƒ
Ó
k
•
]
ž
§
Ó
ö
Ú
•
´
‘
±
Ó
ö
-
X
Ú
¤
7
I
"
ï
Ä
+
S
Ó
ö
Ú
3
ö
Ó
˜
]
ž´
Ä
Œ
U
•
´
š
~
k
¿Â
"
©
ï
Ä
ä
k
™
ê
A
ž
˜
+
S
Ó
.
-
½
5
†
Hopf
©
|
§
T
.
•
¹
±
Beddington-DeAngelis
õ
U
‡
A
•
A
Ô
«
ƒ
p
Z
6
§
Ñ
+
S
Ó
ö
Ú
•
^
‡
§
ù
´
Ï
L
?
Ø
²
ï
:
•
3
5
§
Û
Ü
Ú
Û
ì
C
-
½
5
±
9
˜
—
±
È
5
5
¢
y
§
Ù
¥
²
ï
:
-
½
5
^
‡
´
Ï
L
o
ä
Ê
ì
Å•{
Úâ
‘
[
â
¼
"
•
§
·
‚
±
™
ê
Ï
f
•
©
|
ë
ê
§
ˆ
²
ï
:
?
Hopf
©
|
•
3
^
‡
"
'
…
c
+
S
Ó
.
§
Beddington-DeAngelis
.
õ
U
‡
A
§
™
ê
A
§
-
½
5
§
Hopf
©
|
StabilityandBifurcationAnalysisofa
SpatiotemporalIntraguildPredation
ModelwithFearEffectand
Beddington-DeAngelisFunctional
Response
©
Ù
Ú
^
:
w
.
ä
k
™
ê
A
Ú
Beddington-DeAngelis
õ
U
‡
A
ž
˜
+
S
Ó
.
-
½
5
Ú
©
©
Û
[J].
n
Ø
ê
Æ
,2022,12(12):2081-2105.DOI:10.12677/pm.2022.1212225
w
XiaoningWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Nov.17
th
,2022;accepted:Dec.15
th
,2022;published:Dec.22
nd
,2022
Abstract
Competitionandpredationareacommonphenomenoninecology.Whentwospecies
compete for the samelimited resources,the coexistence of predator and prey isneces-
sarytosustainthepredator-preysystem.Itisofgreatsignificancetostudywhether
predatorsandpreycancoexistinaintraguildpredationmodelwhencompetingfor
thesameresource.Inthispaper,westudythestabilityandHopfbifurcationofa
spatiotemporalintraguildpredationmodelwithafeareffect,theconditionsforthe
coexistenceofpredatorandpreyinaintraguildpredationmodelarederivedbydis-
cussingtheexistenceofequilibriumpoints,localandglobalasymptoticstabilityand
uniform persistence,the conditionof stability of equilibrium point is obtained by Lya-
punovmethod andHelvetz criterion.Finally,wetake thefearfactorasthebranching
parameterandobtaintheconditionsfortheexistenceofHopfbifurcationateach
equilibriumpoint.
Keywords
IntraguildPredationModel,Beddington-DeAngelis Functional Response, Fear Effect,
Stability,HopfBifurcation
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
g
,
‚
¸
¥
,
Ø
¿
Ú
Ó
,
+
S
Ó
( Intraguildpredation,
{
¡
IGP)
´
,
˜
«
Ê
H
•
3
u
)
X
Ú
«
+
m
ƒ
p
Š
^
y–
,
Ù
K
•
Ø
N
À
.
3
IGP
X
Ú
¥
,IG
Ó
ö
±
IG
DOI:10.12677/pm.2022.12122252082
n
Ø
ê
Æ
w
•
,
¿
†
IG
ƒ
p
¿
,
ö
•
]
,
l
IG
Ó
ö
,IG
Ú
•
]
¤
˜
‡
{
ü
Ô
.
é
+
S
Ó
X
Ú
ï
Ä
•
@
Œ
±
J
ˆ
©
[1–3],
Æ
ö
Polis,McCormick,Myer
Ú
Holt
Ä
g
J
Ñ
+
S
Ó
X
Ú
V
g
.
3
1997
c
©
[4]
¥
)
Ô
Æ
[
Holt
Ú
Polis
ï
á
˜
‡
{
ü
+
S
Ó
X
Ú
.
,
L
²
•
k
IG
´
•
]
`
³
¿
ö
ž
,
¤
k
«
+
â
¬
•
,
ù
`
²
3
n
Ø
þ
+
S
Ó
X
Ú
¥
n
«
+
•
´
š
~
(
J
,
¢
S
)
Ô
X
Ú
¥
†
ƒ
Ð
ƒ
‡
,
ù
Ò
)
˜
‡
Ø
.
Ï
,
y
3
N
õ
Æ
ö
l
)
Ô
ˆ‡
Ýé
©
[4]
¥
.
?
1?
Ú
Ö
¿
,
5
)
º
n
Ø
Ú
y
¢
ƒ
m
g
ñ
.
Ï
d
,
+
S
Ó
X
Ú
ï
Ää
k
-
‡
n
Ø
d
Š
Ú
y
¢
¿Â
.
3
Ó
-
X
Ú
¥
,
õ
U
‡
A
¼
ê´
4
Ù
-
‡
|
¤
Ü
©
.
•
£
ã
Ó
ö
‡
N
ž
Ñ
Ç
‘
—
Ý
F
Ý
C
z
,
®
²
J
Ñ
ˆ
«
a
.
õ
U
‡
A
¼
ê
.
Ù
¥
•
)
²
;
Holling-I
.
,II
.
Ú
III
.
õ
U
‡
A
[5–7],Beddington-DeAngelis(BD)
.
õ
U
‡
A
[8,9]
Ú
Ù
¦
˜
a
.
[10,11].
Holling
.
õ
U
‡
A
b
Ó
ö
ž
Ñ
Ç
=
•
6
—
Ý
,
BD
.
õ
U
‡
A
K
b
Ó
ö
ž
Ñ
Ç
•
É
Ó
ö
m
ƒ
p
Z
6
K
•
,
=
BD
õ
U
‡
A
¼
ê
••
6
u
Ó
ö
—
Ý
.
ï
Ä
L
²
,
š
‚
5
õ
U
‡
A
4
Œ
/
K
•
X
Ô
«
m
ƒ
p
Š
^
(
J
,
A
O
´
Ô
¥
•
¹
n
‡
$
–
n
‡
±
þ
Ô
«
ž
[12–17].
é
u
IGP
.
,Kang
Ú
Wedekin[18]
b
HollingIII
.
õ
U
‡
A
,
ù
´
Ä
u
Schaber
<
¢
(
J
w
Í
[
Ü
[19].
‘
X
HollingI
.
Ú
HollingII
.
õ
U
‡
A
·
Ü
,
·
b
3
IGP
.
¥
y
²
´
Œ
U
[20,21].
d
,
ä
k
BD
õ
U
‡
A
¼
ê
)
.
Œ
þ
ï
Ä
[22–26].
,
,
du
E
,
5
,
é
ä
k
BD
õ
U
‡
A
IGP
.
ï
Ä
ƒ
é
k
•
[27–32].
Š
5
¿
´
,
©
[27–30]
¥
b
½
IG
é
•
]
Ó
Ç
†
IG
Ó
ö
—
Ý
Ã
'
"
ù
Œ
U
Ø
U
‡
N
IG
Ó
ö
é
Ó
Ç
K
•
.
du
n
‡
Ô
«
(
•
]
,IG
Ú
IG
Ó
ö
)
•
Ó
˜
‚
¸
,
IG
Ú
IG
Ó
ö
Ñ
Ï
é
Ô
ž
,
ù
n
‡
Ô
«
Œ
U
¬
Ó
ž
ƒ
‘
,
Ï
d
ù
n
‡
Ô
«
Ñ
¬
K
•
|¢
Ç
[6].
˜
•
¡
,
·
‚
Ñ
•
)
X
Ú
¥
K
•
Ó
-
X
Ú
Ä
å
Æ
K
•
Ï
ƒ
k
é
õ
,
~
X
2
o
[33,34],
í
›
Z
6
[35],
ö
Ü
Š
[36],
«
+
-
”
[37]
,
Ù
¥
é
Ó
ö
™
êÒ
´
Ù
¥
ƒ
˜
[38–40].
Ï
d
,
Ä
u
±
þ
•
Ä
,
©
y
ò
•
]
é
IG
™
ê
±
9
ˆ
Ô
«
‘
Å
*
Ñ
B
\
.
[32]
¥
?
1
?
˜
Ú
ï
Ä
.
©
[32]
.
•
:
d
R
d
τ
=
r
1
R
(1
−
R
K
)
−
c
1
RN
1+
A
1
R
+
A
2
N
+
A
3
P
−
c
2
RP
1+
A
1
R
+
A
2
N
+
A
3
P
,
d
N
d
τ
=
ε
1
c
1
RN
1+
A
1
R
+
A
2
N
+
A
3
P
−
c
2
NP
1+
A
1
R
+
A
2
N
+
A
3
P
−
η
1
N,
d
P
d
τ
=
ε
2
c
2
RP
1+
A
1
R
+
A
2
N
+
A
3
P
+
ε
3
c
3
NP
1+
A
1
R
+
A
2
N
+
A
3
P
−
η
2
P,
(1
.
1)
ù
p
,
R
(
τ
),
N
(
τ
)
Ú
P
(
τ
)
©
OL
«
3
τ
ž
•
•
]
,IG
Ú
IG
Ó
ö
«
+
—
Ý
.
ë
ê
r
1
,
K
©
OL
«
•
]
S
O
•
Ç
Ú
‚
¸
«
1
å
.
A
1
,
A
2
,
A
3
©
OL
«
•
]
,IG
Ú
IG
Ó
ö
Z
6
A
.
c
1
,
c
2
,
c
3
©
OL
«
IG
,IG
Ó
ö
é
•
]
•
Œ
Ó
Ç
±
9
IG
Ó
ö
é
IG
•
Œ
Ó
Ç
,
ε
1
,
ε
2
,
ε
3
©
OL
«
IG
,IG
Ó
ö
é
•
]
=
z
Ç
±
9
IG
Ó
ö
é
IG
=
z
Ç
,
η
1
,
η
2
©
O
“
L
IG
Ú
IG
Ó
ö
g
,
k
Ç
.
3
T
.
¥
,
·
‚
b
•
]
du
³
ù
IG
—
•
]
ê
þ
e
ü
,
IG
)
•
=
É
Ù
IG
Ó
ö
K
•
,
l
ò
™
ê
Ï
f
h
(
f,N
) =
1
1+
fN
¦
X
Ú
(1.1)
¥
,
Ù
¥
f
L
«
•
]
DOI:10.12677/pm.2022.12122252083
n
Ø
ê
Æ
w
é
IG
™
ê
§
Ý
,
?
U
.
X
e
:
d
R
d
τ
=
r
1
R
1+
fN
(1
−
R
K
)
−
c
1
RN
1+
A
1
R
+
A
2
N
+
A
3
P
−
c
2
RP
1+
A
1
R
+
A
2
N
+
A
3
P
,
d
N
d
τ
=
ε
1
c
1
RN
1+
A
1
R
+
A
2
N
+
A
3
P
−
c
2
NP
1+
A
1
R
+
A
2
N
+
A
3
P
−
η
1
N,
d
P
d
τ
=
ε
2
c
2
RP
1+
A
1
R
+
A
2
N
+
A
3
P
+
ε
3
c
3
NP
1+
A
1
R
+
A
2
N
+
A
3
P
−
η
2
P,
(1
.
2)
•
•
B
å
„
,
Ú
\
±
e
Ã
þ
j
C
þ
Ú
ë
ê
§
±
~
X
Ú
(1.2)
¥
ë
ê
ê
þ
:
t
=
r
1
τ,u
=
R
N
,v
=
c
1
r
1
N,w
=
c
2
r
1
P,k
=
r
1
f
c
1
,e
1
=
ε
1
c
1
K
r
1
,e
2
=
ε
2
c
2
K
r
1
,
c
=
c
3
c
2
,ε
=
ε
3
c
2
c
1
,a
=
A
1
K,b
1
=
A
2
r
1
c
1
,b
2
=
A
3
r
1
c
2
,δ
1
=
η
1
r
1
,δ
2
=
η
2
r
2
,
Œ
ò
X
Ú
(1.2)
z
•
d
u
d
t
=
u
(
1
−
u
1+
kv
−
v
+
w
1+
au
+
b
1
v
+
b
2
w
)
,
d
v
d
t
=
v
(
e
1
u
−
cw
1+
au
+
b
1
v
+
b
2
w
−
δ
1
)
,
d
w
d
t
=
w
(
e
2
u
+
εcv
1+
au
+
b
1
v
+
b
2
w
−
δ
2
)
,
u
(0)
≥
0
,v
(0)
≥
0
,w
(0))
≥
0
,
(1
.
3)
d
,
3
«
+
ü
z
?
§
¥
,
‚
¸
Ï
ƒ
—
˜
m
©
Ù
Ø
þ
!
5
.
Ï
d
,
ò
*
Ñ
Ú
\
ä
k
Beddington-DeAngelis
õ
U
‡
A
IGP
.
(1.3)
¥
.
©
,
·
‚
•
Ä6
þ
u
"
Neumann
>
.
^
‡
e
g
*
Ñ
.
:
u
t
−
d
1
∆
u
=
u
(
1
−
u
1+
kv
−
v
+
w
1+
au
+
b
1
v
+
b
2
w
)
,x
∈
Ω
,t>
0
,
v
t
−
d
2
∆
v
=
v
(
e
1
u
−
cw
1+
au
+
b
1
v
+
b
2
w
−
δ
1
)
,x
∈
Ω
,t>
0
,
w
t
−
d
3
∆
w
=
w
(
e
2
u
+
εcv
1+
au
+
b
1
v
+
b
2
w
−
δ
2
)
,x
∈
Ω
,t>
0
,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0
,x
∈
∂
Ω
,t>
0
,
u
(
x,
0) =
u
0
(
x
)
≥
0
,v
(
x,
0) =
v
0
(
x
)
≥
0
,w
(
x,
0) =
w
0
(
x
)
≥
0
,x
∈
Ω
.
(1
.
4)
Ω
´
R
N
(
N
≥
1)
¥
ä
k
1
w
>
.
∂
Ω
k
.
«
•
;
ν
´
>
.
∂
Ω
ü
{
•
þ
;
d
1
,d
2
,d
3
>
0
L
«
Ô
«
g
*
Ñ
X
ê
,
g
*
Ñ
‘
‡
N
‡
N
l
p
ß
Ý
•
$
ß
Ý
*
Ñ
,
Ð
Š
u
0
(
x
)
,v
0
(
x
)
,w
0
(
x
)
•
Ω
þ
ë
Y
¼
ê
§
b
.
¥
¤
k
ë
ê
þ
•
~
ê
.
DOI:10.12677/pm.2022.12122252084
n
Ø
ê
Æ
w
e
¡
·
‚
½
Â
F
(
E
) = (
f
1
(
E
)
,f
2
(
E
)
,f
3
(
E
))
>
=
u
(
1
−
u
1+
kv
−
v
+
w
1+
au
+
b
1
v
+
b
2
w
)
v
(
e
1
u
−
cw
1+
au
+
b
1
v
+
b
2
w
−
δ
1
)
w
(
e
2
u
+
εcv
1+
au
+
b
1
v
+
b
2
w
−
δ
2
)
.
©
|
„
(
X
e
:
1
2
!
?
Ø
ž
m
X
Ú
)
•
3
5
Ú
k
.
5
,
Œ
1
²
ï
:
Û
Ü
Ú
Û
-
½
5
,
±
9
©
Û
X
Ú
(1.3)
Hopf
©
.
1
3
!
—
å
u
ž
˜
X
Ú
©
Û
:
?
Ø
X
Ú
(1.4)
)
±
È
5
Ú
²
ï
:
Û
Ü
-
½
5
.
1
4
!
‰
Ñ
(
Ø
.
2.
X
Ú
(1.3)
Ä
å
Æ
©
Û
2.1.
ØC
5
Ú
k
.
5
½
n
1
X
Ú
(1.3)
¤
k
)
3
R
3
+
=
{
(
u,v,w
) :
u
(
t
)
>
0
,v
(
t
)
>
0
,w
(
t
)
>
0
}
S
•
3
…
±
5
.
y
²
(
u
(
t
)
,v
(
t
)
,w
(
t
))
•
X
Ú
(1.3)
)
,
é
N
´
w
Ñ
,
f
1
,f
2
,f
3
´
R
3
+
þ
ë
Y
¼
ê
…
´
Û
Ü
Lipschitizian
ë
Y
.
Ï
d
,
÷
v
Ð
Š
^
‡
(
u
(0)
,v
(0)
,w
(0))
≥
(0
,
0
,
0)
X
Ú
(1.3)
¤
k
)
3
R
3
+
=
{
(
u,v,w
) :
u
(
t
)
>
0
,v
(
t
)
>
0
,w
(
t
)
>
0
}
S
•
3
…
•
˜
,
?
L
²
é
∀
t>
0
¤
k
)
•
3
…
±
5
.
½
n
2
3
R
3
+
S
X
Ú
(1.3)
¤
k
)
Ñ
´
˜
—
k
.
.
y
²
(
u
(
t
)
,v
(
t
)
,w
(
t
))
•
X
Ú
(1.3)
?
¿˜
‡
)
,
Ï
•
d
u
d
t
≤
u
1
−
u
1+
kv
≤
u
(1
−
u
),
d
'
n
Œ
,lim
t
→∞
u
(
t
)
≤
1,
=
é
∀
1
>
0,
∃
T
1
,
t>T
1
ž
,
k
u
(
t
)
≤
1+
1
.
l
(1.3)
1
‡
•
§
§
·
‚
k
d
v
d
t
+
δ
1
v
=
(
e
1
u
−
cw
)
v
1+
au
+
b
1
v
+
b
2
w
≤
e
1
uv
b
1
v
≤
e
1
(1+
1
)
b
1
Š
â
Gronwall’s
Ø
ª
[41]
§
·
‚
k
0
<v
(
t
)
<
e
1
(1+
1
)(1
−
e
−
δ
1
t
)
b
1
δ
1
+
v
(0)
e
−
δ
1
t
.
d
'
n
Œ
,lim
t
→∞
v
(
t
)
≤
e
1
(1+
1
)
δ
1
b
1
,
=
é
∀
2
>
0,
∃
T
2
,
t>
max
{
T
1
,T
2
}
ž
,
k
v
(
t
)
≤
e
1
(1+
1
)
δ
1
b
1
+
2
.
l
(1.3)
1
n
‡
•
§
,
·
‚
k
d
w
d
t
+
δ
2
w
=
(
e
2
u
+
εcv
)
w
1+
au
+
b
1
v
+
b
2
w
≤
(
e
2
u
+
εcv
)
w
b
2
w
≤
e
2
(1+
1
)+
cε
[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
DOI:10.12677/pm.2022.12122252085
n
Ø
ê
Æ
w
Š
â
Gronwall’s
Ø
ª
[41]
§
·
‚
k
0
<w
(
t
)
<
e
2
(1+
1
)+
cε
[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
(1
−
e
−
δ
2
t
)+
w
(0)
e
−
δ
2
t
d
'
n
Œ
,lim
t
→∞
w
(
t
)
≤
e
2
(1+
1
)+
cε
[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
,
=
é
∀
3
>
0,
∃
T
3
,
t>
max
{
T
1
,T
2
,T
3
}
ž
,
k
w
(
t
)
≤
e
2
(1+
1
)+
cε
[
e
1
(1+
1
)
b
1
δ
1
+
2
]
b
2
δ
2
+
3
≤
[(1+
1
)(
e
2
+
εce
1
b
1
δ
1
)+
εc
2
]
b
2
δ
2
+
3
.
X
Ú
(1.3)
¤
k
)
˜
—
k
.
¿
•
ª
ª
u
±
e
«
•
:
Θ =
(
u,v,w
)
∈
R
3
+
:
u
(
t
)
≤
1+
1
,v
(
t
)
≤
e
1
(1+
1
)
b
1
,w
(
t
)
≤
(1+
1
)(
e
2
+
e
1
cε
b
1
δ
1
)+
cε
2
b
2
δ
2
+
3
,
∀
1
,
2
,
3
>
0
2.2.
²
ï
:
•
3
5
X
Ú
(1.3)
k
±
e
ä
k
)
Ô
¿Â
Œ
1
²
ï
:
.
(i)
o
•
3
²
…
²
ï
:
E
0
= (0
,
0
,
0)
Ú
Œ
²
…
²
ï
:
E
1
= (1
,
0
,
0);
(ii)
Ù
¦
>
.
²
ï
:
±
E
2
=(
u
2
,v
2
,
0),
u
2
,v
2
>
0,
E
3
=(
u
3
,
0
,w
3
)
,u
3
,w
3
>
0
/
ª
‰
Ñ
.
-
<
i
=
e
i
δ
i
(1+
a
)
,
i
= 1
,
2,
@
o
<
1
´
3
Ã
IG
Ó
ö
£
Ô
«
w
¤
œ
¹
e
,IG
(
Ô
«
v)
Ä
2
)
ê
,
<
2
´
3
Ã
IG
œ
¹
e
,IG
Ó
ö
Ä
2
)ê
.
IG
Ó
ö
Ø
•
3
ž
,
=
w
= 0,
X
Ú
(1.3)
ò
z
•
±
e
Ó
ö
-
X
Ú
:
d
u
d
t
=
u
(
1
−
u
1+
kv
−
v
1+
au
+
b
1
v
)
,
d
v
d
t
=
v
(
e
1
u
1+
au
+
b
1
v
−
δ
1
)
,
e
<
1
>
1,
K
X
Ú
(1.3
¤
k
•
˜
E
2
= (
u
2
,v
2
,
0)
/
ª
>
.
²
ï
:
,
v
2
÷
v
±
e
•
§
:
A
1
v
2
2
+
B
1
v
2
−
C
1
= 0
Ù
¥
A
1
=
e
1
b
2
1
δ
2
1
+
kδ
1
(
e
1
−
aδ
1
)
2
>
0
,
B
1
=
δ
1
(
e
1
−
aδ
1
)
2
+2
e
1
b
1
δ
2
1
−
e
1
b
1
δ
1
(
e
1
−
aδ
1
)
,
C
1
=
e
1
δ
1
(
e
1
−
δ
1
−
aδ
1
)
>
0
,
K
v
2
=
−
B
1
+
√
B
2
1
+4
A
1
C
1
2
A
1
>
0
,u
2
=
δ
1
(1+
b
1
v
2
)
e
1
−
aδ
1
(0
<u
2
<
1)
.
DOI:10.12677/pm.2022.12122252086
n
Ø
ê
Æ
w
a
q
/
,
IG
Ø
•
3
ž
,
=
v
=0,
e
<
2
>
1,
K
u
3
=
(
aδ
2
+
b
2
e
2
−
e
2
)+
√
(
aδ
2
+
b
2
e
2
−
e
2
)
2
+4
b
2
e
2
δ
2
2
b
2
e
2
,
w
3
=
e
2
u
3
(1
−
u
3
)
δ
2
(0
<u
3
<
1).
(iii)
e
E
∗
= (
u
∗
,v
∗
,w
∗
)
•
X
Ú
(1.3)
~
ê
²
ï
:
,
K
k
±
e
•
§
:
u
(
1
−
u
1+
kv
−
v
+
w
1+
au
+
b
1
v
+
b
2
w
) = 0(1
.
3
a
)
v
(
e
1
u
−
cw
1+
au
+
b
1
v
+
b
2
w
−
δ
1
) = 0(1
.
3
b
)
w
(
e
2
u
+
εcv
1+
au
+
b
1
v
+
b
2
w
−
δ
2
) = 0(1
.
3
c
)
d
(1.3b)
Ú
(1.3c)
,
w
=
[(
e
1
δ
2
−
e
2
δ
1
)
u
−
cεδ
1
v
]
cδ
2
,
ò
Ù
“
\
(1.3b), (1.3c)
¥
v
=
[(
e
2
−
aδ
2
)
c
+
b
2
(
e
2
δ
1
−
e
1
δ
2
)]
u
−
cδ
2
c
[
b
1
δ
2
−
ε
(
c
+
b
2
δ
1
)]
w
=
εcδ
1
−
[(
e
1
−
aδ
1
)
cε
+
b
1
(
e
2
δ
1
−
e
1
δ
2
)]
u
c
[
b
1
δ
2
−
ε
(
c
+
b
2
δ
1
)]
½
Â
Λ
v
:=
e
2
−
aδ
2
+
b
2
(
e
2
δ
1
−
e
1
δ
2
)
c
,
Λ
w
:=
e
1
−
aδ
1
+
b
1
(
e
2
δ
1
−
e
1
δ
2
)
cε
.
u
∈
S
v
ž
,
v>
0,
S
v
=
(
δ
2
Λ
v
,
∞
)
, L>
0
,
Λ
v
>
0;
(0
,
∞
)
, L<
0
,
Λ
v
≤
0;
(0
,
δ
2
Λ
v
)
, L<
0
,
Λ
v
>
0
.
(1)
a
q
/
,
u
∈
S
w
ž
,
w>
0,
S
w
=
(0
,
∞
)
, L>
0
,
Λ
w
≤
0;
(0
,
δ
1
Λ
w
)
, L>
0
,
Λ
w
>
0;
(
δ
2
Λ
w
,
∞
)
, L<
0
,
Λ
w
>
0
.
(2)
-
L
=
b
1
δ
2
−
ε
(
c
+
b
2
δ
1
),
M
= (
e
2
−
aδ
2
)
c
+
b
2
(
e
2
δ
1
−
e
1
δ
2
),
N
= (
e
1
−
aδ
1
)
cε
+
b
1
(
e
2
δ
1
−
e
1
δ
2
),
K
v
=
Mu
−
cδ
2
cL
(1
.
3
d
)
DOI:10.12677/pm.2022.12122252087
n
Ø
ê
Æ
w
w
=
εcδ
1
−
Nu
cL
(1
.
3
e
)
ò
(1.3d), (1.3e)
“
\
(1.3a)
¥
'
u
u
L
ˆ
ª
X
e
:
f
(
u
) =
A
2
u
2
+
B
2
u
+
C
2
= 0(0
<u<
1)
A
2
=
ac
2
L
2
+
kM
2
+
cb
1
ML
−
cb
2
NL
−
kMN,
B
2
=
c
2
(1
−
a
)
L
2
+
c
2
(
εb
2
δ
1
−
b
1
δ
2
)
L
+
ck
(
εδ
1
−
2
δ
2
)
M
+
ckδ
2
N
+
c
(1
−
b
1
)
LM
−
c
(1
−
b
2
)
LN,
C
2
=
c
2
εδ
1
(1
−
b
2
)
L
−
c
2
δ
2
(1
−
b
1
)
L
−
c
2
L
2
−
kεc
2
δ
1
δ
2
−
c
2
kδ
2
2
,
(
H
1
)
<
1
>
1
>
<
2
,L
6
= 0
…
S
E
=
S
v
∩
S
w
6
=
∅
¤
á
ž
,
X
Ú
(1.3)
–
õ
k
ü
‡
~
ê
²
ï
:
,
ä
N
X
e
:
f
(0) =
C
2
,f
(1) =
A
2
+
B
2
+
C
2
,
(a)
e
A
2
C
2
>
0,∆ =
B
2
2
−
4
A
2
C
2
>
0
,u
=
−
B
2
2
A
2
,
C
2
(
A
2
+
B
2
+
C
2
)
>
0
ž
,
u
∗
1
=
−
B
2
−
√
B
2
2
−
2
A
2
C
2
2
A
2
,
u
∗
2
=
−
B
2
+
√
B
2
2
−
2
A
2
C
2
2
A
2
.
K
X
Ú
(1.3)
•
3
ü
‡
~
ê
²
ï
:
,
©
O
•
E
∗
1
= (
u
∗
1
,v
∗
1
,w
∗
1
),
E
∗
2
= (
u
∗
2
,v
∗
2
,w
∗
2
);
C
2
(
A
2
+
B
2
+
C
2
)
<
0
ž
,
k
u
∗
1
=
−
B
2
−
√
B
2
2
−
2
A
2
C
2
2
A
2
,
K
X
Ú
(1.3)
•
k
˜
‡
~
ê
²
ï
:
E
∗
1
=
(
u
∗
1
,v
∗
1
,w
∗
1
).
(b)
e
A
2
C
2
<
0,
C
2
(
A
2
+
B
2
+
C
2
)
<
0
ž
,
k
u
∗
2
=
−
B
2
+
√
B
2
2
−
2
A
2
C
2
2
A
2
,
K
X
Ú
(1.3)
•
k
˜
‡
~
ê
²
ï
:
E
∗
2
= (
u
∗
2
,v
∗
2
,w
∗
2
).
(c)
e
A
2
C
2
>
0,∆=
B
2
2
−
4
A
2
C
2
=0
ž
,
u
∗
3
=
−
B
2
2
A
2
,
K
X
Ú
(1.3)
~
ê
²
ï
:
•
E
∗
3
= (
u
∗
3
,v
∗
3
,w
∗
3
).
(d)
e
A
2
C
2
= 0,
A
2
= 0,
−
B
2
2
<B
2
C
2
<
0
ž
,
u
∗
4
=
−
C
2
B
2
,
K
X
Ú
(1.3)
~
ê
²
ï
:
•
E
∗
4
= (
u
∗
4
,v
∗
4
,w
∗
4
);
C
2
= 0,
−
A
2
2
<A
2
B
2
<
0
ž
,
u
∗
5
=
−
B
2
A
2
,
K
X
Ú
(1.3)
~
ê
²
ï
:
•
E
∗
5
= (
u
∗
5
,v
∗
5
,w
∗
5
).
2.3.
²
ï
:
Û
Ü
-
½
5
X
Ú
(1.3)
3
(
u,v,w
)
?
Jacobi
Ý
X
e
J
=
J
11
J
12
J
13
J
21
J
22
J
23
J
31
J
32
J
33
,
(3)
Ù
¥
J
11
=
1
−
2
u
1+
kv
−
(
v
+
w
)(1+
b
1
v
+
b
2
w
)
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
12
=
−
[
ku
(1
−
u
)
(1+
kv
)
2
+
u
(1+
au
)+(
b
2
−
b
1
)
uw
(1+
au
+
b
1
v
+
b
2
w
)
2
],
J
13
=
(
b
2
−
b
1
)
uv
−
u
(1+
au
)
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
21
=
e
1
v
(1+
b
1
v
)+
vw
(
ac
+
e
1
b
2
)
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
22
=
(
e
1
u
−
cw
)(1+
au
+
b
2
w
)
(1+
au
+
b
1
v
+
b
2
w
)
2
−
δ
1
,
J
23
=
−
cv
(1+
b
1
v
)+
uv
(
ac
+
e
1
b
2
)
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
31
=
e
2
w
(1+
b
1
v
+
b
2
w
)
−
acεvw
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
32
=
cεw
(1+
b
2
w
)+
uw
(
acε
−
b
1
e
2
)
(1+
au
+
b
1
v
+
b
2
w
)
2
,
J
33
=
(
e
2
u
+
εcv
)(1+
au
+
b
1
v
)
(1+
au
+
b
1
v
+
b
2
w
)
2
−
δ
2
.
DOI:10.12677/pm.2022.12122252088
n
Ø
ê
Æ
w
e
¡
Ï
L
O
Ž
X
Ú
(1.3)
3
z
‡
²
ï
:
?
Jacobi
Ý
A
Š
,
5
(
½
ù
²
ï
:
-
½
5
.
½
n
3
(i)
²
…
²
ï
:
E
0
= (0
,
0
,
0)
´
Ã
^
‡
Ø
-
½
.
(ii)
e
max
{<
1
,
<
2
}
<
1,
K
Œ
²
…
²
ï
:
E
1
= (1
,
0
,
0)
´
Û
Ü
ì
C
-
½
;
Ä
K
E
1
´
Ø
-
½
.
y
²
(i)
X
Ú
(1.3)
3
²
ï
:
E
0
?
Jacobi
Ý
•
J
E
0
=
100
0
−
δ
1
0
00
−
δ
2
.
(4)
Ý
(4)
A
Š
•
λ
(0)
1
= 1
>
0
,λ
(0)
2
=
−
δ
1
Ú
λ
(0)
3
=
−
δ
2
.
Ï
d
,
²
ï
:
E
0
´
Ø
-
½
.
(ii)
X
Ú
(1.3)
3
²
ï
:
E
1
?
Jacobi
Ý
•
J
E
1
=
−
1
−
1
1+
a
−
1
1+
a
0
e
1
1+
a
−
δ
1
0
00
e
2
1+
a
−
δ
2
.
(5)
Ý
(5)
A
•
§
•
(
λ
+1)
λ
−
(
e
1
1+
a
−
δ
1
)
λ
−
(
e
2
1+
a
−
δ
2
)
= 0
.
¤
±
,
Ý
(5)
A
Š
•
λ
(1)
1
=
−
1,
λ
(1)
2
=
e
1
1+
a
−
δ
1
=
δ
1
(
<
1
−
1),
λ
(1)
3
=
e
2
1+
a
−
δ
2
=
δ
2
(
<
2
−
1).
max
{<
1
,
<
2
}
<
1
ž
,
²
ï
:
E
1
´
Û
Ü
ì
C
-
½
;
‡
ƒ
,
E
1
´
Ø
-
½
.
½
n
4
b
<
1
>
1
,k>b
1
¤
á
,
e
λ
(2)
1
<
0,
T
(2)
<
0,
K
Ã
IG
Ó
ö
²
ï
:
E
2
(
u
2
,v
2
,
0)
´
Û
Ü
ì
C
-
½
;
e
λ
(2)
1
>
0
½
T
(2)
>
0,
K
E
2
(
u
2
,v
2
,
0)
´
Ø
-
½
.
y
²
X
Ú
(1.3)
3
²
ï
:
E
2
?
Jacobi
Ý
•
J
E
2
=
a
11
a
12
a
13
a
21
a
22
a
23
00
a
33
.
(6)
Ù
¥
a
11
=
1
1+
kv
2
h
aδ
1
(1
−
u
2
)
e
1
−
u
2
i
,
a
12
=
−
h
ku
2
(1
−
u
2
)
(1+
kv
2
)
2
+
δ
1
e
1
−
b
1
δ
1
(1
−
u
2
)
e
1
(1+
kv
2
)
i
,
a
13
=
(
b
2
−
b
1
)
u
2
v
2
−
u
2
(1+
au
2
)
(1+
au
2
+
b
1
v
2
)
2
,
a
21
= (
e
1
−
aδ
1
)
1
−
u
2
1+
kv
2
,
a
22
=
−
b
1
δ
1
(1
−
u
2
)
1+
kv
2
,
a
23
=
−
cv
2
(1+
b
1
v
2
)+
u
2
v
2
(
e
1
b
2
+
ac
)
(1+
au
2
+
b
1
v
2
)
2
,
a
33
=
e
2
δ
1
e
1
−
δ
2
+
εc
(1
−
u
2
)
1+
kv
2
.
DOI:10.12677/pm.2022.12122252089
n
Ø
ê
Æ
w
Ý
(6)
A
•
§
•
(
λ
−
a
33
)
λ
2
−
(
a
11
+
a
22
)
λ
+
a
11
a
22
−
a
12
a
21
= 0
-
D
(2)
=
a
11
a
22
−
a
12
a
21
=
1
−
u
2
1+
kv
2
h
δ
1
(
k
−
b
1
)(1
−
u
2
)
(1+
kv
2
)
2
+
b
1
δ
1
u
2
1+
kv
2
+
δ
1
(
e
1
−
aδ
1
)
e
1
i
,
T
(2)
=
a
11
+
a
22
=
δ
1
(
a
e
1
−
b
1
)(1
−
u
2
)
−
u
2
1+
kv
2
,
λ
(2)
1
=
e
2
δ
1
e
1
−
δ
2
+
εc
(1
−
u
2
)
1+
kv
2
,
d
‰
ˆ
½
n
Œ
λ
(2)
2
+
λ
(2)
3
=
T
(2)
,
λ
(2)
2
λ
(2)
3
=
D
(2)
>
0.
λ
(2)
1
<
0
…
T
(2)
<
0
ž
,
Ý
(6)
A
Š
λ
(2)
2
,
λ
(2)
3
ä
k
K
¢
Ü
,
Ï
d
,
²
ï
:
E
2
´
Û
Ü
ì
C
-
½
;
λ
(2)
1
>
0
½
T
(2)
>
0
ž
,
²
ï
:
E
2
´
Ø
-
½
.
½
n
5
b
<
2
>
1,
e
<
2
>
<
1
…
aδ
2
<b
2
e
2
,
K
Ã
IG
²
ï
:
E
3
(
u
3
,
0
,w
3
)
´
Û
Ü
ì
C
-
½
;
e
<
1
>
<
2
,
δ
1
(
<
1
−<
2
)
>c
(1
−
u
3
)
<
2
½
e
2
u
3
<
(
aδ
2
−
b
2
e
2
)(1
−
u
3
)
ž
,
²
ï
:
E
3
(
u
3
,
0
,w
3
)
´
Ø
-
½
.
y
²
X
Ú
(1.3)
3
²
ï
:
E
3
?
Jacobi
Ý
•
J
E
3
=
b
11
b
12
b
13
0
b
22
0
b
31
b
32
b
33
.
(7)
Ù
¥
b
11
=
aδ
2
e
2
(1
−
u
3
)
−
u
3
,
b
12
= (1
−
u
3
)(
b
1
δ
2
e
2
−
ku
3
)
−
δ
2
e
2
,
b
13
=
−
δ
2
[1
−
b
2
(1
−
u
3
)]
e
2
,
b
22
=
e
1
δ
2
−
e
2
δ
1
e
2
−
c
(1
−
u
3
),
b
31
= (
e
2
−
aδ
2
)(1
−
u
3
),
b
32
= (
εc
−
b
1
δ
2
)(1
−
u
3
),
b
33
=
−
b
2
δ
2
(1
−
u
3
).
Ý
(7)
A
•
§
•
(
λ
−
b
22
)
λ
2
−
(
b
11
+
b
33
)
λ
+
b
11
b
33
−
b
13
b
31
= 0
.
-
D
(3)
=
b
11
b
33
−
b
13
b
31
=
δ
2
(1
−
u
3
)
p
(
e
2
−
b
2
e
2
−
aδ
2
)
2
+4
b
2
e
2
δ
2
>
0,
T
(3)
=
b
11
+
b
33
= (
aδ
2
e
2
−
b
2
)(1
−
u
3
)
−
u
3
,
λ
(3)
1
=
e
1
δ
2
−
e
2
δ
1
e
2
−
c
(1
−
u
3
).
d
‰
ˆ
½
n
Œ
λ
(3)
2
+
λ
(3)
3
=
T
(3)
,
λ
(3)
2
λ
(3)
3
=
D
(3)
>
0.
λ
(3)
1
<
0
…
T
(2)
<
0,
=
<
2
>
<
1
…
aδ
2
<b
2
e
2
ž
,
Ý
(7)
A
Š
λ
(3)
2
,
λ
(3)
3
ä
k
K
¢
Ü
,
Ï
d
,
²
ï
:
E
3
´
Û
Ü
ì
C
-
½
;
λ
(3)
1
>
0
½
T
(3)
>
0,
=
<
1
>
<
2
,
δ
1
(
<
1
−<
2
)
>c
(1
−
u
3
)
<
2
½
e
2
u
3
<
(
aδ
2
−
b
2
e
2
)(1
−
u
3
)
ž
,
²
ï
:
E
3
´
Ø
-
½
.
½
n
6
e
~
ê
²
ï
:
E
∗
(
u
∗
,v
∗
,w
∗
)
÷
v
±
e
^
‡
µ
(
H
2
)
εc>b
1
δ
2
,
1+
kv
∗
>b
i
(1
−
u
∗
)
,e
i
>aδ
i
(
i
= 1
,
2)
(
H
3
)1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
>a
(1
−
u
∗
)
(
H
4
)
b
2
δ
2
(
e
1
−
aδ
1
)
>
(
e
2
−
aδ
2
)(
c
+
b
2
δ
1
)
(
H
5
)
b
1
δ
1
[(1+
kv
∗
)
−
b
1
(1
−
u
∗
)]
v
∗
>
(
εc
−
b
1
δ
2
)[(1+
kv
∗
)
−
b
2
(1
−
u
∗
)]
w
∗
DOI:10.12677/pm.2022.12122252090
n
Ø
ê
Æ
w
K
~
ê
²
ï
:
E
∗
(
u
∗
,v
∗
,w
∗
)
´
Û
Ü
ì
C
-
½
.
y
²
X
Ú
(1.3)
3
²
ï
:
E
∗
?
Jacobi
Ý
•
J
E
∗
=
c
11
c
12
c
13
c
21
c
22
c
23
c
31
c
32
c
33
.
(8)
Ù
¥
c
11
=
u
∗
1+
kv
∗
h
a
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
−
1
i
,
c
12
=
−
u
∗
1+
kv
∗
h
k
(1
−
u
∗
)
1+
kv
∗
+
(1+
kv
∗
)
−
b
1
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
i
,
c
13
=
u
∗
1+
kv
∗
h
b
2
(1
−
u
∗
)
−
(1+
kv
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
i
,
c
21
=
(
e
1
−
aδ
1
)
v
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
,
c
22
=
−
b
1
δ
1
v
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
<
0,
c
23
=
−
(
c
+
b
2
δ
1
)
v
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
<
0,
c
31
=
(
e
2
−
aδ
2
)
w
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
,
c
32
=
(
εc
−
b
1
δ
2
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
,
c
33
=
−
b
2
δ
2
w
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
<
0.
Ý
(8)
A
•
§
•
λ
3
+
P
1
λ
2
+
P
2
λ
+
P
3
= 0
.
(9)
Ù
¥
P
1
=
−
(
c
11
+
c
22
+
c
33
)
=
u
∗
1+
kv
∗
1
−
a
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
+
b
1
δ
1
v
∗
+
b
2
δ
2
w
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
,
P
2
=
c
11
c
22
+
c
11
c
33
+
c
22
c
33
−
c
12
c
21
−
c
13
c
31
−
c
23
c
32
=
u
∗
(
b
1
δ
1
v
∗
+
b
2
δ
2
w
∗
)
(1+
kv
∗
)(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
+
k
(
e
1
−
aδ
1
)(1
−
u
∗
)
u
∗
v
∗
(1+
kv
∗
)
2
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
+
u
∗
{
(1+
kv
∗
)[(
e
1
−
aδ
1
)
v
∗
+(
e
2
−
aδ
2
)
w
∗
]
−
(1
−
u
∗
)(
b
1
e
1
v
∗
+
b
2
e
2
w
∗
)
}
(1+
kv
∗
)(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
+
[
b
1
b
2
δ
1
δ
2
+(
cε
−
b
1
δ
2
)(
c
+
b
2
δ
1
)]
v
∗
w
∗
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
,
P
3
=
c
11
(
c
23
c
32
−
c
22
c
33
)+
c
12
(
c
21
c
33
−
c
23
c
31
)+
c
13
(
c
22
c
31
−
c
32
c
21
)
=
−
u
∗
1+
kv
∗
a
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
−
1
[(
c
+
b
2
δ
1
)(
cε
−
b
1
δ
2
)+
b
1
b
2
δ
1
δ
2
]
v
∗
w
∗
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
−
u
∗
1+
kv
∗
k
(1
−
u
∗
)
1+
kv
∗
+
(1+
kv
∗
)
−
b
1
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
[(
e
2
−
aδ
2
)(
c
+
b
2
δ
1
)
−
b
2
δ
2
(
e
1
−
aδ
2
)]
v
∗
w
∗
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
−
u
∗
1+
kv
∗
b
2
(1
−
u
∗
)
−
(1+
kv
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
[
b
1
δ
1
(
e
2
−
aδ
2
)+(
e
1
−
aδ
1
)(
εc
−
b
1
δ
2
)]
v
∗
w
∗
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
.
DOI:10.12677/pm.2022.12122252091
n
Ø
ê
Æ
w
d
^
‡
(
H
2
)
Œ
•
,
sgn(
J
E
∗
) =
−−−
+
−−
++
−
.
(10)
d
^
‡
(
H
2
)(
H
3
)(
H
4
)
Œ
•
,
P
1
>
0
,P
3
>
0.
P
1
P
2
−
P
3
=
c
2
11
(
−
c
22
−
c
33
)+
c
2
22
(
−
c
11
−
c
33
)+
c
2
33
(
−
c
11
−
c
22
)
+
c
12
(
c
23
c
31
+
c
11
c
21
)+
c
21
(
c
13
c
32
+
c
22
c
12
)+
c
22
(
c
23
c
32
−
c
11
c
33
)
+
c
33
(
c
23
c
32
−
c
11
c
22
+
c
13
c
31
)+
c
11
c
13
c
31
(11)
d
^
‡
(
H
5
)
†
(10)
Î
Ò
Œ
•
,
c
13
c
32
+
c
22
c
12
=
(
εc
−
b
1
δ
2
)[
b
2
(1
−
u
∗
)
−
(1+
kv
∗
)]
u
∗
w
∗
(1+
kv
∗
)(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
+
b
1
δ
1
u
∗
v
∗
(1+
kv
∗
)(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
k
(1
−
u
∗
)
1+
kv
∗
+
(1+
kv
∗
)
−
b
1
(1
−
u
∗
)
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
=
u
∗
{
b
1
δ
1
[(1+
kv
∗
)
−
b
1
(1
−
u
∗
)]
v
∗
−
(
εc
−
b
1
δ
2
)[(1+
kv
∗
)
−
b
2
(1
−
u
∗
)]
w
∗
}
(1+
kv
∗
)(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
2
+
kb
1
δ
1
(1
−
u
∗
)
u
∗
v
∗
(1+
kv
∗
)
2
(1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
)
>
0
l
P
1
P
2
−
P
3
>
0.
Ï
d
,
^
‡
(
H
2
) (
H
3
) (
H
4
) (
H
5
)
¤
á
ž
,
P
1
>
0,
P
3
>
0,
P
1
P
2
−
P
3
>
0,
d
Routh-Hurwitz
â
[42]
Œ
•
,
A
•
§
(9)
Š
þä
k
K
¢
Ü
,
?
X
Ú
(1.3)
~
ê
²
ï
:
E
∗
´
Û
Ü
ì
C
-
½
.
‡
ƒ
,
A
•
§
(9)
Š
Ø
k
K
¢
Ü
…
¢
ÜØ
•
"
,
Ï
d
~
ê
²
ï
:
E
∗
´
Ø
-
½
.
2.4.
~
ê
²
ï
:
Û
-
½
5
ù
˜
Ü
©
·
‚
Ì
‡
ï
Ä
¦
~
ê
²
ï
:
E
∗
(
u
∗
,v
∗
,w
∗
)
3
R
3
+
S
Û
ì
C
-
½
¿
©
^
‡
.
½
n
7
e
(
H
3
)
†
±
e
^
‡
(
H
6
)
aδ
i
(1+
kv
∗
)
−
b
i
e
i
(1
−
u
∗
)
>
0
(
H
7
)2
b
1
δ
1
(1+
kv
∗
)
2
<k
(1
−
u
∗
)[
aδ
1
(1+
kv
∗
)
−
b
1
e
1
(1
−
u
∗
)]
(
H
8
)
4
b
1
b
2
e
1
e
2
δ
1
δ
2
>
[
e
1
(
cε
−
b
1
δ
2
)
−
e
2
(
c
+
b
2
δ
1
)]
2
e
2
(
c
+
b
2
δ
1
)
>e
1
(
cε
−
b
1
δ
2
)
b
1
e
1
δ
1
[
aδ
2
(1+
kv
∗
)
−
b
2
e
2
(1
−
u
∗
)]
>
[
e
2
(
c
+
b
2
δ
1
)
−
e
1
(
εc
−
b
1
δ
2
)][
b
1
e
1
(1
−
u
∗
)
−
aδ
1
(1+
kv
∗
)]
DOI:10.12677/pm.2022.12122252092
n
Ø
ê
Æ
w
¤
á
,
K
~
ê
²
ï
:
E
∗
(
u
∗
,v
∗
,w
∗
)
3
R
3
+
=
{
(
u,v,w
) :
u
(
t
)
>
0
,v
(
t
)
>
0
,w
(
t
)
>
0
}
S
´
Û
ì
C
-
½
.
y
²
3
R
3
+
=
{
(
u,v,w
) :
u
(
t
)
>
0
,v
(
t
)
>
0
,w
(
t
)
>
0
}
S
½
Â
Lyapunov
¼
ê
•
V
= (
u
−
u
∗
−
u
∗
ln
u
u
∗
)+
1
e
1
(
v
−
v
∗
−
v
∗
ln
v
v
∗
)+
1
e
2
(
w
−
w
∗
−
w
∗
ln
w
w
∗
)
(12)
é
ª
(12)
÷
X
X
Ú
(1.3)
)
'
u
ž
m
t
¦
Œ
d
V
d
t
= (
u
−
u
∗
u
)
d
u
d
t
+(
v
−
v
∗
v
)
d
v
d
t
+(
w
−
w
∗
w
)
d
w
d
t
du
E
∗
´
X
Ú
(1.3)
~
ê
²
ï
:
,
k
v
∗
+
w
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
=
1
−
u
∗
1+
kv
∗
,
e
1
u
∗
−
cw
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
=
δ
1
,
e
2
u
∗
+
εcv
∗
1+
au
∗
+
b
1
v
∗
+
b
2
w
∗
=
δ
2
.
,
,
uv
∗
−
uv
∗
=
v
∗
(
u
−
u
∗
)
−
u
∗
(
v
−
v
∗
)
, u
∗
v
−
uv
∗
=
u
∗
(
v
−
v
∗
)
−
v
∗
(
u
−
u
∗
)
vw
∗
−
v
∗
w
=
w
∗
(
v
−
v
∗
)
−
v
∗
(
w
−
w
∗
)
, v
∗
w
−
vw
∗
=
v
∗
(
w
−
w
∗
)
−
w
∗
(
v
−
v
∗
)
uw
∗
−
u
∗
w
=
w
∗
(
u
−
u
∗
)
−
u
∗
(
w
−
w
∗
)
, u
∗
w
−
uw
∗
=
u
∗
(
w
−
w
∗
)
−
w
∗
(
u
−
u
∗
).
²
L
{
ü
O
Ž
,
(
u
−
u
∗
u
)
d
u
d
t
=
−
1
1+
kv
−
a
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)
2
−
k
(1
−
u
∗
)
(1+
kv
)(1+
kv
∗
)
+
(1+
kv
∗
)
−
b
1
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
v
−
v
∗
)
−
(1+
kv
∗
)
−
b
2
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
w
−
w
∗
)
1
e
1
(
v
−
v
∗
v
)
d
v
d
t
=
e
1
−
aδ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
v
−
v
∗
)
−
b
1
δ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
v
−
v
∗
)
2
−
c
+
b
2
δ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
v
−
v
∗
)(
w
−
w
∗
)
1
e
2
(
w
−
w
∗
w
)
d
w
d
t
=
e
2
−
aδ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
w
−
w
∗
)
−
b
2
δ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
(
w
−
w
∗
)
2
+
cε
−
b
1
δ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
(
v
−
v
∗
)(
w
−
w
∗
)
DOI:10.12677/pm.2022.12122252093
n
Ø
ê
Æ
w
l
d
V
d
t
=
−
1
1+
kv
−
a
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)
2
−
b
1
δ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
v
−
v
∗
)
2
−
b
2
δ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
(
w
−
w
∗
)
2
+
e
1
−
aδ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
v
−
v
∗
)
+
−
k
(1
−
u
∗
)
(1+
kv
)(1+
kv
∗
)
−
(1+
kv
∗
)
−
b
1
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
v
−
v
∗
)
+
e
2
−
aδ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
−
(1+
kv
∗
)
−
b
2
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
(
u
−
u
∗
)(
w
−
w
∗
)
+
cε
−
b
1
δ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
−
c
+
b
2
δ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
(
v
−
v
∗
)(
w
−
w
∗
)
-
l
11
=
−
h
1
1+
kv
−
a
(1
−
u
∗
)
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
i
,
l
12
=
l
21
=
1
2
h
b
1
e
1
(1
−
u
∗
)
−
aδ
1
(1+
kv
∗
)
e
1
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
−
k
(1
−
u
∗
)
(1+
kv
)(1+
kv
∗
)
i
,
l
22
=
−
b
1
δ
1
e
1
(1+
au
+
b
1
v
+
b
2
w
)
,
l
13
=
l
31
=
1
2
h
b
2
e
2
(1
−
u
∗
)
−
aδ
2
(1+
kv
∗
)
e
2
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
i
,
l
33
=
−
b
2
δ
2
e
2
(1+
au
+
b
1
v
+
b
2
w
)
,
l
23
=
l
32
=
1
2
h
e
1
(
cε
−
b
1
δ
2
)
−
e
2
(
c
+
b
2
δ
1
)
e
1
e
2
(1+
au
+
b
1
v
+
b
2
w
)
i
.
L
=
l
11
l
12
l
13
l
12
l
22
l
23
l
13
l
23
l
33
.
d
(
H
6
)(
H
7
)
Œ
•
,
l
11
<
0.
l
11
l
12
l
12
l
22
=
l
11
l
22
−
l
2
12
=
2
e
1
(1+
kv
)(1+
au
+
b
1
v
+
b
2
w
)
{
2
b
1
δ
1
(1+
kv
∗
)
2
−
k
(1
−
u
∗
)[
aδ
1
(1+
kv
∗
)
−
b
1
e
1
(1
−
u
∗
)]
}
4
e
2
1
(1+
kv
)
2
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
2
−
4
ab
1
e
1
δ
1
(1
−
u
∗
)(1+
kv
∗
)(1+
kv
)
2
4
e
2
1
(1+
kv
)
2
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
2
−
(1+
kv
)
2
[
b
1
e
1
(1
−
u
∗
)
−
aδ
1
(1+
kv
∗
)]
2
4
e
2
1
(1+
kv
)
2
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
2
−
e
2
1
k
2
(1
−
u
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
2
4
e
2
1
(1+
kv
)
2
(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
2
<
0
d
(
H
6
)(
H
8
)
Œ
•
,
l
11
l
12
l
13
l
12
l
22
l
23
l
13
l
23
l
33
=
l
11
l
22
l
33
+2
l
12
l
13
l
23
−
l
11
l
2
23
−
l
22
l
2
13
−
l
33
l
2
12
=
{
[
e
1
(
cε
−
b
1
δ
2
)
−
e
2
(
c
+
b
2
δ
1
)]
2
−
4
b
1
b
2
e
1
e
2
δ
1
δ
2
}
(1+
kv
)(1+
kv
∗
)[(1+
kv
∗
)(1+
au
+
b
1
v
+
b
2
w
)
−
a
(1
−
u
∗
)(1+
kv
)]
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
+
[
e
1
(
cε
−
b
1
δ
2
)
−
e
2
(
c
+
b
2
δ
1
)][
b
1
e
1
(1
−
u
∗
)
−
aδ
1
(1+
kv
∗
)](1+
kv
)
2
[
b
2
e
2
(1
−
u
∗
)
−
aδ
2
(1+
kv
∗
)]
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
DOI:10.12677/pm.2022.12122252094
n
Ø
ê
Æ
w
+
b
1
e
1
δ
1
(1+
kv
)
2
[
b
2
e
2
(1
−
u
∗
)
−
aδ
2
(1+
kv
∗
)]
2
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
+
b
2
e
2
δ
2
(1+
kv
)[
b
1
e
1
(1
−
u
∗
)
−
aδ
1
(1+
kv
∗
)]
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
−
ke
1
(1+
kv
)(1
−
u
∗
)[
e
1
(
cε
−
b
1
δ
2
)
−
e
2
(
c
+
b
2
δ
1
)][
b
2
e
2
(1
−
u
∗
)
−
aδ
2
(1+
kv
∗
)](1+
au
+
b
1
v
+
b
2
w
)
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
+
b
2
e
1
e
2
kδ
2
(1
−
u
∗
)(1+
au
+
b
1
v
+
b
2
w
)
4
e
2
1
e
2
2
(1+
kv
)
2
(1+
kv
∗
)
2
(1+
au
+
b
1
v
+
b
2
w
)
3
<
0.
P
˜
u
=
u
−
u
∗
,˜
v
=
v
−
v
∗
,˜
w
=
w
−
w
∗
,
l
d
V
d
t
=(˜
u,
˜
u,
˜
w
)
>
L
(˜
u,
˜
u,
˜
w
)
≤
0.
…
=
u
=
u
∗
,
v
=
v
∗
,
w
=
w
∗
ž
,
d
V
d
t
= 0,
d
LaSalle
C
©
Ú
n
[43],
·
‚
E
∗
3
R
3
+
S
´
Û
ì
C
-
½
.
2.5.Hopf
©
|
ù
˜
Ü
©
·
‚
±
™
ê
Ï
f
k
Š
•
©
|
ë
ê
,
$
^
Sotomayor
½
n
[44]
?
Ø
ˆ
²
ï
:
?
u
)
Hopf
©
|
^
‡
.
½
n
8
©
|
ë
ê
k
L
.
Š
k
=
k
1
ž
,
X
Ú
(1.3)
Œ
7
Ã
IG
Ó
ö
²
ï
:
E
2
²
{
¿
Ê
Å©
|
,
ù
p
k
1
÷
v
µ
Q
1
(
k
1
)=
a
11
(
k
1
) +
a
22
(
k
1
)=0,
λ
c
1
=
p
a
11
(
k
1
)
a
22
(
k
1
)
−
a
12
(
k
1
)
a
21
(
k
1
)
det(
J
(
E
2
))
|
k
=
k
1
=
s
3
(
k
1
)
>
0,
d
λ
a
1
d
k
|
k
=
k
1
=
σ
1
ϕ
−
2
σ
2
ψ
σ
2
1
−
4
σ
2
2
6
= 0.
y
²
λ
(
k
)=
λ
a
1
(
k
)+
iλ
c
1
(
k
)
•
(
λ
−
a
33
)[
λ
2
−
(
a
11
+
a
22
)
λ
+
a
11
a
22
−
a
12
a
21
]=0
A
Š
,
ò
λ
(
k
)
“
\
¿
©
l
¢
Ü
Ú
J
Ü
,
λ
3
a
1
−
3
λ
a
1
λ
2
c
1
+
s
1
(
λ
2
c
1
−
λ
2
a
1
)+
s
2
λ
a
1
−
s
3
= 0
,
3
λ
c
1
λ
2
a
1
−
λ
3
c
1
−
2
s
1
λ
a
1
λ
c
1
+
s
2
λ
c
1
= 0
,
(13)
s
1
=
a
11
(
k
)+
a
22
(
k
)+
a
33
(
k
),
s
2
=
a
11
(
k
)
a
22
(
k
)
−
a
12
(
k
)
a
21
(
k
)+
a
33
(
k
)[
a
11
(
k
)+
a
22
(
k
)],
s
3
=
a
33
(
k
)[
a
11
(
k
)
a
22
(
k
)
−
a
12
(
k
)
a
21
(
k
)].
A
Š
¢
Ü
•
"
ž
,
T
A
Š
´
Ý
,
Ã
IG
Ó
ö
²
ï
:
E
2
Ï
)
Hopf
©
|
”
§
-
½
5
.
½
Â
Hopf
©
|
.
Š
•
k
1
,
Ò
k
λ
a
1
(
k
1
) = 0
…
λ
c
1
(
k
1
)
6
= 0,
“
\
(13)
ª
X
e
•
§
|
:
s
1
λ
2
c
1
−
s
3
= 0
−
λ
3
c
1
+
s
2
λ
c
1
= 0
Q
1
=
a
11
(
k
1
)+
a
22
(
k
1
) =0
ž
,
k
s
1
=
a
33
(
k
1
),
K
λ
c
1
=
p
a
11
(
k
1
)
a
22
(
k
1
)
−
a
12
(
k
1
)
a
21
(
k
1
),
l
det(
J
(
E
2
))
|
k
=
k
1
=
s
3
(
k
1
)
>
0.
é
(13)
ª
ü
>
'
u
ë
ê
k
¦
(3
λ
2
a
1
−
3
λ
2
c
1
−
2
s
1
λ
a
1
+
s
2
)
d
λ
a
1
d
k
+(2
s
1
λ
c
1
−
6
λ
a
1
λ
c
1
)
d
λ
c
1
d
k
= (
λ
2
a
1
−
λ
2
c
1
)
d
s
1
d
k
−
λ
a
1
d
s
2
d
k
+
d
s
3
d
k
(3
λ
2
a
1
−
3
λ
2
c
1
−
2
s
1
λ
a
1
+
s
2
)
d
λ
c
1
d
k
+(6
λ
a
1
λ
c
1
−
2
s
1
λ
c
1
)
d
λ
a
1
d
k
= 2
λ
a
1
λ
c
1
d
s
1
d
k
−
λ
c
1
d
s
2
d
k
du
λ
a
1
= 0,
¿
-
σ
1
=
s
2
3
λ
2
c
1
,
σ
2
= 2
s
1
λ
c
1
,
ϕ
=
d
s
3
d
k
−
λ
2
c
1
d
s
1
d
k
,
ψ
=
−
λ
c
1
d
s
2
d
k
.
K
þ
ª
•
§
|
C
DOI:10.12677/pm.2022.12122252095
n
Ø
ê
Æ
w
•
λ
c
1
(
k
1
)
6
= 0,
“
\
(13)
ª
X
e
•
§
|
:
σ
1
d
λ
a
1
d
k
+
σ
2
d
λ
c
1
d
k
=
ϕ
σ
1
d
λ
c
1
d
k
−
σ
2
d
λ
a
1
d
k
=
ψ
)
d
λ
a
1
d
k
|
k
=
k
1
=
σ
1
ϕ
−
2
σ
2
ψ
σ
2
1
−
4
σ
2
2
6
= 0,
y
.
.
í
Ø
©
|
ë
ê
k
L
.
Š
k
=
k
2
ž
,
X
Ú
(1.3)
Œ
7
Ã
IG
²
ï
:
E
3
²
{
¿
Ê
Å©
|
,
ù
p
k
2
÷
v
µ
Q
2
(
k
2
)=
b
11
(
k
2
) +
b
33
(
k
2
)=0,
λ
c
2
=
p
b
11
(
k
2
)
b
33
(
k
2
)
−
b
13
(
k
2
)
b
31
(
k
2
)
det(
J
(
E
3
))
|
k
=
k
2
=
s
3
(
k
2
)
>
0,
d
λ
a
2
d
k
|
k
=
k
2
=
σ
1
ϕ
−
2
σ
2
ψ
σ
1
2
−
4
σ
2
2
6
= 0.
½
n
9
e
±
e
^
‡
¤
á
(
H
9
)
(
i
)
P
1
(
k
∗
)
>
0
,P
3
(
k
∗
)
>
0
(
ii
)
Q
(
k
∗
) =
P
1
(
k
∗
)
P
2
(
k
∗
)
−
P
3
(
k
∗
) = 0
(
iii
)
d
Q
(
k
)
d
k
|
k
=
k
∗
6
= 0
…
©
|
ë
ê
k
²
L
.
Š
k
∗
ž
,
X
Ú
(1.3)
Œ
7
~
ê
²
ï
:
E
∗
)
Hopf
©
|
.
y
²
d
^
‡
(
H
9
)
¥
(i)(ii)
Ñ
,
k
=
k
∗
ž
,(9)
ª
k
˜
‡KŠ
Ú
ü
‡
X
J
Š
,
K
(9)
ª
Ò
˜
½
Œ
±
¤
(
λ
2
+
P
2
)(
λ
+
P
1
) = 0
/
ª
,
¿
Ñ
n
‡Š
•
λ
1
=
−
P
1
,
λ
2
=
i
√
P
2
,
λ
3
=
−
i
√
P
2
.
é
¤
k
©
|
ë
ê
Š
k
,
A
Š
λ
23
/
ª
•
λ
2
=
α
(
k
)+
iβ
(
k
),
λ
3
=
α
(
k
)
−
iβ
(
k
),
α
(
k
)
•
¢
Ü
,
ò
λ
(
k
) =
α
(
k
)+
iβ
(
k
)
“
\
(9)
ª
¥
α
(
k
)+
iβ
(
k
)
3
+
P
1
(
k
)
α
(
k
)+
iβ
(
k
)
2
+
P
2
α
(
k
)+
iβ
(
k
)
+
P
3
= 0
(14)
é
(13)
ª
ü
>
'
u
©
|
ë
ê
k
¦
¿
©
l
¢
Ü
Ú
J
Ü
±
e
•
§
|
l
1
d
α
(
k
)
d
k
−
l
2
d
β
(
k
)
d
k
+
l
3
(
k
) = 0
l
2
d
α
(
k
)
d
k
+
l
1
d
β
(
k
)
d
k
+
l
4
(
k
) = 0
Ù
¥
l
1
(
k
) =
P
2
(
k
)+2
P
1
(
k
)
α
(
k
)+3
α
(
k
)
2
−
β
(
k
)
2
,
l
2
(
k
) = 2
P
1
(
k
)+3
α
(
k
)
β
(
k
),
l
3
(
k
) =
α
(
k
)
2
−
β
(
k
)
2
P
1
(
k
)+
α
(
k
)
P
2
(
k
)+
P
3
(
k
),
l
4
(
k
) =
2
α
(
k
)
P
1
(
k
)+
P
2
(
k
)
β
(
k
).
)
d
α
(
k
)
d
k
|
k
=
k
∗
=
Re
d
λ
(
k
)
d
k
k
=
k
∗
=
−
l
1
(
k
)
l
3
(
k
)+
l
2
(
k
)
l
4
(
k
)
l
1
(
k
)
2
+
l
2
(
k
)
2
k
=
k
∗
DOI:10.12677/pm.2022.12122252096
n
Ø
ê
Æ
w
=
"
P
2
(
k
)
P
1
(
k
)+
P
1
(
k
)
P
2
(
k
)
−
P
3
(
k
)
2
P
1
(
k
)
2
+
P
2
(
k
)
2
#
k
=
k
∗
=
−
d
Q
(
k
)
d
k
2
P
1
(
k
)
2
+
P
2
(
k
)
2
k
=
k
∗
6
= 0.
3.
g
*
Ñ
X
Ú
(1.4)
Ä
å
Æ
©
Û
3.1.
±
È
5
Ú
k
.
5
•
ï
Ä
ØC
á
Ú
•
•
3
5
,
X
Ú
(1.4)
)
k
.
5
Ú
±
È
5
¦
^
±
e
Ú
n
[45].
Ú
n
1
f
(
s
)
é
s
≥
0
´
C
1
a
¼
ê
,
d>
0,
η
≥
0
´
~
ê
,
?
,
4
T
∈
[0
,
∞
),
Φ
∈
C
2
,
1
(Ω
×
(
T,
∞
))
∩
C
1
,
0
(Ω
×
[
T,
∞
))
´
¼
ê
.
(i)
e
Φ
÷
v
Φ
t
−
d
∆Φ
≤
Φ
1+
η
f
(Φ)(
θ
−
Φ)
,
(
x,t
)
∈
Ω
×
(
T,
∞
)
Φ
v
= 0
,
(
x,t
)
∈
∂
Ω
×
(
T,
∞
)
~
ê
θ>
0,
K
lim
t
→∞
supmax
Ω
Φ(
.,t
)
≤
θ
.
(ii)
e
Φ
÷
v
Φ
t
−
d
∆Φ
≥
Φ
1+
η
f
(Φ)(
θ
−
Φ)
,
(
x,t
)
∈
Ω
×
(
T,
∞
)
Φ
v
= 0
,
(
x,t
)
∈
∂
Ω
×
(
T,
∞
)
~
ê
θ>
0,
K
lim
t
→∞
infmin
Ω
Φ(
.,t
)
≥
θ
.
½
n
10
X
Ú
(1.4)
3
R
+
3
S
¤
k
)
´
˜
—
k
.
¿
•
ª
?
\
ØC
á
Ú
•
P
=[0
,
1]
×
h
0
,
e
1
b
1
δ
1
i
×
h
0
,
εce
1
+
b
1
e
2
δ
1
b
1
b
2
δ
1
δ
2
i
.
y
²
·
‚
7
L
y
²
é
∀
t>
0,
u
(
x,
0)
,v
(
x,
0)
,w
(
x,
0)
∈
P
,
u
(
x,t
)
,v
(
x,t
)
,w
(
x,t
)
∈
P
.
†
Œ
±
w
u
(
x,t
)
>
0,
v
(
x,t
)
>
0,
w
(
x,t
)
>
0,
Ï
d
§
Ð
Š
u
(
x,
0)
,v
(
x,
0)
Ú
w
(
x,
0)
´
š
K
,
y
l
X
Ú
(1.4)
1
˜
‡
•
§
¥
,
·
‚
u
t
−
∆
u
≤
u
(1
−
u
)
,
d
Ú
n
1
¥
(i)
•
,
lim
t
→∞
supmax
Ω
u
(
x,t
)
≤
1
.
=
é
∀
>
0,
∃
t
1
>
0,
t>t
1
,(
x,t
)
∈
Ω
×
[
t
1
,
∞
]
ž
,
¦
u
(
x,t
)
≤
1+
.
DOI:10.12677/pm.2022.12122252097
n
Ø
ê
Æ
w
Ï
d
,
3
(
x,t
)
∈
Ω
×
[
t
1
,
∞
]
þ
,
v
•
§
÷
v
v
t
−
d
2
∆
v
≤
v
e
1
(1+
)
1+
a
(1+
)+
b
1
v
−
δ
1
≤
e
1
(1+
)
b
1
−
δ
1
v
=
δ
1
e
1
(1+
)
b
1
δ
1
−
v
d
Ú
n
1
¥
(i)
•
,
lim
t
→∞
supmax
Ω
v
(
x,t
)
≤
e
1
b
1
δ
1
.
=
é
∀
1
,
∃
t
2
>t
1
,
t>t
2
,(
x,t
)
∈
Ω
×
[
t
2
,
∞
]
ž
,
¦
v
(
x,t
)
≤
e
1
b
1
δ
1
+
1
.
Ï
d
,
3
(
x,t
)
∈
Ω
×
[
t
2
,
∞
]
þ
,
w
•
§
÷
v
w
t
−
d
3
∆
w
≤
w
e
2
(1+
)+
cε
(
e
1
b
1
δ
1
+
1
)
b
2
w
−
δ
2
≤
δ
2
h
e
2
(1+
)+
cε
e
1
b
1
δ
1
+
1
i
b
2
δ
2
−
w
du
,
1
´
?
¿
,
2
A^
Ú
n
1
(i)
,
lim
t
→∞
supmax
Ω
w
(
x,t
)
≤
e
2
+
εce
1
b
1
δ
1
b
2
δ
2
=
εce
1
+
b
1
e
2
δ
1
b
1
b
2
δ
1
δ
2
.
½
Â
é
u
ä
k
š
K
Ð
Š
…
(
u
(
x,
0)
,v
(
x,
0)
,w
(
x,
0))
6
=0
X
Ú
(1.4),
e
∃
σ
0
,σ
1
,σ
2
þ
•
~
ê
,
¦
X
Ú
(1.4)
)
u
(
x,t
)
,v
(
x,t
)
,w
(
x,t
)
÷
v
lim
t
→∞
infmin
Ω
(
u,t
)
≥
σ
0
,lim
t
→∞
infmin
Ω
(
v,t
)
≥
σ
1
,lim
t
→∞
infmin
Ω
(
w,t
)
≥
σ
2
,
K
¡
X
Ú
(1.4)
´
±
È
.
½
n
11
e
l
u
=1
−
(
b
1
+
b
2
)(
b
1
δ
1
−
ke
1
)
b
2
1
b
2
δ
1
>
0,
l
v
=
b
1
e
1
δ
1
δ
2
l
u
−
(
c
+
b
2
δ
1
)[
b
1
δ
1
(
δ
2
+
aδ
2
+
e
2
)+
εce
1
]
b
2
1
δ
1
δ
2
(
c
+
b
2
δ
1
)
>
0,
l
w
=
e
2
δ
1
l
u
+
εcδ
1
l
v
−
δ
1
δ
2
(1+
a
)
−
e
1
δ
2
b
2
δ
1
δ
2
>
0,
K
X
Ú
(1.4)
´
±
È
.
Ï
•
u
t
−
d
1
∆
u
=
u
1
−
u
1+
kv
−
v
+
w
1+
au
+
b
1
v
+
b
2
w
≥
u
(
1
−
u
1+
kv
−
1
b
1
−
1
b
2
)
≥
u
b
1
δ
1
(1
−
u
)
b
1
δ
1
+
ke
1
−
b
1
+
b
2
b
1
b
2
≥
b
1
δ
1
u
b
1
δ
1
+
ke
1
1
−
(
b
1
+
b
2
)(
b
1
δ
1
+
ke
1
)
b
2
1
b
2
δ
1
−
u
,
…
-
l
u
= 1
−
(
b
1
+
b
2
)(
b
1
δ
1
+
ke
1
)
b
2
1
b
2
δ
1
>
0,
K
d
Ú
n
1
(ii)
•
,
lim
t
→∞
infmin
Ω
(
u,t
)
≥
1
−
(
b
1
+
b
2
)(
b
1
δ
1
+
ke
1
)
b
2
1
b
2
δ
1
=
é
∀
0
<
(0)
<l
u
,
∃
t
0
,
t>t
0
,(
x,t
)
∈
Ω
×
[
t
0
,
∞
]
ž
,
¦
u
(
x,t
)
≥
l
u
−
(0)
.
3
(
x,t
)
∈
Ω
×
[
t
0
,
∞
]
þ
,
X
Ú
(1.4)
1
‡
'
u
v
•
§
÷
v
:
v
t
−
d
2
∆
v
≥
v
b
1
e
1
δ
1
δ
2
(
l
u
−
(0)
)
b
1
δ
1
δ
2
(1+
a
)+(
b
1
e
2
δ
1
+
εce
1
)+
b
2
1
δ
2
δ
2
v
)
−
c
+
b
2
δ
1
b
2
≥
b
2
1
δ
1
δ
2
(
c
+
b
2
δ
1
)
v
b
2
[
b
1
δ
1
δ
2
(1+
a
)+(
b
1
e
2
δ
1
+
εce
1
)+
b
2
1
δ
1
δ
2
v
]
b
1
e
1
δ
1
δ
2
l
u
−
(
c
+
b
2
δ
1
)[
b
1
δ
1
(
δ
2
+
aδ
2
+
e
2
)+
εce
1
]
b
2
1
δ
1
δ
2
(
c
+
b
2
δ
1
)
−
v
DOI:10.12677/pm.2022.12122252098
n
Ø
ê
Æ
w
-
l
v
=
b
1
e
1
δ
1
δ
2
l
u
−
(
c
+
b
2
δ
1
)[
b
1
δ
1
(
δ
2
+
aδ
2
+
e
2
)+
εce
1
]
b
2
1
δ
1
δ
2
(
c
+
b
2
δ
1
)
>
0,
d
Ú
n
1
(ii)
•
,
lim
t
→∞
infmin
Ω
(
v,t
)
≥
b
1
e
1
δ
1
δ
2
l
u
−
(
c
+
b
2
δ
1
)[
b
1
δ
1
(
δ
2
+
aδ
2
+
e
2
)+
εce
1
]
b
2
1
δ
1
δ
2
(
c
+
b
2
δ
1
)
=
é
∀
(1)
>
0,
∃
t
(1)
0
>t
0
,
t>t
(1)
0
,(
x,t
)
∈
Ω
×
t
(1)
0
,
∞
ž
,
¦
v
(
x,t
)
≥
l
v
−
(1)
.
a
q
/
,
X
Ú
(1.4)
1
n
‡
'
u
w
•
§
÷
v
:
w
t
−
d
3
∆
w
≥
w
e
2
δ
1
(
l
u
−
(0)
)+
εcδ
1
(
l
v
−
(1)
)
δ
1
(1+
a
)+
e
1
+
b
2
δ
1
w
−
δ
2
≥
b
2
δ
1
δ
2
w
δ
1
(1+
a
)+
e
1
+
b
2
δ
1
w
e
2
δ
1
(
l
u
−
(0)
)+
εcδ
1
(
l
v
−
(1)
)
−
δ
1
δ
2
(1+
a
)
−
e
1
δ
2
b
2
δ
1
δ
2
−
w
-
l
w
=
e
2
δ
1
l
u
+
εcδ
1
l
v
−
δ
1
δ
2
(1+
a
)
−
e
1
δ
2
b
2
δ
1
δ
2
>
0,
d
Ú
n
1
(ii)
•
,
lim
t
→∞
infmin
Ω
(
w,t
)
≥
e
2
δ
1
l
u
+
εcδ
1
l
v
−
δ
1
δ
2
(1+
a
)
−
e
1
δ
2
b
2
δ
1
δ
2
y
.
.
3.2.
Û
Ü
-
½
5
ù
˜
Ü
©
,
?
Ø
X
Ú
(1.4)
~
ê
²
ï
-
½
5
,
é
N
´
w
X
Ú
(1.4)
~
ê
²
ï
:
†
X
Ú
(1.3)
˜
—
.
y
L
«
E
=
u
(
x,t
)
,v
(
x,t
)
,w
(
x,t
)
>
,
F
(
E
)=
f
1
(
E
)
,f
2
(
E
)
,f
3
(
E
)
>
,
D
= diag(
d
1
,d
2
,d
3
),
X
Ú
(1.4)
3
E
∗
?
‚
5
z
/
ª
X
e
:
E
t
=
L
E
,x
∈
Ω
,
n
·∇
E
= 0
,x
∈
∂
Ω
.
L
=
D
∆+
J
E
∗
.
0=
µ
0
<µ
1
<µ
2
<...<µ
n
<...
,
´
Ω
þ
ä
k
à
g
Neumann
>
.
^
‡
−
∆
Ž
f
A
Š
,
E
(
µ
i
)
•
H
1
(Ω)
þ
µ
i
(
i
=0
,
1
,
2
,...
)
é
A
A
˜
m
,
X
•
[
H
1
(Ω)]
þ
C
1
(
¯
Ω)
3
4
•
,
X
ij
=
{
c
φ
ij
|
c
∈
R
3
}
,
{
φ
ij
:
j
= 1
,
2
,
3
,...,dimE
(
µ
i
)
}
´
X
i
˜
|
I
O
Ä
,
K
X
=
∞
M
i
=1
X
i
,X
i
=
dim[
E
(
µ
i
)]
M
j
=1
X
ij
.
é
z
˜
‡
i
≥
1,
X
i
3
Ž
f
L
e
´
ØC
,
…
é
,
‡
i
≥
1
5
`
,
λ
´
Ž
f
L
A
Š
…
=
§
´
Ý
−
µ
i
D
+
J
E
∗
A
Š
ž
,
T
A
Š
¿
é
A
X
i
¥
˜
‡
A
•
þ
.
−
µ
i
D
+
J
E
∗
A
•
§
•
Ψ
i
(
λ
) =
λ
3
+
P
1
i
λ
2
+
P
2
i
λ
+
P
3
i
= 0
(15)
DOI:10.12677/pm.2022.12122252099
n
Ø
ê
Æ
w
P
1
i
= (
d
1
+
d
2
+
d
3
)
µ
i
+
P
1
P
2
i
= (
d
1
d
2
+
d
1
d
3
+
d
2
d
3
)
µ
2
i
−
[
c
11
(
d
2
+
d
3
)+
c
22
(
d
1
+
d
3
)+
c
33
(
d
1
+
d
2
)]
µ
i
+
P
2
P
3
i
=
d
1
d
2
d
3
µ
3
i
−
(
d
1
d
2
c
33
+
d
1
d
3
c
22
+
d
2
d
3
c
11
)
µ
2
i
+[
d
1
(
c
22
c
33
−
c
23
c
32
)+
d
2
(
c
11
c
33
−
c
13
c
31
)+
d
3
(
c
11
c
22
−
c
12
c
21
)]
µ
i
+
P
3
=
q
1
µ
3
i
+
q
2
µ
2
i
+
q
3
µ
i
+
q
4
.
Q
i
=
P
1
i
P
2
i
−
P
3
i
=
m
1
µ
3
i
+
m
2
µ
2
i
+
m
3
µ
i
+
m
4
m
1
= (
d
1
+
d
2
)(
d
1
+
d
3
)(
d
2
+
d
3
)
−
d
1
d
2
d
3
>
0
m
2
=
−
2(
d
1
d
2
+
d
1
d
3
+
d
2
d
3
)(
c
11
+
c
22
+
c
33
)
−
d
2
1
(
c
22
+
c
33
)
−
d
2
2
(
c
11
+
c
33
)
−
d
2
3
(
c
11
+
c
22
)
m
3
=
d
1
2(
c
11
c
22
+
c
11
c
33
+
c
22
c
33
)
−
c
12
c
21
−
c
13
c
31
+
c
2
22
+
c
2
33
+
d
2
2(
c
11
c
22
+
c
11
c
33
+
c
22
c
33
)
−
c
12
c
21
−
c
13
c
31
+
c
2
11
+
c
2
33
+
d
3
2(
c
11
c
22
+
c
11
c
33
+
c
22
c
33
)
−
c
23
c
32
−
c
13
c
31
+
c
2
11
+
c
2
22
m
4
=
P
1
P
2
−
P
3
.
d
(10)
¥
Î
Ò
Œ
•
m
2
,m
3
,m
4
þ
Œ
u
"
,
k
Q
i
>
0,
Ï
d
,
P
1
i
,P
2
i
,P
3
i
>
0,
d
Routh-Hurwitz
O
K
Œ
•
•
§
(15)
n
‡Š
Ñ
ä
k
K
¢
Ü
,
é
z
‡
i
≥
1.
-
λ
=
µ
i
ζ
,
K
Ψ
i
(
λ
) =
µ
3
i
ζ
3
+
P
1
i
µ
2
i
ζ
2
+
P
2
i
µ
i
ζ
+
P
3
i
:=
e
Ψ
i
(
ζ
)
4
µ
i
−→∞
,
i
−→∞
ž
,
lim
t
→∞
e
Ψ
i
(
ζ
)
µ
3
i
=
ζ
3
+(
d
1
+
d
2
+
d
3
)
ζ
2
+(
d
1
d
2
+
d
1
d
3
+
d
2
d
3
)
ζ
+
d
1
d
2
d
3
:=
e
Ψ(
ζ
)
w
,
,
e
Ψ(
ζ
) = 0
k
n
‡Š
−
d
1
,
−
d
2
,
−
d
3
,
d
ë
Y5
•
∃
i
0
,
¦
e
Ψ
i
(
ζ
) = 0
n
‡Š
ζ
1
i
,ζ
2
i
,ζ
3
i
÷
v
Re
{
ζ
1
i
}
,
Re
{
ζ
2
i
}
,
Re
{
ζ
3
i
}≤−
d
2
,
∀
i
≥
i
0
,
ù
p
d
= min
{
d
1
,d
2
,d
3
}
,
K
Re
{
λ
1
i
}
,
Re
{
λ
2
i
}
,
Re
{
λ
3
i
}≤
−
µ
i
d
2
≤−
d
2
,
∀
i
≥
i
0
.
-
−
e
d
= max
Re
{
λ
1
i
}
,
Re
{
λ
2
i
}
,
Re
{
λ
3
i
}≤−
µ
i
d
2
≤−
d
2
DOI:10.12677/pm.2022.12122252100
n
Ø
ê
Æ
w
K
e
d>
0,
…
Re
{
λ
1
i
}
,
Re
{
λ
2
i
}
,
Re
{
λ
3
i
}≤−
µ
i
d
2
≤−
d
2
≤−
d
= min
e
d,
d
2
<
0,
∀
i
≥
1
d
L
Ž
f
A
Š
|
¤
Ì
u
Œ
²
¡
Re
{
λ
≤−
d
}
S
.
Ï
d
,
d
DanHenry[46]
½
n
5
.
1
.
1,
·
‚
k
±
e
E
∗
-
½
5
(
J
.
½
n
12
e
^
‡
(
H
2
)-(
H
6
)
¤
á
,
K
g
*
Ñ
X
Ú
(1.4)
~
ê
²
ï
:
E
∗
´
Û
Ü
ì
C
-
½
.
5
:
þ
ã
½
n
L
²
g
*
Ñ
X
Ú
Œ
U
Ø
¬
U
C
X
Ú
-
½
5
,
•
Ò
´
`
§
g
*
Ñ
Ø
U
)
Turing
Ø
-
½
5
.
4.
(
Ø
©•
)
º
IG
Ú
IG
Ó
ö
|¢
Ç
é
¤
9
n
‡
Ô
«
,
=
É
™
ê
Z
6
•
]
,IG
,IG
Ó
ö
•
6
5
,
•
Ä
3
à
g
Newman
>
.
^
‡
e
ä
k
™
ê
A
Ú
Bedington-
DeAngelis
õ
U
‡
A
ž
˜
+
S
Ó
.
.
é
u
ù
‡
IGP
.
§
·
‚
Ñ
¤
k
Œ
1
²
ï
:
•
3
5
Ú
(
Û
Ü
/
Û
)
-
½
5
^
‡
,
•
)
²
…
²
ï
:
!
>
.
²
ï
:
Ú
~
ê
²
ï
:
.
d
,
„
±
™
ê
Ï
f
•
ë
ê
Hopf
©
|
^
‡
.
Ï
L
ï
Ä
u
y
,
ž
m
X
Ú
(1.3)
Œ
1
²
ï
:
•
´ž
˜
X
Ú
(1.4)
Œ
1
²
ï
:
.
,
,
·
‚
l
½
n
6
Ú
9
Œ
±
w
,
Ã
Ø
*
Ñ
´
Ä
•
3
,
~
ê
²
ï
:
Û
Ü
-
½
5
^
‡
¿
v
k
É
*
Ñ
K
•
.
½
n
10
ž
˜
X
Ú
(1.4)
˜
—
±
È
5
•
3
•
ý
«
X
É
™
ê
K
•
•
]
,IG
,IG
Ó
ö
n
Ô
«
Œ
±
•
.
©
?
1
î
‚
n
Ø
í
n
Ø
y
,
l
n
Ø
þ
5
`
ä
k
Œ
15
Ú
ž
5
,
Ø
v
ƒ
?
´
"
ä
N
ê
Š
©
Û
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(Nos.11761063)
"
ë
•
©
z
[1]Polis,G.A.andMcCormick,S.J.(1987)IntraguildPredationandCompetitionamongDesert
Scorpions.
Ecology
,
68
,332-343.https://doi.org/10.2307/1939264
[2]Polis,G.A., Myers, C.A.andHolt, R.D.(1989) TheEcology andEvolutionofIntraguildPreda-
tion:Potential Competitors That Eat Each Other.
Annual ReviewofEcologyandSystematics
,
20
,297-330.https://doi.org/10.1146/annurev.es.20.110189.001501
[3]Polis,G.A.andHolt,R.D.(1992)IntraguildPredation:TheDynamicsofComplexTrophic
Interactions.
TrendsinEcologyandEvolution
,
7
,151-154.
https://doi.org/10.1016/0169-5347(92)90208-S
DOI:10.12677/pm.2022.12122252101
n
Ø
ê
Æ
w
[4]Holt,R.D.andPolis,G.A.(1997)ATheoreticalFrameworkforIntraguildPredation.
The
AmericanNaturalist
,
149
,745-764.https://doi.org/10.1086/286018
[5]Holling,C.S.(1959)TheComponentsofPredationasRevealedbyaStudyofSmall-Mammal
PredationoftheEuropeanPineSawfly.
TheCanadianEntomologist
,
91
,293-320.
https://doi.org/10.4039/Ent91293-5
[6]Holling,C.S.(1959)SomeCharacteristicsofSimpleTypesofPredationandParasitism.
The
CanadianEntomologist
,
91
,385-398.https://doi.org/10.4039/Ent91385-7
[7]Holling, C.S.(1966) TheFunctional Response ofInvertebrate Predatorsto PreyDensity.
Mem-
oirsoftheEntomologicalSocietyofCanada
,
98
,5-86.
https://doi.org/10.4039/entm9848fv
[8]Beddington,J.R.(1975)MutualInterference betweenParasitesorpredatorsandItsEffecton
SearchingEfficiency.
JournalofAnimalEcology
,
44
,331-340.
https://doi.org/10.2307/3866
[9]DeAngelis, D.L.,Goldstein, R.A.andNeill, R.(1975)AModel forTrophicInteraction.
Ecology
,
56
,881-892.https://doi.org/10.2307/1936298
[10]Kratina,P.,Vos,M.,Bateman, A. andAnholt,B.R. (2009) Functional ResponsesModifiedby
PredatorDensity.
Oecologia
,
159
,425-433.https://doi.org/10.1007/s00442-008-1225-5
[11]Skalski, G.T.andGilliam, J.F.(2001) FunctionalResponseswithPredator Interference:Viable
AlternativestotheHollingTypeIIModel.
Ecology
,
82
,3083-3092.
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[12]Hsu,S.-B.,Ruan,S.andYang,T.-H.(2013)OntheDynamicsofTwo-Consumers-One-
ResourceCompetingSystemswithBeddington-DeAngelisFunctionalResponse.
Discreteand
ContinuousDynamicalSystemsB
,
18
,2331-2353.
https://doi.org/10.3934/dcdsb.2013.18.2331
[13]Hsu,S.-B.,Ruan,S.andYang,T.-H.(2015)AnalysisofThreeSpeciesLotka-VolterraFood
Web ModelswithOmnivory.
JournalofMathematicalAnalysisandApplications
,
426
, 659-687.
https://doi.org/10.1016/j.jmaa.2015.01.035
[14]Lin,G.,Ji,J.,Wang,L.andYu,J.(2021)MultitypeBistabilityandLongTransientsina
DelayedSpruceBudwormPopulation Model.
JournalofDifferentialEquations
,
283
,263-289.
https://doi.org/10.1016/j.jde.2021.02.034
[15]Seo,G.andWolkowicz,G.S.K.(2018)Sensitivity of theDynamicsoftheGeneralRosenzweig-
MacArthurModelto theMathematical Formof theFunctionalResponse:ABifurcation The-
oryApproach.
JournalofMathematicalBiology
,
76
,1873-1906.
https://doi.org/10.1007/s00285-017-1201-y
[16]Shu,H.,Hu,X.,Wang,L.andWatmough,J.(2015)DelayInducedStabilitySwitch,Multi-
TypeBistabilityandChaosinanIntraguildPredationModel.
Journal of Mathematical Biology
,
71
,1269-1298.https://doi.org/10.1007/s00285-015-0857-4
DOI:10.12677/pm.2022.12122252102
n
Ø
ê
Æ
w
[17]Yuan,Y.(2012)ACoupledPlanktonSystemwithInstantaneousandDelayedPredation.
JournalofBiologicalDynamics
,
6
,148-165.https://doi.org/10.1080/17513758.2010.544409
[18]Kang,Y.andWedekin,L.(2013)DynamicsofaIntraguildPredationModelwithGeneralist
orSpecialistPredator.
JournalofMathematicalBiology
,
67
,1227-1259.
https://doi.org/10.1007/s00285-012-0584-z
[19]Schauber,E.M.,Ostfeld,R.S.andJones,C.G.(2004)Type3FunctionalResponseofMiceto
GypsyMothPupae:IsItStabilizing?
Oikos
,
107
,592-602.
https://doi.org/10.1111/j.0030-1299.2004.13606.x
[20]Han,R.andDai,B.(2017)SpatiotemporalDynamicsandSpatialPatterninaDiffusive
IntraguildPredationModelwithDelayEffect.
AppliedMathematicsandComputation
,
312
,
177-201.https://doi.org/10.1016/j.amc.2017.05.053
[21]Sen,D.,Ghorai,S.andBanerjee,M.(2018)ComplexDynamicsofaThreeSpeciesPrey-
PredatorModelwithIntraguildPredation.
EcologicalComplexity
,
34
,9-22.
https://doi.org/10.1016/j.ecocom.2018.02.002
[22]Cantrell,R.S.andCosner,C.(2001)OntheDynamicsofPredator-PreyModelswiththe
Beddington-DeAngelisFunctionalResponse.
JournalofMathematicalAnalysisandApplica-
tions
,
257
,206-222.https://doi.org/10.1006/jmaa.2000.7343
[23]Hwang, T.W.(2003) Global Analysisof thePredator-Prey System withBeddington-DeAngelis
FunctionalResponse.
JournalofMathematicalAnalysisandApplications
,
281
,395-401.
https://doi.org/10.1016/S0022-247X(02)00395-5
[24]Hwang,T.W.(2004)UniquenessofLimitCyclesofthePredator-PreySystemwithBeddington-
DeAngelis Functional Response.
JournalofMathematicalAnalysis andApplications
,
290
, 113-
122.https://doi.org/10.1016/j.jmaa.2003.09.073
[25]Liu, S.,Beretta,E. andBreda, D.(2010) Predator-Prey Model ofBeddington-DeAngelis Type
withMaturationandGestationDelays.
NonlinearAnalysis:RealWorldApplications
,
11
,
4072-4091.https://doi.org/10.1016/j.nonrwa.2010.03.013
[26]Tripathi, J.P., Abbas, S. andThakur, M. (2015)Dynamical Analysis ofa Prey-Predator Model
withBeddington-DeAngelisTypeFunctionResponseIncorporatingaPreyRefuge.
Nonlinear
Dynamics
,
80
,177-196.https://doi.org/10.1007/s11071-014-1859-2
[27]Cantrell, R.S., Cao, X.,Lam, K.Y. and Xiang, T.(2017) A PDEModel of Intraguild Predation
withCross-Diffusion.
DiscreteandContinuousDynamicalSystemsB
,
22
,3653-3661.
https://doi.org/10.3934/dcdsb.2017145
[28]Han,R.,Dai,B.andWang,L.(2018)DelayInducedSpatiotemporalPatternsinaDiffusive
IntraguildPredationModelwithBeddington-DeAngelisFunctionalResponse.
Mathematical
BiosciencesandEngineering
,
15
,595-627.https://doi.org/10.3934/mbe.2018027
DOI:10.12677/pm.2022.12122252103
n
Ø
ê
Æ
w
[29]Han,R.,Dai,B.andChen,Y.(2019)PatternFormationinaDiffusiveIntraguildPredation
ModelwithNonlocalInteractionEffects.
AIPAdvances
,
9
,ArticleID:035046.
https://doi.org/10.1063/1.5084948
[30]Wei,H.(2019)AMathematicalModelofIntraguildPredationwithPreySwitching.
Mathe-
maticsandComputersinSimulation
,
165
,107-118.
https://doi.org/10.1016/j.matcom.2019.03.004
[31]Zhang,G.H.andWang,X.L.(2018)ExtinctionandCoexistenceofSpeciesforaDiffusiveIn-
traguild Predation ModelwithB-D FunctionalResponse.
DiscreteandContinuousDynamical
SystemsB
,
23
,3755-3786.https://doi.org/10.3934/dcdsb.2018076
[32]Ji,J.P.andWang,L.(2022)CompetitiveExclusionandCoexistenceinanIntraguildPreda-
tionModelwithBeddington-DeAngelisFunctionalResponse.
CommunicationsinNonlinear
ScienceandNumericalSimulation
,
107
,ArticleID:106192.
https://doi.org/10.1016/j.cnsns.2021.106192
[33]Raw,S.N.andTiwari,B.(2022)AMathematicalModelofIntraguildPredationwithPrey
Refugeand CompetitivePredators.
InternationalJournalofAppliedandComputationalMath-
ematics
,
8
,ArticleNo.157.https://doi.org/10.1007/s40819-022-01366-6
[34]Mendon¸ca,J.P.,Iram,G.andLyra,M.L.(2020)PreyRefugeandMorphologicalDefense
MechanismsasNonlinearTriggersinanIntraguildPredationFoodWeb.
Communicationsin
NonlinearScienceandNumericalSimulation
,
90
,ArticleID:105373.
https://doi.org/10.1016/j.cnsns.2020.105373
[35]Xu,W.J.,Wu,D.Y.,Gao,J.andShen,C.S.(2022)MechanismofStableSpeciesCoexistence
inFoodChainSystems:StrengthofOdorDisturbanceandGroupDefense.
Chaos,Solitons
andFractals
,
8
,ArticleID:100073.https://doi.org/10.1016/j.csfx.2022.100073
[36]Capone,F.,Carfora,M.F.,DeLuca,R.Torcicollo,I.(2019)TuringPatternsinaReaction-
DiffusionSystemModelingHuntingCooperation.
MathematicsandComputersinSimulation
,
165
,172-180.https://doi.org/10.1016/j.matcom.2019.03.010
[37]He,M.X. andLi,Z.(2022)Stability ofaFearEffect Predator-PreyModelwithMutualInter-
ferenceorGroupDefense.
JournalofBiologicalDynamics
,
16
,1480-1498.
https://doi.org/10.1080/17513758.2022.2091800
[38]Mainul,H.,Nikhil,P.,Sudip,S.andJoydev,C.(2020)FearInducedStabilizationinan
IntraguildPredationModel.
InternationalJournalofBifurcationandChaos
,
30
,ArticleID:
2050053.https://doi.org/10.1142/S0218127420500534
[39]Pijush,P.,Nikhil,P.,Sudip,S.andJoydev,C.(2019)AThreeSpeciesFoodChainMod-
elwithFearInducedTrophicCascade.
InternationalJournalofAppliedandComputational
Mathematics
,
5
,ArticleNo.100.https://doi.org/10.1007/s40819-019-0688-x
[40]Shi, R.X. and Hu, Z.H. (2022) Dynamics of Three-Species Food Chain Model with Two Delays
ofFear.
ChineseJournalofPhysics
,
77
,678-698.https://doi.org/10.1016/j.cjph.2021.06.020
DOI:10.12677/pm.2022.12122252104
n
Ø
ê
Æ
w
[41]Birkhoff,G.andRota,G.C.(1989)OrdinaryDifferentialEquations.JohnWiley&SonsInc.,
Boston.
[42]Liu,W.M. (1994)Criterionof HopfBifurcations withoutUsingEigenvalues.
JournalofMath-
ematicalAnalysisandApplications
,
182
,250-256.
https://doi.org/10.1006/jmaa.1994.1079
[43]Lasalle,J.P.(1960)SomeExtensionsofLyapunov’sSecondMethod.
IRETransactionson
CircuitTheory
,
7
,520-527.https://doi.org/10.1109/TCT.1960.1086720
[44]Sotomayor, J.(1973) GenericBifurcations ofDynamical Systems, AcademicPress, Cambridge,
MA.
[45]Wang,M.andPang,P.Y.(2008)GlobalAsymptoticStabilityofPositiveSteadyStatesofa
Diffusive Ratio-Dependent Prey-Predator Model.
AppliedMathematicsLetters
,
21
, 1215-1220.
https://doi.org/10.1016/j.aml.2007.10.026
[46]Henry, D.(1981)GeometricTheoryofSemilinear ParabolicEquations.Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0089647
DOI:10.12677/pm.2022.12122252105
n
Ø
ê
Æ