设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(12),9081-9095
PublishedOnlineDecember2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.1112958
Äušà¨v£8ëêOÚ
É~Šuÿ
ÜÜ܃ƒƒÊÊʧ§§$$$½½½777
∗
§§§€€€òòòòòò
B²ŒÆêƆÚOÆ§B²B
ÂvFϵ2022c1126F¶¹^Fϵ2022c1221F¶uÙFϵ2022c1230F
Á‡
©Äu•`znØJÑ˜«¢yõ‚5£8.ëêOÚÉ~Šuÿ•{"Äk§
ïáÄuHuber›”¼êÚ`
0
¨v‘£8.§•Bu¦)?˜ÚòT.¥`
0
¨v‘tµ
•Capped-`
1
¨v¶Ùg§•xtµ¯K••-½:§¿ïá ¯KÚtµ¯Kd5"
•JÑtµ¯K1wz.§¿y²1w.†tµ¯K-½:˜—5"
'…c
Huber¼ê§-èëêO§É~Šuÿ§šà¨v§1wz•{
ParameterEstimationand
OutliersDetectionBasedon
NonconvexPenalized
Regression
ZunhaoZhang,DingtaoPeng
∗
,YanyanSu
SchoolofMathematicsandStatistics,GuizhouUniversity,GuiyangGuizhou
Received:Nov.26
th
,2022;accepted:Dec.21
st
,2022;published:Dec.30
th
,2022
∗ÏÕŠö"
©ÙÚ^:܃Ê,$½7,€òò.Äušà¨v£8ëêOÚÉ~Šuÿ[J].A^êÆ?Ð,2022,11(12):
9081-9095.DOI:10.12677/aam.2022.1112958
܃Ê
Abstract
Thispaperpresentsamethodtoimplementparameterestimationandoutliersde-
tectionformultiplelinearregressionmodelsbasedonoptimizationtheory.First,a
regressionmodelbasedontheHuberlossfunctionandthe`
0
penaltytermisdevel-
oped,andthe`
0
penaltyterminthismodelisfurtherrelaxedtotheCapped-`
1
penalty
tofacilitatethesolution;andsecond,thedirectionalstabilityp ointoftherelaxation
problemischaracterized,andtheequivalenceoftheoriginalandrelaxationproblems
isestablished.Finally,weproposeasmoothmodelfortherelaxationproblemand
provetheconsistencyofthestablepointofsmoothmodelandtherelaxationproblem.
Keywords
HuberFunction,RobustParameterEstimation,OutliersDetection,Nonconvex
Penalty,SmoothingMethod
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.có
ÚOÆ˜‡ ¥%¯KÒ´lkD(*Š¥O‚5£8.£8ëê.•ÄXeõ
‚5.:
y= Ax+ω,(1)
Ù¥y= (y
1
,...,y
n
)
>
∈R
n
´*ÿŠ,A∈R
n×p
´O Ý,ω=(ω
1
,...,ω
n
)
>
∈R
n
´‘Å*ÿD
(.Šâ®•AÚy,•¦£8ëêx,˜«~^•{´^•¦›”Š•4z8I¼ê:
min
x∈R
p
||y−Ax||
2
.(2)
,,3¢SA^¥,*ÿêâyŒU• ¹Œ*ÿØ,ù«•3Œ*ÿØêâÏ~¡
DOI:10.12677/aam.2022.11129589082A^êÆ?Ð
܃Ê
•É~Š[1].•¦£8.-è5,É~Ь—•¦O(J†¢S•3ŒØ
[2],ÏdI‡•-èëêO•±¢y3ê╹É~Šœ¹eéëê?1°•O[3–5].
1982c,CookJÑþФ£.(MEAN-SHIFTMODEL[6]),T.r‘Å*ÿD(‘ω©¤ü‡
Ü©:ω= µ+e,Ù¥,µ= (µ
1
,...,µ
n
)
>
∈R
n
´ꊺÝþØ,e= (e
1
,...,e
n
)
>
∈R
n
´
ŒêŠºÝþØ.dž.(1)ÒC•:
y= Ax+µ+e,(3)
Ù¥x´–£8ëê,§‡Ay†xƒmõ‚5£8'X;•þe´É~Š£OCþ,OÝ
A¥z˜|êâÑéAe˜‡ ©þe
i
,e
i
Œ“LÉ~ŠŒ.éu.(3),•3
O£8ëêÚ?1É~ŠuÿÓž?1CþÀJ,NõïÄö•ÄéCþxÚØe–\`
0
¨v,
±e.:
min
x,e
1
2
||y−Ax−e||
2
+λ
1
kxk
0
+λ
2
kek
0
,(4)
Ù¥,kxk
0
´••þx0‰ê,=•þ¥š"ƒ‡ê.¯K(4)´˜‡š1w!NPJ¯
K[7],ØN´¦),ÏdkÆö•Ä^Ù¦¨v¼êtµ`
0
¨v.Nguyen<[8]ÚChen<[9]Ä
u•¦›”¼êÚ`
1
¨vEXe.:
min
x,e
1
2
||y−Ax−e||
2
+λ
1
||x||
1
+λ
2
||e||
1
.(5)
Katayama<[10]éxA^`
1
¨v,éeA^Adaptive-`
1
¨v,Xe.:
min
x,e
1
2
||y−Ax−e||
2
+λ
1
||x||
1
+λ
2
n
X
i=1
w
i
|e
i
|.(6)
¯K(5)!(6)¥æ^`
1
䐥`
0
‰ê•;àtµ.‘k`
1
¨v£8.q¡•Lasso£8,
Ó*£8aq,Lasso£8´˜«Ø O,§3£8[ÜL§¥Ø=Œ±é£8ëê?1Ø ,
„Œ±r˜Ø-‡Cþ£8XêØ •",l¢yCþÀJ,ù´Lasso£8`:,
§•k˜"::A^`
1
¨v•,Œ±¦.)Oþ÷vëY5,Ø÷và 5[11].
FanÚLi[11]JÑ:ÐK¼êAT¦Oþ÷và 5!DÕ5!ëY5!Oracle5Ÿ,Ù
¥Oracle5Ÿ´•¦).Oþ†Oracle)kƒÓì?©Ù.ùIOÆ.2
•@Œ.ïÄL²,AaòU]¼ê[12,13]´÷vþãûÐ5Ÿ¨v¼ê,~XSCAD[11]!
MCP[14]!Capped-`
1
[15].d,þã.¥•¦›”¼ê¬˜ŒÉ~Šé£8(JK•,
Ã{3ê⥕3É~Šžÿ°(O[16].Huber¼ê[17]Ø=3•¦›”¼
ê¤äk1w5Ÿ,…äk°•5.3•¹-—Øp‘êâ?n¥,Huber¼êÚå2•
'5[18–20],Ïd•¼-èëêO,©Ú\Huber›”¼ê,Xe.:
min
x,e
1
n
n
X
i=1
h
α
(a
T
i
x+e
i
−y
i
)+λ
1
||x||
0
+λ
2
||e||
0
,(7)
DOI:10.12677/aam.2022.11129589083A^êÆ?Ð
܃Ê
Ù¥,λ
1
>0,λ
2
>0´¨vëê,h
α
(t)´Huber¼ê:
h
α
(t) =



t
2
2
,|t|≤α
α|t|−
α
2
2
,|t|>α
, ∀t∈R.
ÄuòU]¼ê`û5Ÿ,·‚ò¯K(7)¥`
0
¨vtµ•Capped-`
1
¨v,•ıešàt
µ¯K:
min
x,e
1
n
n
X
i=1
h
α
(a
T
i
x+e
i
−y
i
)+λ
1
p
X
j=1
ϕ(x
j
)+λ
2
n
X
i=1
ϕ(e
i
),(8)
Ù¥ϕ(t)´Capped-`
1
¨v¼ê:
ϕ(t) = min{1,
|t|
v
}, v>0.
©(Xe,1!©Ûtµ¯K(8)•`5^‡,‰ÑÙ••-½:•x9e.5Ÿ;
1n!ïÄ¯K(7)†tµ¯K(8))d5;1o!,JÑtµ¯K(8)1wz•{,¿&?1
w¯K†tµ¯K(8)-½:˜—5.•ÏL¦^1wz•{¦)tµ¯K(8)JønØy.
•e©£ã{B,P
H(x,e) =
1
n
n
X
i=1
h
α
(a
T
i
x+e
i
−y
i
),
Φ
1
(x) =
p
X
j=1
ϕ(x
j
),∀x∈R
p
,Φ
2
(e) =
n
X
i=1
ϕ(e
i
),∀e∈R
n
.
2.tµ¯K(8)••-½:
!‰Ñtµ¯K(8)••-½:•x.
2.1.tµ¯K(8)••-½:
Äk·‚‰Ñ¼ê••êÚ••-½:½Â.
½Â2.1¼êf: R
n
→R3x?••Œ‡,x∈domf,d∈R
n
,e4•
f
0
(x;d) = lim
t↓0
f(x+td)−f(x)
t
(9)
•3,K¡T4•´¼êf3:x?÷••d∈R
n
••ê.
DOI:10.12677/aam.2022.11129589084A^êÆ?Ð
܃Ê
½Â2.2¡(x
∗
,e
∗
) ∈R
p+n
´tµ¯K(8)••-½:,e
H
0
(x
∗
,e
∗
;x−x
∗
,e−e
∗
)+λ
1
Φ
0
1
(x
∗
;x−x
∗
)+λ
2
Φ
0
2
(e
∗
;e−e
∗
) ≥0,∀x∈R
p
,∀e∈R
n
.(10)
Šâþã••êÚ••-½:½Â,N´±e(Ø:
(1)ef´Œ‡,Kf
0
(x;d) = h∇f(x),di.
(2)x
∗
´¼êf(x)••-½:,ef(x)3x
∗
?Œ‡,K∇f(x
∗
) = 0,?f
0
(x
∗
;d) = h∇f(x
∗
),di=
0,∀d∈R
n
.
e¡‰Ñ¯K(8)••-½:•x.
½n2.1e(x
∗
,e
∗
) ∈R
p+n
´tµ¯K(8)••-½:,K
1
n
n
P
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)[a
T
i
(x−x
∗
)+(e
i
−e
∗
i
)]+λ
1
p
P
j=1
ϕ
0
(x
∗
j
;x
j
−x
∗
j
)+λ
2
n
P
i=1
ϕ
0
(e
∗
i
;e
i
−e
∗
i
) ≥0,
∀x∈R
p
,∀e∈R
n
,
Ù¥,h
0
(t)´Huber¼êê:
h
0
α
(t) =



t,|t|<α,
sgn(t)α,|t|>α,
∀t∈R,
sgn(t)´ÎÒ¼ê:
sgn(t) =









−1,t<0,
0,t= 0,
1,t>0,
∀t∈R,
ϕ
0
(t
∗
;t−t
∗
)´Capped-`
1
¼ê3:t
∗
?'u••(t−t
∗
)••ê:
ϕ
0
(t
∗
;t−t
∗
) =















|t|
v
,t
∗
= 0,
sgn(t
∗
)(t−t
∗
)
v
,|t
∗
|∈(0,v),
min{0,
sgn(t
∗
)(t−t
∗
)
v
},|t
∗
|= v,
0,otherwise,
∀t∈R.
y².Ï•Huber¼ê´Œ‡¼ê,¤±
H
0
(x
∗
,e
∗
;x−x
∗
,e−e
∗
)=h∇
x
∗
H(x
∗
,e
∗
),x−x
∗
i+h∇
e
∗
H(x
∗
,e
∗
),e−e
∗
i
=
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
T
i
(x−x
∗
)+
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)(e
i
−e
∗
i
)
=
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)[a
T
i
(x−x
∗
)+(e
i
−e
∗
i
)].(11)
DOI:10.12677/aam.2022.11129589085A^êÆ?Ð
܃Ê
Šâ••ê½ÂÚ¼êΦ
1
(x),Φ
2
(e)Œ©5,
Φ
0
1
(x
∗
;x−x
∗
) =
p
X
j=1
ϕ
0
(x
∗
j
;x
j
−x
∗
j
),Φ
0
2
(e
∗
;e−e
∗
) =
n
X
i=1
ϕ
0
(e
∗
i
;e
i
−e
∗
i
),
Ù¥,Šâ••ê½ÂÚ
ϕ(t) = min{1,
|t|
v
}=



|t|
v
,|t|≤v,
1,|t|>v,
Œ±ϕ
0
(t,t−t
∗
)Lˆª.y..
Peng<[21–23]y²••-½:äkXeÛÜ•`5Ÿ:
Ún2.1¼êf: R
n
→R3:x
∗
∈R
n
?´ÛÜLipschitzëY…••Œ‡,K
(1)ex
∗
´¼êfÛÜ4Š:,Kx
∗
´¼êf••-½:¶
(2)x
∗
´î‚ÛÜ4Š:¿÷v˜O•5^‡,=•3x
∗
•WÚδ>0,¦
f(x) ≥f(x
∗
)+δkx−x
∗
k,∀x∈W,
…=x
∗
÷v
f
0
(x
∗
;x−x
∗
) >0,∀x∈R
n
\{x
∗
}.
ŠâÚn2.1,Ï•tµ¯K(8)8I¼ê´ÛÜLipschitzëY…••Œ‡,Ïdx
∗
´¯
K(8)ÛÜ4Š7‡^‡´x
∗
´¯K(8)••-½:.
3.e.5Ÿ9)d5
É©[21–24]éu,!‰Ñtµ¯K(8)••-½:e.5Ÿ,¿y²3˜½^‡e¯
K(7)Útµ¯K(8))d.
3.1.)e.5Ÿ
Äk½ÂXe•I8:
P
1
(x) = {j: 0 <|x
j
|<v},P
2
(x) = {j: |x
j
|≥v},P
1
(x)∪P
2
(x) = {j∈{1,...,p}: x
j
6= 0},
P
3
(e) = {i: 0 <|e
i
|<v},P
4
(e) = {i: |e
i
|≥v},P
3
(e)∪P
4
(e) = {i∈{1,...,n}: e
i
6= 0}.
½Â¼êM: R
p+n
→RXe:
M(x,e) = max
(
1
λ
1
n










n
X
i=1
h
0
α
(a
T
i
x+e
i
−y
i
)a
i










1
,
1
λ
2
n
n
X
i=1


h
0
α
(a
T
i
x+e
i
−y
i
)


)
.(12)
DOI:10.12677/aam.2022.11129589086A^êÆ?Ð
܃Ê
e¡½nL²:3˜½^‡e,tµ¯K(8)••-½:š"©þäk˜—e..
½n3.1e(x
∗
,e
∗
) ∈R
p+n
´tµ¯K(8)••-½:,…÷vM(x
∗
,e
∗
) <
1
v
,K
(i)‡o|x
∗
j
|≥v,‡o|x
∗
j
|= 0,j∈{1,...,p};
(ii)‡o|e
∗
i
|≥v,‡o|e
∗
i
|= 0,i∈{1,...,n}.
y².(x
∗
,e
∗
)∈R
p+n
(x
∗
j
6=0,∀j;e
∗
i
6=0,∀i)´tµ¯K(8)••-½:.Px
∗
=
(x
∗
1
,...,x
∗
p
)
>
,e
∗
= (e
∗
1
,...,e
∗
n
)
>
.•Iy²P
1
(x
∗
) = ∅ÚP
3
(e
∗
) = ∅.
e¡^‡y{y².bP
1
(x
∗
) 6= ∅½P
3
(e
∗
) 6= ∅.
(i)bP
1
(x
∗
) 6= ∅.d½n2.1,e= e
∗
,K
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
T
i
(x−x
∗
)+λ
1
p
X
j=1
ϕ
0
(x
∗
j
;x
j
−x
∗
j
) ≥0,∀x∈R
p
.(13)
∀i= 1,...,p,Pa
i
= (a
∗
i1
,...,a
∗
ip
)
>
,K
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
T
i
(x−x
∗
) =
1
n
n
X
i=1
p
X
j=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
ij
(x
j
−x
∗
j
).(14)
∀ε
1
∈(0,1),bx= (bx
1
,...,bx
p
)
>
∈R
p
÷v
bx
j
=



(1−ε
1
)x
∗
j
,j∈P
1
(x
∗
),
x
∗
j
,j∈P
2
(x
∗
).
duP
1
(x
∗
) 6= ∅,(bx−x
∗
)Ø´"•þ.du(13)é?¿x∈R
p
þ¤á,K
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
T
i
(bx−x
∗
)=
n
X
i=1
p
X
j=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
ij
(bx
j
−x
∗
j
)
=ε
1
n
X
i=1
X
j∈P
1
(x
∗
)
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
ij
(−x
∗
j
)
≤ε
1





n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
i





1
·
X
j∈P
1
(bx)
|x
∗
j
|.(15)
,˜•¡,
p
X
j=1
ϕ
0
(x
∗
j
;bx
j
−x
∗
j
) =
X
j∈P
1
(bx)
sgn(x
∗
j
)(−ε
1
x
∗
j
)
v
= −ε
1
X
j∈P
1
(bx)
sgn(x
∗
j
)(x
∗
j
)
v
= −
ε
1
v
X
j∈P
1
(bx)
|x
∗
j
|.(16)
DOI:10.12677/aam.2022.11129589087A^êÆ?Ð
܃Ê
d(13)-(16),
λ
1
ε
1
v
X
j∈P
1
(bx)
|x
∗
j
|≤
ε
1
n





n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
i





1
X
j∈P
1
(bx)
|x
∗
j
|,
du
P
j∈P
1
(x
∗
)
|x
∗
j
|6= 0,òÙž
1
v
≤
1
λ
1
n










n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)a
i










1
≤M(x
∗
,e
∗
),
ù†M(x
∗
,e
∗
) <
1
v
gñ,lP
1
(x
∗
) = ∅.
(ii)bP
3
(e
∗
) 6= ∅.d½n2.1,x= x
∗
,K
1
n
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)(e
i
−e
∗
i
)+λ
2
n
X
i=1
ϕ
0
(e
∗
i
;e
i
−e
∗
i
) ≥0,∀e∈R
n
.(17)
∀ε
2
∈(0,1),be= (be
1
,...,be
n
)
>
∈R
n
÷v
be
i
=



(1−ε
2
)e
∗
i
,i∈P
3
(e
∗
),
e
∗
i
,i∈P
4
(e
∗
).
duP
3
(e
∗
)š˜,(be−e
∗
)Ø´"•þ,?
n
X
i=1
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)(be
i
−e
∗
i
)=ε
2
X
i∈P
3
(e
∗
)
h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)e
∗
i
≤ε
2
X
i∈P
3
(e
∗
)
|h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)|·|e
∗
i
|.(18)
,˜•¡,
n
X
i=1
ϕ
0
(e
∗
i
;be
i
−e
∗
i
) =
X
i∈P
3
(e
∗
)
ϕ
0
(e
∗
i
;be
i
−e
∗
i
) = −
ε
2
v
X
i∈P
3
(e
∗
)
sgn(e
∗
i
)(e
∗
i
) = −
ε
2
v
X
i∈P
3
(e
∗
)
|e
∗
i
|.(19)
d(17)-(19),
λ
2
ε
2
v
X
i∈P
3
(e
∗
)
|e
∗
i
|≤
ε
2
n
X
i∈P
3
(e
∗
)
|h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)|·|e
∗
i
|≤
ε
2
n
n
X
i=1
|h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)|
X
i∈P
3
(e
∗
)
|e
∗
i
|,
1
v
≤
1
λ
2
n
n
X
i=1
|h
0
α
(a
T
i
x
∗
+e
∗
i
−y
i
)|.
du
P
i∈P
3
(e
∗
)
|e
∗
i
|6= 0,òÙž
1
v
≤M(x
∗
,e
∗
),†bgñ,P
3
(e
∗
) = ∅.y..
DOI:10.12677/aam.2022.11129589088A^êÆ?Ð
܃Ê
3.2.¯K(7)†(8))d5
e¡/Ͻn3.1ïÄ¯K(7)†tµ¯K(8)Û•`)ƒm'X.
½n3.2(x
∗
,e
∗
)∈R
p+n
÷vM(x
∗
,e
∗
)<
1
v
,K(x
∗
,e
∗
)´tµ¯K(8)Û•`)…=
(x
∗
,e
∗
)´¯K(7)Û•`).
y².(1)(x
∗
,e
∗
)∈R
p+n
´tµ¯K(8)Û•`),dÚn2.1,(x
∗
,e
∗
)´tµ¯K(8)
••-½:.d½n3.1,Φ
1
(x
∗
)=kx
∗
k
0
,Φ
2
(e
∗
)=ke
∗
k
0
.5¿,∀(x,e)∈R
p+n
,okΦ
1
(x)≤
kxk
0
,Φ
2
(e) ≤kek
0
.l,∀(x,e) ∈R
p+n
,k
H(x
∗
,e
∗
)+λ
1
kx
∗
k
0
+λ
2
ke
∗
k
0
=H(x
∗
,e
∗
)+λ
1
Φ
1
(x
∗
)+λ
2
Φ
2
(e
∗
)
≤H(x,e)+λ
1
Φ
1
(x)+λ
2
Φ
2
(e)
≤H(x,e)+λ
1
kxk
0
+λ
2
kek
0
.
Ïd,(x
∗
,e
∗
)´¯K(7)Û•`).
(2)(x
∗
,e
∗
)∈R
p+n
´¯K(7)Û•`),b§Ø´tµ¯K(8)Û•`).
(x
0
,e
0
)´tµ¯K(8)Û•`),d½n3.1,Φ(x
0
) = kx
0
k
0
,Φ(e
0
) = ke
0
k
0
.u´,
H(x
0
,e
0
)+λ
1
kx
0
k
0
+λ
2
ke
0
k
0
=H(x
0
,e
0
)+λ
1
Φ
1
(x
0
)+λ
2
Φ
2
(e
0
)
<H(x
∗
,e
∗
)+λ
1
Φ
1
(x
∗
)+λ
2
Φ
2
(e
∗
)
≤H(x
∗
,e
∗
)+λ
1
kx
∗
k
0
+λ
2
ke
∗
k
0
.
ù†(x
∗
,e
∗
)´¯K(7)Û•`)gñ,Ïd(x
∗
,e
∗
) ∈R
p+n
´tµ¯K(8)Û•`).
4.tµ¯K(8)1wz•{
duæ^šàš1wK,tµ¯K(8)´š1w`z,¦)tµ¯K(8)š~;.˜a
•{´1wz•{.1wz•{˜‡Ø%¯K´1wzcü‡.)˜—5.
!k‰Ñtµ¯K(8)1wz.,,y²1w¯K-½:†tµ¯K(8)••-½
:äk˜—5.
4.1.¯K(8)1wz.
Capped-`
1
¼ê´˜aš~;.òU]¼ê,§Œ±•ü‡à ¼ê(DC)[21,25],Ù1
wz¼êEÄuÙàL«:
ϕ(t) = min

1,
|t|
v

= 1−max

0,1−
|t|
v

= g(t)−h(|t|),(20)
DOI:10.12677/aam.2022.11129589089A^êÆ?Ð
܃Ê
Ù¥
g(t) = 1,h(|t|) = max

0,1−
|t|
v

.
Pm(t) = |t|,N´yÙ••ê•:
m
0
(t;d) =



|d|,t= 0,
t
|t|
d,t6= 0.
dug(t)´1w,·‚•Iòh(|t|)1wz.®•1w¼êEܼêE´1w,Ïd·‚Œ±©
OE¼êh(s)†S¼êm(t)1w¼ê
e
h
µ
(s)†em
µ
(t),2ò§‚EÜ, BŒëYŒ‡1w
¼ê
e
h
µ
(t) =
e
h
µ
◦em
µ
(t).
m(t)1wz:m(t)1w¼ê•:
em
µ
(t) =
p
t
2
+µ,µ>0,(21)
Ù¥µ´1wzëê.em
µ
(t)êÚ••ê©O•:
em
0
µ
(t) =
t
p
t
2
+µ
,em
0
µ
(t;d) =em
0
µ
(t)d=
td
p
t
2
+µ
.
Œ±y²1w¼êem
µ
(t)÷vXe5Ÿ[21]:
(1)(1w¼ê˜—Âñ5):
lim
w→t,µ↓0
em
µ
(w) = m(t),∀t∈R.
(2)(••ê˜—Âñ5†f˜—Âñ5):
lim
w→t,µ↓0
em
0
µ
(w;d) =lim
w→t,µ↓0
em
0
µ
(w)d= m
0
(t)d= m
0
(t,d),∀t∈R\{0},∀d∈R,
limsup
w→0,µ↓0
em
0
µ
(w;d) =limsup
w→0,µ↓0
td
p
t
2
+µ
= |d|= m
0
(0,d),∀d∈R.
h(s)1wz:éh(s) = max{0,1−
s
v
},Œ±æ^bs(z,µ) =
1
2

z+
p
z
2
+µ
2

51wzܼ
êmax{0,z}[21,26].2òz= 1−
s
v
“\bs(z,µ),h(s)1wz¼ê•
e
h
µ
(s) = bs(1−
s
v
,µ) =
1
2

1−
s
v
+
r
(1−
s
v
)
2
+µ
2

.(22)
N´y²1w¼ê
e
h
µ
(s)äkXe5Ÿ:
(1)(1w¼ê˜—Âñ5):
lim
w→s,µ↓0
e
h
µ
(w) =
1
2

1−
s
v
+|1−
s
v
|

= h(s),∀s∈R.
DOI:10.12677/aam.2022.11129589090A^êÆ?Ð
܃Ê
(2)(••ê˜—Âñ5†f˜—Âñ5):
lim
w→s,µ↓0
e
h
0
µ
(w;d) = h
0
(s,d),∀s∈R\{0},∀d∈R,
limsup
w→0,µ↓0
e
h
0
µ
(w) = h
0
+
(0).
(Ü1w¼êem
µ
(x)Ú1w¼ê
e
h
µ
(s),·‚tµ¯K(8)1wz.Xe:
min
x,e
e
F
µ
(x,e) := H(x,e)+λ
1
p+λ
2
n−λ
1
p
X
j=1
e
h
µ
◦em
µ
(x
j
)−λ
2
n
X
i=1
e
h
µ
◦em
µ
(e
i
).(23)
4.2.1w¯K(23)†tµ¯K(8)-½:˜—5
¯K(23)´1w,Ù-½:´¦∇
e
F
µ
(x,e) = 0:.
!y²1w¯K(23)-½:†tµ¯K(8)••-½:äk˜—5.
½Â•I8:
P
1
(x) = {j∈{1,...,p}: x
j
6= 0},P
2
(x) = {j∈{1,...,p}: x
j
= 0},
Q
2
(e) = {i∈{1,...,n}: e
i
6= 0},Q
2
(e) = {i∈{1,...,n}: e
i
= 0}.
½n4.13µ=µ
k
ž,(x
∗
µ
k
,e
∗
µ
k
)´1w¯K(23)-½:,K1wëêµ
k
↓0(k→∞)ž,
{(x
∗
µ
k
,e
∗
µ
k
)}
∞
k=1
?¿à:Ñ´tµ¯K(8)••-½:.
y².(x
∗
,e
∗
)•:{(x
∗
µ
k
,e
∗
µ
k
)}
∞
k=1
˜‡à:,Ø”
lim
k→∞
x
∗
µ
k
= x
∗
,lim
k→∞
e
∗
µ
k
= e
∗
.
Ï•(x
∗
µ
k
,e
∗
µ
k
)´1w¯K(23)-½:,∇
e
F
µ
(x
∗
µ
k
,e
∗
µ
k
) = 0.K∀d
(1)
∈R
p
,∀d
(2)
∈R
n
,k
0=
e
F
0
µ
(x
∗
µ
k
,e
∗
µ
k
;d
(1)
,d
(2)
) = h∇
e
F
0
µ
(x
∗
µ
k
,e
∗
µ
k
),d
(1)
,d
(2)
i
=h∇H(x
∗
µ
k
,e
∗
µ
k
),d
(1)
,d
(2)
i−λ
1
p
X
j=1
e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
2
n
X
i=1
e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
=h∇H(x
∗
µ
k
,e
∗
µ
k
),d
(1)
,d
(2)
i−λ
1


X
j∈P
1
(x
∗
)
+
X
j∈P
2
(x
∗
)


e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
2


X
j∈Q
1
(e
∗
)
+
X
j∈Q
2
(e
∗
)


e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
.(24)
DOI:10.12677/aam.2022.11129589091A^êÆ?Ð
܃Ê
Šâ1w¼êem
µ
(x)Ú
e
h
µ
(t)5Ÿ,éª(24)ü>4•(k→∞),K∀d
(1)
∈R
p
,∀d
(2)
∈R
n
,k
0=lim
k→∞
e
F
0
µ
(x
∗
µ
k
,e
∗
µ
k
;d
(1)
,d
(2)
)
=lim
k→∞
h∇H(x
∗
µ
k
,e
∗
µ
k
),d
(1)
,d
(2)
i−λ
1
X
j∈P
1
(x
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
1
X
j∈P
2
(x
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
2
X
i∈Q
1
(e
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
−λ
2
X
i∈Q
2
(e
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
≤lim
k→∞
h∇H(x
∗
µ
k
,e
∗
µ
k
),d
(1)
,d
(2)
i−λ
1
X
j∈P
1
(x
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
1
X
j∈P
2
(x
∗
)
limsup
k→∞
e
h
0
µ
◦em
µ
(x
∗
µ
k
(j)
)·limsup
k→∞
em
0
µ
(x
∗
µ
k
(j)
)d
(1)
j
−λ
2
X
i∈Q
1
(e
∗
)
lim
k→∞
e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
−λ
2
X
i∈Q
2
(e
∗
)
limsup
k→∞
e
h
0
µ
◦em
µ
(e
∗
µ
k
(i)
)·limsup
k→∞
em
0
µ
(e
∗
µ
k
(i)
)d
(2)
i
=h∇H(x
∗
,e
∗
),d
(1)
,d
(2)
i−λ
1
p
X
j=1
h
0
◦m(x
∗
j
)m
0
(x
∗
j
)d
(1)
j
−λ
2
n
X
i=1
h
0
◦m(e
∗
i
)m
0
(e
∗
i
)d
(2)
i
=h∇H(x
∗
,e
∗
),d
(1)
,d
(2)
i−λ
1
p
X
j=1
h
0
(m(x
∗
j
))m
0
(x
∗
j
;d
(1)
j
)−λ
2
n
X
i=1
h
0
(m(e
∗
i
))m
0
(e
∗
i
;d
(2)
i
)
=h∇H(x
∗
,e
∗
),d
(1)
,d
(2)
i+λ
1
p
X
j=1
[g
0
(m(x
∗
j
))−h
0
(m(x
∗
j
))]m
0
(x
∗
j
;d
(1)
j
)
+λ
2
n
X
i=1
[g
0
(m(e
∗
i
))−h
0
(m(e
∗
i
))]m
0
(e
∗
i
;d
(2)
i
)
=H
0
(x
∗
,e
∗
;d
(1)
,d
(2)
)+λ
1
p
X
j=1
ϕ
0
(x
∗
j
;d
(1)
j
)+λ
2
n
X
i=1
ϕ
0
(e
∗
i
;d
(2)
i
)
=H
0
(x
∗
,e
∗
;d
(1)
,d
(2)
)+λ
1
Φ
0
1
(x
∗
;d
(1)
)+λ
2
Φ
0
2
(e
∗
;d
(2)
).
Ïd,(x
∗
,e
∗
)´tµ¯K(8)••-½:.
5.o(
Äuõ‚ 5£8.!Huber›”¼êÚþФ£.,©éäk`
0
¨v¯K.(7),
^Capped-`
1
¨v?1tµtµ¯K(8),½Âtµ¯K(8)••-½:,©Ûtµ¯
K(8)••-½:e.5Ÿ,¿&?¯K(7)Útµ¯K(8))d5,•¦)tµ¯K(8),
Etµ.1wz%C¯K,¿y²1wz¯K-½:†tµ.••-½:äk˜—
5,•Y¦^1w•{OŽ.••-½:JønØæ.e˜ÚòÏLꊢÚŽ~?
DOI:10.12677/aam.2022.11129589092A^êÆ?Ð
܃Ê
˜ÚuŽ{¢SJ.
Ä7‘8
I[g,‰ÆÄ7‘8(11861020,12261020)§B²Žpg3Æ<âM#M’J`]Ï-
:‘8([2018]03)§B²Ž‰EOy‘8(ZK[2021]009,[2018]5781)§B²Ž“c‰E<⤕‘
8([2018]121)"
ë•©z
[1]Papageorgiou,G.,Bouboulis,P.andTheodoridis,S.(2015)RobustLinearRegression
Analysis—AGreedyApproach.IEEETransactionsonSignalProcessing,63,3872-3887.
https://doi.org/10.1109/TSP.2015.2430840
[2]Huber, P. (1972)The 1972Wald LectureRobust Statistics:A Review.AnnalsofMathematical
Statistics,43,1041-1067.https://doi.org/10.1214/aoms/1177692459
[3]Rousseeuw,P.andLeroy,A.(1987)RobustRegressionandOutlierDetection.Wiley,New
York,NY.https://doi.org/10.1002/0471725382
[4]Maronna, R.,Martin,R.and Yohai,V.(2006) Robust Statistics:Theory andMethods. Wiley,
NewYork,NY.
[5]Huber,P.(1981)RobustStatistics.Wiley,NewYork,NY.
[6]Cook,R.andWeisberg,S.(1982)ResidualsandInfluenceinRegression.ChapmanandHall,
NewYork,NY.
[7]Natarajan,B.(1995)SparseApproximateSolutionstoLinearSystems.SIAMJournalon
Computing,24,227-234.https://doi.org/10.1137/S0097539792240406
[8]Nguyen,N.andTran,T.(2013)RobustLassowithMissingandGrosslyCorruptedObserva-
tions.IEEETransactionsonInformationTheory,59,2036-2058.
https://doi.org/10.1109/TIT.2012.2232347
[9]Chen, J.and Liu,Y.(2019) StableRecovery ofStructuredSignals fromCorrupted Subgaussian
Measurements.IEEETransactionsonInformationTheory,65,2976-2994.
https://doi.org/10.1109/TIT.2018.2890194
[10]Katayama, S. and Fujisawa, H. (2017) Sparse and Robust Linear Regression:An Optimization
AlgorithmandItsStatisticalProperties.StatisticaSinica,27,1243-1264.
https://doi.org/10.5705/ss.202015.0179
[11]Fan,J.andLi,Y.(2001)VariableSelectionviaNonconcavePenalizedLikelihoodandIts
OracleProperties.JournaloftheAmericanStatisticalAssociation,96,1348-1360.
https://doi.org/10.1198/016214501753382273
DOI:10.12677/aam.2022.11129589093A^êÆ?Ð
܃Ê
[12]Ong,C.andAn,L.(2013)LearningSparseClassifierswithDifferenceofConvexFunctions
Algorithms.OptimizationMethodsandSoftware,28,830-854.
https://doi.org/10.1080/10556788.2011.652630
[13]Peleg, D. and Meir,R.(2008) A BilinearFormulation for Vector Sparsity Optimization. Signal
Processing,88,375-389.https://doi.org/10.1016/j.sigpro.2007.08.015
[14]Zhang, C. (2010)Nearly Unbiased Variable Selectionunder Minimax ConcavePenalty. Annals
ofStatistics,38,894-942.https://doi.org/10.1214/09-AOS729
[15]Zhang,T.(2010)AnalysisofMulti-StageConvexRelaxationforSparseRegularization.Journal
ofMachineLearningResearch,11,1081-1107.
[16]Cand´es,E.,Romberg,J.andTao,T.(2006)RobustUncertaintyPrinciples:ExactSignal
ReconstructionfromHighlyIncompleteFrequencyInformation.IEEETransactionsonInfor-
mationTheory,52,489-509.https://doi.org/10.1109/TIT.2005.862083
[17]Huber,P.(1964)RobustEstimationofaLocationParameter.AnnalsofMathematicalStatis-
tics,35,73-101.https://doi.org/10.1214/aoms/1177703732
[18]Fan,J.,Li,Q.andWang,Y.(2017)EstimationofHighDimensionalMeanRegressioninthe
Absence of SymmetryandLight TailAssumptions.JournalofRoyalStatisticalSociety,Series
B,79,247-265.https://doi.org/10.1111/rssb.12166
[19]Yi,C.andHuang,J.(2017)SemismoothNewtonCoordinateDescentAlgorithmforElastic-
NetPenalized HuberLoss RegressionandQuantileRegression. JournalofComputationaland
GraphicalStatistics,26,547-557.https://doi.org/10.1080/10618600.2016.1256816
[20]Sun,Q.,Zhou,W.andFan,J.(2020)AdaptiveHuberRegression.JournaloftheAmerican
StatisticalAssociation,115,254-265.https://doi.org/10.1080/01621459.2018.1543124
[21]Peng, D.andChen,X. (2020) ComputationofSecond-OrderDirectionalStationaryPointsfor
GroupSparseOptimization.OptimizationMethodsandSoftware,35,348-376.
https://doi.org/10.1080/10556788.2019.1684492
[22]Zhang,X.andPeng,D.(2022)SolvingConstrainedNonsmoothGroupSparseOptimization
viaGroupCapped-L1Relaxation andGroupSmoothingProximalGradientAlgorithm.Com-
putationalOptimizationandApplications,83,801-844.
https://doi.org/10.1007/s10589-022-00419-2
[23]$½7,/l,Üu.|DÕ`z¯K°(ëYCapped-L1tµ[J].êÆÆ,2022,65(2):
243-262.
[24]Û¯,$½7,Üu.ÄuMCPK•˜¦£8¯KïÄ[J].XډƆêÆ,2021,
41(8):2327-2337.
[25]Ahn, M.,Pang, J.andJack, X.(2017)Difference-of-ConvexLearning:DirectionalStationarity,
Optimality,andSparsity.SIAMJournalonOptimization,27,1637-1665.
https://doi.org/10.1137/16M1084754
DOI:10.12677/aam.2022.11129589094A^êÆ?Ð
܃Ê
[26]Chen,X.,Niu,L.andYuan,Y.(2013)OptimalityConditionsandaSmoothingTrustRegion
NewtonMethodforNon-LipschitzOptimization.SIAMJournalonOptimization,23,1528-
1552.https://doi.org/10.1137/120871390
DOI:10.12677/aam.2022.11129589095A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.