Hans Journal of Biomedicine
Vol. 11  No. 04 ( 2021 ), Article ID: 45862 , 8 pages
10.12677/HJBM.2021.114029

虫草素免疫调节功能及分子机制研究进展

金明昌1,黄炜乾2,赵颖1,唐谢芳1

1广东容大生物股份有限公司,广东 清远

2清远一生自然生物研究院有限公司,广东 清远

收稿日期:2021年9月11日;录用日期:2021年10月15日;发布日期:2021年10月20日

摘要

虫草素(Cordycepin)为虫草所特有的一种生物活性物质。虫草素具有多种生理药理作用,如免疫调节、抗病毒、抗氧化、降血脂、抗炎、抗癌、抗菌和降血糖等。本文综述了虫草素对机体固有免疫、适应性免疫调节及分子机制的研究进展。

关键词

虫草素,固有免疫,适应性免疫,免疫调节

Research Advances in Immunomodulatory Function and Molecular Mechanism of Cordycepin

Mingchang Jin1, Weiqian Huang2, Ying Zhao1, Xiefang Tang1

1Guangdong Rongda Biological Co., Ltd., Qingyuan Guangdong

2Qingyuan Yisheng Natural Biology Research Institute Co., Ltd., Qingyuan Guangdong

Received: Sep. 11th, 2021; accepted: Oct. 15th, 2021; published: Oct. 20th, 2021

ABSTRACT

Cordycepin is a unique bioactive substance of the genus Cordyceps. Cordycepin exhibits a variety of physiological and pharmacological effects including immunomodulatory, antiviral, antioxidant, hypolipidemic, anti-inflammatory, anti-cancer, antibacterial and hypoglycemic, and so on. This review describes the research advances in innate immunity, adaptive immunity and the molecular mechanism of cordycepin.

Keywords:Cordycepin, Innate Immunity, Adaptive Immunity, Immunomodulatory

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

虫草素(Cordycepin)又名虫草菌素,为虫草属如冬虫夏草(Cordyceps sinensis)、蛹虫草(Cordyceps militaris)、蝉虫草(Cordyceps cicadicola)、霍克斯虫草(Cordyceps hawkes)等所特有的生物活性物质(Hawley等,2020) [1],最早由英国Glasgow大学学者Cunningham等于1950年从蛹虫草(C. militaris)培养液中分离出来(Cunningham等,1950) [2],其化学特征为3'-脱氧腺苷[9-(3-脱氧-β-D-呋喃核糖基)腺嘌呤。虫草素的分子式为C10H13N5O3,分子量251.24 Da,碱性,针状或片状晶体,熔点228℃~231℃,最大吸收波长259.0 nm (Bentley等,1951) [3]。虫草素的结构由嘌呤(腺嘌呤)核苷分子通过β-N9糖苷键连接到核糖糖(核糖呋喃糖)部分组成。实际上,它是一种腺苷类似物,与核苷腺苷不同的是,其核糖部分的3'位置缺乏羟基(Tuli等,2013) [4] (图1)。

Figure 1. The chemical structure of cordycepin and adenosine

图1. 虫草素和腺苷的化学结构式

据报道,虫草素具有多种生理药理作用,如免疫调节、抗病毒、抗氧化、降血脂、抗炎、抗癌、抗菌和降血糖等(Ashraf等,2020) [5]。本文综述了近年来虫草素调节机体免疫功能及分子机制的研究进展,旨在为虫草素在治疗免疫相关疾病的广泛应用提供科学依据。

2. 虫草素对免疫功能的调节

2.1. 虫草素对固有免疫的调节

单核细胞是血液中最大的血细胞,也是体积最大的白细胞,是机体防御系统的一个重要组成部分。单核细胞是巨噬细胞和树突状细胞的前身,参与免疫反应,在吞噬抗原后将所携带的抗原决定簇转交给淋巴细胞,诱导淋巴细胞的特异性免疫性反应(龚非力,2000) [6]。体外研究表明,虫草素对单核细胞的功能有较强的调节作用。Zhou等(2002) [7] 用人外周血单个核细胞(PBMCs)研究表明,虫草素以剂量依赖方式在体外强烈刺激IL-10的产生和IL-10 mRNA的表达,并抑制植物血凝素(PHA)诱导的IL-2的产生,从而改变IL-10/IL-2比值。另外,虫草素还明显抑制PBMCs的增殖。进一步研究发现,虫草素以剂量依赖的方式上调PBMCs细胞系THP-1中IL-10、IL-1β、IL-6、IL-8和TNF-α的分泌和表达;抑制PHA诱导的IL-2、IL-4、IL-5、IFN-γ和IL-12的产生(Zhou等,2008) [8]。

巨噬细胞来源于单核细胞,巨噬细胞通过分泌的一氧化氮(NO)和细胞因子参与机体免疫调节作用(Daemen, 1992) [9];在疾病病变的吞噬过程中发挥重要作用并根据其极化作用,充当抗炎和促炎细胞(Biswas等,2010) [10]。许多研究表明,虫草素能够调节巨噬细胞的分化和细胞因子的分泌。Kim等(2006) [11] 报道,虫草素能抑制LPS诱导的RAW264.7巨噬细胞诱导型一氧化氮合成酶(iNOS)的表达,并以剂量依赖性方式减少NOS的产生;显著降低细胞中iNOS、环氧合酶-2 (COX-2)和TNF-α的表达。Shin等(2009) [12] 研究也表明,经虫草素处理LPS诱导的RAW264.7巨噬细胞中TNF-α、IL-6、IL-1β、iNOS和COX-2的表达以剂量依赖的方式显著降低。此外,虫草素还降低LPS诱导的RAW264.7细胞中共刺激分子B7-1/-2和ICAM-1的表达。Shin等(2009) [13] 研究还发现,虫草素可减少LPS诱导的RAW264.7巨噬细胞中M1细胞因子(如IL-1β和TNF-α)的分泌,以及M1趋化因子及其受体(如CX3CR1、CX3CL1和RANTES)的表达,增加M2细胞因子如IL-1ra、IL-10和TGF-β的表达。说明虫草素能诱导巨噬细胞分化为M2巨噬细胞。李旎等(2017) [14] 研究报道,1~30 μg/ml虫草素处理LPS诱导的RAW264.7细胞后,TNF-α,IL-6和IL-12的分泌显著减少。Park等(2021) [15] 研究表明,虫草素处理LPS刺激的RAW 264.7巨噬细胞,虫草素剂量依赖性地抑制巨噬细胞的M1极化,但激活M2极化;显著抑制TNF-α和IL-1β水平;呈剂量依赖性激活巨噬细胞吞噬功能;增强DC、Treg细胞和NKTL细胞的分化。

小胶质细胞是存在于脑组织中的一种巨噬细胞,有助于宿主防御和中枢神经系统的组织修复。异常免疫反应可能导致严重的神经退行性疾病,如阿尔茨海默病、帕金森病、多发性硬化症、创伤和脑缺血(Sacks等,2018) [16]。Jeong等(2010) [17] 用虫草素处理LPS诱导的BV2小胶质细胞,结果表明,BV2小胶质细胞中NO、iNOS、PGE2、COX-2、TNF-α和IL-1β的表达均显著降低。

2.2. 虫草素对适应性免疫的调节

2.2.1. 虫草素对细胞免疫的调节

许多研究表明,虫草素对淋巴细胞的增殖、分化和细胞因子的分泌具有重要的调节作用。Zhou等(2002) [7] 报道,虫草素(24 μg/ml)能够显著抑制PHA刺激的T淋巴细胞表面标志物CD25、CD45RO、CD54、CD71和HLA-DR抗原的表达。De等(2004) [18] 研究发现,成熟树突状细胞(DCs)在虫草素作用下能诱导和促进调节性T细胞(Treg)的增殖和分化。丁晨光等(2012) [19] 试验表明,虫草素(80 μg/ml)能抑制T淋巴细胞的增殖,促进CD4+T细胞向CD4+、CD25+、FoxP3+、Treg分化,但阻止CD4+T细胞向Th17分化;降低IL-2、TNF-α、IFN-γ的产生,促进CD4+T细胞分泌I-10和TGF-β。Jeong等(2012) [20] 用LPS刺激的小鼠脾细胞辅助T淋巴细胞研究发现,5 μg/ml虫草素暴露于小鼠脾细胞72小时,Thl细胞因子IL-12增加2.9倍;Th2细胞因子IL-4和IL-10分别增加1.9倍和1.8倍。Xiong等(2013) [21] 体外实验结果表明,虫草素能显著抑制刀豆球蛋白A (ConA)诱导的脾细胞增殖、降低Th1和Th2细胞因子的产生以及CD4+T细胞与CD8+T细胞的比率。Seo等(2013) [22] 研究表明,在LPS刺激的小鼠脾细胞中,虫草素以时间依赖性方式显著降低炎性细胞因子TNF-α、1L-6和IL-17A的表达。张玉环等(2009) [23] 采用体外培养小鼠淋巴细胞,结果表明,虫草素在50 μg/ml,48 h时能显著促进淋巴细胞增殖和ITF-γ的分泌,但250 μg/ml时反而抑制其分泌;增加淋巴细胞中CD4+CD25+的表达,使CD4+CD25+调节T细胞增多。说明虫草素对免疫调节作用可能与浓度有关。熊瑛等(2013) [24] 研究表明,虫草素显著抑制ConA诱导的BALB/c小鼠脾淋巴细胞增殖、Th1和Th2细胞因子的产生、CD4+T细胞群和CD4+/CD8+比率。

2.2.2. 虫草素对体液免疫的调节

Yang等(2015) [25] 用卵清蛋白(Ova)诱导的小鼠哮喘模型研究表明,虫草素治疗导致小鼠血清IgE呈剂量依赖性降低。Xia等(2017) [26] 在慢性哮喘大鼠模型的气道重塑研究中也得到了类似的结果,即虫草素降低免疫球蛋白IgE的量。

2.3. 虫草素对免疫器官的调节

众所周知,脾脏和胸腺是重要的免疫器官。脾脏和胸腺指数的变化,能够反映机体免疫功能的状态(胡琳等,2018) [27]。尤其在炎症动物模型中,脾脏指数和胸腺指数作为衡量脾脏和胸腺增大的指标,对免疫系统的诊断和管理具有重要价值(Gao等,2013;Tao等,2015;Yong等,2015) [28] [29] [30]。Wang等(2020) [31] 用CFA (完全弗氏佐剂)致炎小鼠模型研究表明,虫草素抑制CFA小鼠脾脏和胸腺肿胀,显著降低脾脏和胸腺指数,减轻小鼠足爪水肿和T细胞浸润。提示这些免疫器官在炎症诱导中起重要作用。

3. 虫草素调节免疫的分子机制

脾脏和胸腺是T细胞免疫应答的主要器官(Artyomov等(2010) [32],而T细胞的活化和增殖需要持续的TCR (T cell receptor,T细胞受体)信号(Famili等,2017) [33]。TCR信号级联由一系列分子,如LCK、ZAP70、LAT和PLCc1构成(Brownlie等,2013) [34]。当TCR信号被刺激时,三条下游信号通路,包括NFAT (nuclear factor of activated T cells,活化T细胞核因子)、MAPK (mitogen-activated protein kinase,丝裂原活化蛋白激酶)和NF-κB (nuclear factor kappa-B,核因子κB)信号通路被激活,进而导致T细胞活化、增殖和/或细胞因子如IL-2、TNF-α和IFN-γ等的产生(Rao等,1997;Iniguez等,2000;Acuto等,2008) [35] [36] [37]。

3.1. 调节NFAT信号通路

NFAT是一类具有多向调节功能的转录因子家族,参与T细胞活化和细胞因子的产生,在免疫反应中对诱导基因转录起重要作用(Peng等,2001) [38]。NFAT可单独或与细胞核中的转录因子激活蛋白1结合到DNA,并调节细胞因子和酶基因的转录,如编码IL-2、IL-4、TNF-α和COX-2的基因(Shaw等,1988;Gregorio等,2001;Macian等,2001) [39] [40] [41]。

Xiong等(2013) [21] 用ConA诱导的BALB/c小鼠脾淋巴细胞,研究了虫草素抑制T细胞活化的信号转导机制。结果表明,虫草素能显著抑制ConA诱导的脾细胞增殖、Th1和Th2细胞因子的产生以及CD4+T细胞与CD8+T细胞的比值。进一步用Western blotting测定NFAT2蛋白结果显示,虫草素明显抑制ConA处理后小鼠T淋巴细胞NFAT2的活性。说明虫草素抑制了小鼠T细胞的免疫活性,其机制是虫草素通过减少了NFAT激活所致。Wang等(2020) [31] 通过建立CFA致炎小鼠模型,研究了虫草素对T细胞免疫调节的分子机制。结果表明,虫草素以剂量依赖的方式抑制ZAP70磷酸化,降低PLCc1的磷酸化水平和减弱p85的表达。同时,p85表达的降低进一步减弱了TCR信号,导致NFAT1核易位的阻断,最终导致T细胞活化和增殖的减少。说明虫草素通过阻断NFAT1核易位,调节T细胞的免疫能力。

3.2. 调节MAPK信号通路

MAPK是信号从细胞表明传导到细胞核内部的重要传递者,是一个高度保守的真核信号转导酶家族,主要包括3个亚族:JNK、ERK和p38 (Alexey等,1999) [42]。这些蛋白激酶通过特异性抗原与TCR结合时被激活,对T细胞成熟、增殖、分化和功能的发挥起到重要作用(Rincon等,1998;2001) [43] [44]。

许多研究表明,虫草素通过调节JNK、ERK和p38信号通路,对机体免疫功能产生调节作用。Jeong等(2010) [17] 用LPS刺激的小鼠BV2小胶质细胞研究发现,虫草素呈浓度依赖性显著抑制NO、PGE2和促炎细胞因子的过量产生。其机制是在MAPK信号通路中,虫草素抑制LPS诱导的BV2小胶质细胞中Erk1/2的磷酸化所致。Wang等(2020) [31] 用致炎小鼠模型研究也表明,虫草素抑制T细胞Erk1/2的磷酸化。Choi等(2014) [45] 用LPS刺激的RAW 264.7巨噬细胞研究发现,虫草素抑制ERK和JNK的磷酸化。

Kim等(2006) [11] 报道,虫草素以浓度依赖性方式,降低LPS刺激RAW264.7小鼠巨噬细胞中p38的磷酸化水平。Yang等(2015) [25] 研究表明,虫草素可阻断Ova刺激的p38信号转导,从而显著抑制Ova诱导的肺组织炎症介质的表达。Xia等(2017) [26] 用大鼠慢性哮喘模型研究表明,虫草素通过抑制p38信号通路,降低TGF-β1水平和抑制Th2细胞因子的产生,从而能够抑制慢性哮喘大鼠模型的气道重塑。Hsiao等(2018) [46] 研究了虫草素对LPS刺激的猪肺泡巨噬细胞(PAM)免疫调节作用。结果表明,虫草素以剂量依赖的方式显著降低LPS刺激的NO的生成和COX-2蛋白的表达水平,使LPS诱导的p38磷酸化受损,从而减少促炎细胞因子(TNF-α、IL-1β和IL-6)的分泌。

Wang等(2020) [31] 建立CFA致炎小鼠模型,研究了虫草素对T细胞免疫调节的分子机制。结果表明,虫草素预处理Jurkat细胞后p85蛋白水平下降,虫草素阻断TCR下游分子Erk磷酸化。进一步研究发现虫草素抑制T细胞增殖,减少IL-2的产生,诱导T细胞凋亡。

3.3. 调节NF-κB信号通路

NF-κB是B细胞核中κ轻链表达的转录因子家族(Sen等,1986) [47]。该家族由五个相关转录因子(p50、p52、p65、c-Rel和RelB)组成(Piette等,1987) [48],它们可以形成同源和异源二聚体(Hayden等,2011) [49]。NF-κB可以选择性的结合在B细胞κ-轻链增强子上调控许多基因的表达。NF-κB信号通路在细胞的免疫应答、炎症反应和凋亡过程中起到关键作用(Vallabhapurapu等,2009) [50]。在NF-κB信号通路中,最重要的NF-κB二聚体由p65和p50形成。在大多数细胞中,非活性NF-κB主要与IκB蛋白的一个成员IκBα形成复合体存在于细胞质中 [49]。NF-κB信号通路是由细胞外的刺激引起的。当细胞外信号因子如TNF-α、IL-1、LPS或CD40L与细胞膜上的受体结合,开启了一连串下游的反应。受体蛋白接受刺激后先活化IκB激酶(IKK)。IKK将细胞内NF-κB∙IκB复合物的IκB亚基调节位点的丝氨酸磷酸化,使得IκB亚基被泛素化修饰,进而被蛋白酶降解,从而释放NF-κB二聚体。自由的NF-κB进入细胞核,调节靶基因表达(Hayden等,2012) [51]。IKK复合物由两种催化活性激酶IKKα和IKKβ以及一种调节性支架蛋白IKKγ组成 [49]。

研究表明,虫草素通过抑制NF-κB的活化,来抑制某些促炎细胞因子的表达如IL-1β [12] [17] [52]、IL-6 [12] [52]、IL-10 [52]、TNF-α [12] [17] [52] )及共刺激分子ICAM-1 [12]。文献 [11] [12] [21] [25] [45] [52] - [57] 从不同角度阐述了虫草素抑制NF-κB信号通路的分子机制。即虫草素通过抑制IKKγ的泛素化,从而抑制IKKα和IKKβ的活性。IKKα和IKKβ活性的降低阻断了IκBα的磷酸化,进而抑制IκBα的降解。IκBα降解的抑制导致NF-κB活化受到抑制,导致由NF-κB转录的靶基因减少,从而减少了引起炎症的细胞因子产生。另外,Choi等(2014) [45] 用LPS刺激的RAW 264.7巨噬细胞研究还发现,虫草素通过阻断NF-κB/p65蛋白向细胞核的移位来抑制NF-κB活化。

4. 结语

虫草素是虫草属中所特有的生物活性物质,在机体固有免疫;适应性免疫调节中发挥重要作用。虫草素通过靶向T细胞表面的TCR,引发TCR信号级联的一系列反应,通过激活NFAT、MAPK和NF-κB三条下游信号通路,进而导致T细胞活化、增殖和/或细胞因子的产生,起到免疫调节作用。虫草素作为免疫调节剂在治疗免疫性疾病如炎症、肿瘤、哮喘等具有潜在的应用前景。目前关于虫草素调节免疫功能的机制研究主要局限于动物模型和体外试验,未来需要进一步加强临床试验研究,为虫草素的临床应用提供更科学的依据。

文章引用

金明昌,黄炜乾,赵 颖,唐谢芳. 虫草素免疫调节功能及分子机制研究进展
Research Advances in Immunomodulatory Function and Molecular Mechanism of Cordycepin[J]. 生物医学, 2021, 11(04): 227-234. https://doi.org/10.12677/HJBM.2021.114029

参考文献

  1. 1. Hawley, S.A., Ross, F.A., Russell, F.M., et al. (2020) Mechanism of Activation of AMPK by Cordycepin. Cell Chemical Biology, 27, 214-222. https://doi.org/10.1016/j.chembiol.2020.01.004

  2. 2. Cunningham, K.G., Manson, W., Spring, F.S., et al. (1950) Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949. https://doi.org/10.1038/166949a0

  3. 3. Bentley, H.R., Cunningham, K.G., and Spring, F.S. (1951) Cordycepin, a Metabolic Product from Cultures of Cordyceps militaris (Linn.) Link. Part II. The Structure of Cordycepin. Journal of the Chemical Society, 509, 2301-2305. https://doi.org/10.1039/jr9510002301

  4. 4. Tuli, H.S., Sharma, A.K., Sandhu, S.S., et al. (2013) Cordycepin: A Bioactive Metabolite with Therapeutic Potential. Life Sciences, 93, 863-869. https://doi.org/10.1016/j.lfs.2013.09.030

  5. 5. Ashraf, S.A., Elkhalifa, A., Siddiqui, A., et al. (2020) Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential. Molecules, 25, Article No. 2735. https://doi.org/10.3390/molecules25122735

  6. 6. 龚非力. 医学免疫学[M]. 北京: 科学出版社, 2000: 177-178.

  7. 7. Zhou, X.X., Meyer, C.U., Schmidtke, P., et al. (2002) Effect of Cordycepin on Interleukin-10 Production of Human Peripheml Blood Monuclear Cell. European Journal of Pharmacology, 453, 309-317. https://doi.org/10.1016/S0014-2999(02)02359-2

  8. 8. Zhou, X.X., Luo, P.L., Dressel, W., et al. (2008) Cordycepin Is an Immunoregulatory Active Ingredient of Cordyceps sinensis. The American Journal of Chinese Medicine, 36, 967-980. https://doi.org/10.1142/S0192415X08006387

  9. 9. Daemen, T., Regts, J., Morselt, H., et al. (1992) The Effect of Liver Macrophages on in Vitro Cytolytic Activity of 5FU and FUdR on Colon Carcinoma Cells: Evidence of Macrophage Activation. International Journal of Immunopharmacology, 14, 857-864. https://doi.org/10.1016/0192-0561(92)90084-X

  10. 10. Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896. https://doi.org/10.1038/ni.1937

  11. 11. Kim, H.G., Shrestha, B., Lim, S.Y., et al. (2006) Cordycepin Inhibits Lipopolysaccharide-Induced Inflammation by the Suppression of NF-kappaB through Akt and p38 Inhibition in RAW 264.7 Macrophage Cells. European Journal of Pharmacology, 545, 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047

  12. 12. Shin, S., Lee, S., Kwon, J., et al. (2009) Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-Induced Inflammation in Macrophages. Immune Network, 9, 98-105. https://doi.org/10.4110/in.2009.9.3.98

  13. 13. Shin, S., Moon, S., Park, Y., et al. (2009) Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-Inflammatory Cytokines. Immune Network, 9, 255-264. https://doi.org/10.4110/in.2009.9.6.255

  14. 14. 李旎, 刘玮, 赵兰华, 等. 虫草素诱导巨噬细胞表达血红素氧合酶-1负向调控细胞因子分泌[J]. 实用医学杂志, 2017, 33(8): 64-68.

  15. 15. Park, Y., Choi, S., Kim, B., et al. (2021) Effects of Cordyceps militaris Extracts on Macrophage as Immune Conductors. Applied Sciences, 11, Article No. 2206. https://doi.org/10.3390/app11052206

  16. 16. Sacks, D., Sacks, D., Baxter, B., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. International Journal of Stroke, 13, 612-632.

  17. 17. Jeong, J.W., Jin, C.Y., Kim, G.Y., et al. (2010) Anti-Inflammatory Effects of Cordycepin via Suppression of Inflammatory Mediators in BV2 Microglial Cells. International Immunopharmacology, 10, 1580-1586. https://doi.org/10.1016/j.intimp.2010.09.011

  18. 18. De Jong, E.L., Smith, H.H., Van, C.T., et al. (2004) Cordycepin or Cholera Toxin B Prime for Mature Dentritic Cells That Drive Development of Regulatory T Cells. 8th International Symposium on Dentritic Cells, Brugge, 17-21 October 2004, 17-21.

  19. 19. 丁晨光, 田普训, 薛武军, 等. 虫草素在体外抑制T淋巴细胞增殖和向Th17分化[C]//2012中国器官移植大会论文集. 厦门: 中华医学会, 2012: 383-384.

  20. 20. Jeong, M.H., Seo, M.J., Park, J.U., et al. (2012) Effect of Cordycepin Purified from Cordyceps militaris on Thl and Th2 Cytokines in Mouse Splenocytes. Journal of Microbiology and Biotechnology, 22, 1161-1164. https://doi.org/10.4014/jmb.1203.03039

  21. 21. Xiong, Y., Zhang, S., Xu, L., et al. (2013) Suppression of T-Cell Activation in Vitro and in Vivo by Cordycepin from Cordyceps militaris. The Journal Of Surgical Research, 185, 912-922. https://doi.org/10.1016/j.jss.2013.06.057

  22. 22. Seo, M.J., Kim, M.J., Lee, H.H., et al. (2013) Effect of Cordycepin on the Expression of the Inflammatory Cytokines TNF-alpha, IL-6, and IL-17A in C57BL/6 Mice. Journal of Microbiology and Biotechnology, 23, 156-160. https://doi.org/10.4014/jmb.1211.11032

  23. 23. 张玉环, 陈宏, 王福军. 虫草素对小鼠脾淋巴细胞调节作用的研究[C]//第四届中国中西医结合变态反应学术会议论文汇编. 西安: 中国中西医结合学会, 2009: 133-137.

  24. 24. 熊瑛, 邓旭明. 虫草素对小鼠T细胞免疫活性的体内外研究[C]//中国畜牧兽医学会兽医药理毒理学分会第十二次学术讨论会. 郑州: 中国畜牧兽医学会, 2013: 128.

  25. 25. Yang, X.F., Li, Y.X., He, Y.H., et al. (2015) Cordycepin Alleviates Airway Hyperreactivity in a Murine Model of Asthma by Attenuating the Inflammatory Process. International Immunopharmacology, 26, 401-408. https://doi.org/10.1016/j.intimp.2015.04.017

  26. 26. Fei, X., Zhang, G.-Q., et al. (2017) Cordycepin Inhibits Airway Remodeling in a Rat Model of Chronic Asthma. Biomedicine & Pharmacotherapy, 88, 335-341. https://doi.org/10.1016/j.biopha.2017.01.025

  27. 27. 胡琳, 徐林, 冒灵, 等. MicroRNA-7基因敲减对小鼠胸腺T细胞发育的影响[C]//第十三届全国免疫学学术大会摘要汇编. 上海: 中国免疫学会, 2018: 100(1175635).

  28. 28. Gao, H.Y., Li, G.Y., Huang, J., et al. (2013) Protective Effects of Zhuyeqing Liquor on the Immune Function of Normal and Immunosuppressed Mice in Vivo. BMC Complementary and Alternative Medicine, 13, 252. https://doi.org/10.1186/1472-6882-13-252

  29. 29. Tao, G., Wang, C.F., Yuan, J.R., et al. (2015) Inhibition of Tumor Growth and Immunomodulatory Effects of Flavonoids and Scutebarbatines of Scutellaria barbata D. Don in Lewis-Bearing C57BL/6 Mice. Evidence-Based Complementray and Alternative Medicine, 2015, Article ID: 630760. https://doi.org/10.1155/2015/630760

  30. 30. Yong, W., Si, L., Li, X., et al. (2015) Ginkgo Biloba Extract Enhances the Immune Function of Spleen and Thymus in SD Rats. Chinese Journal of Cellular & Molecular Immunology, 31, 792-795.

  31. 31. Wang, X.L., Xi, D.S., Mo, J., et al. (2020) Cordycepin Exhibits a Suppressive Effect on T Cells through Inhibiting TCR Signaling Cascade in CFA-Induced Inflammation Mice Model. Immunopharmacology and Immunotoxicology, 42, 119-127. https://doi.org/10.1080/08923973.2020.1728310

  32. 32. Artyomov, M.N., Lis, M., Devadas, S., et al. (2010) CD4 and CD8 Binding to MHC Molecules Primarily Acts to Enhance Lck Delivery. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 107, 16916-16921. https://doi.org/10.1073/pnas.1010568107

  33. 33. Famili, F., Wiekmeijer, A.S. and Staal, F.J. (2017) The Development of T Cells from Stem Cells in Mice and Humans. Future Science OA, 3, FSO186. https://doi.org/10.4155/fsoa-2016-0095

  34. 34. Brownlie, R.J. and Zamoyska, R. (2013) T Cell Receptor Signalling Networks: Branched, Diversified and Bounded. Nature Reviews Immunology, 13, 257-269. https://doi.org/10.1038/nri3403

  35. 35. Rao, A., Luo, C. and Hogan, P.G. (1997) Transcription Factors of the NFAT Family: Regulation and Function. Annual Review of Immunology, 15, Article No. 707. https://doi.org/10.1146/annurev.immunol.15.1.707

  36. 36. Iniguez, M.A., Martinez, S., Punzon, C., et al. (2000) An Essential Role of the Nuclear Factor of Activated T Cells in the Regulation of the Expression of the Cyclooxygenase-2 Gene in Human T Lymphocytes. The Journal of Biological Chemistry, 275, 23627-23635. https://doi.org/10.1074/jbc.M001381200

  37. 37. Acuto, O., Di Bartolo, V. and Michel, F. (2008) Tailoring T-Cell Receptor Signals by Proximal Negative Feedback Mechanisms. Nature Reviews Immunology, 8, 699-712. https://doi.org/10.1038/nri2397

  38. 38. Peng, S.L., Gerth, A.J., Ranger, A.M., et al. (2001) NFATc1 and NFATc2 Together Control Both T and B Cell Activation and Differentiation. Immunity, 14, 13-20. https://doi.org/10.1016/S1074-7613(01)00085-1

  39. 39. Shaw, J.P., Utz, P.J., Durand, D.B., et al. (2010) Identification of a Putative Regulator of Early T Cell Activation Genes. Science, 241, 202-205. https://doi.org/10.1126/science.3260404

  40. 40. Gregorio, R.D., Iniguez, M.A., Fresno, M., et al. (2001) Cot Kinase Induces Cyclooxygenase-2 Expression in T Cells through Activation of the Nuclear Factor of Activated T Cells. Journal of Biological Chemistry, 276, 27003-27009. https://doi.org/10.1074/jbc.M100885200

  41. 41. Macian, F., Lopez-Rodriguez, C. and Rao, A. (2001) Partners in Transcription: NFAT and AP-1. Oncogene, 20, 2476-2489. https://doi.org/10.1038/sj.onc.1204386

  42. 42. Alexey, K., Armin, N., Carola, S., et al. (1999) MAPKAP Kinase 2 Is Essential for LPS-Induced TNF-α Biosynthesis. Nature Cell Biology, 1, 94-97. https://doi.org/10.1038/10061

  43. 43. Rincon, M., Whitmarsh, A., Yang, D., et al. (1998) The JNK Pathway Regulates the in Vivo Deletion of Immature CD4+CD8+ Thymocytes. The Journal of Experimental Medicine, 188, 1817-1830. https://doi.org/10.1084/jem.188.10.1817

  44. 44. Rincon, M., Flavell, R.A. and Davis, R.J. (2001) Signal Transduction by MAP Kinases in T Lymphocytes. Oncogene, 20, 2490-2497. https://doi.org/10.1038/sj.onc.1204382

  45. 45. Choi, Y.H., Kim, G.Y. and Lee, H.H. (2014) Anti-Inflammatory Effects of Cordycepin in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages through Toll-Like Receptor 4-Mediated Suppression of Mitogen-Activated Protein Kinases and NF-κB Signaling Pathways. Drug Design, Development and Therapy, 8, 1941-1953. https://doi.org/10.2147/DDDT.S71957

  46. 46. Hsiao, F.S.H., Cheng, Y.H., Wang, S.K., et al. (2018) Cordyceps militaris Hot Water Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in Porcine Alveolar Macrophages by Regulation of Mitogen-Activated Protein Kinase Signaling Pathway. Canadian Journal of Animal Science, 98, 44-52.

  47. 47. Sen, R. and Baltimore, D. (1986) Inducibility of Kappa Immunoglobulin Enhancer-Binding Protein Nf-Kappa B by a Posttranslational Mechanism. Cell, 47, 921-928. https://doi.org/10.1016/0092-8674(86)90807-X

  48. 48. Piette, J., Piret, B., Bonizzi, G., et al. (1997) Multiple Redox Regulation in NF-κB Transcription Factor Activation. Biological Chemistry, 378, 1237-1245.

  49. 49. Hayden, M.S. and Ghosh, S. (2011) NF-kappa B in Immunobiology. Cell Research, 21, 223-244. https://doi.org/10.1038/cr.2011.13

  50. 50. Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-κB Transcription Factors in the Factors in the Immune System. Annual Review of Immunology, 27, 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641

  51. 51. Hayden, M.S. and Ghosh, S. (2012) NF-Kappa B, the First Quarter-Century: Remarkable Progress and Outstanding Questions. Genes & Development, 26, 203-234. https://doi.org/10.1101/gad.183434.111

  52. 52. 郭蕾, 骆艳妮, 马琪, 等. 虫草素对CLP诱导的脓毒症大鼠免疫调节作用及肝肺组织病理变化的影响[J]. 局解手术学杂志, 2018, 27(11): 783-788.

  53. 53. Noh, E.M., Kim, J.S., Hur, H., et al. (2009) Cordycepin Inhibits IL-1β-Induced MMP-1 and MMP-3 Expression in Rheumatoid Arthritis Synovial Fifibroblasts. Rheumatology, 48, 45-48. https://doi.org/10.1093/rheumatology/ken417

  54. 54. Noh, E.M., Youn, H.J., Jung, S.H., et al. (2010) Cordycepin Inhibits TPA-Induced Matrix Metalloproteinase-9 Expression by Suppressing the MAPK/AP-1 Pathway in MCF-7 Human Breast Cancer Cells. International Journal of Molecular Medicine, 25, 255-260. https://doi.org/10.3892/ijmm_00000338

  55. 55. Lee, E.J., Kim, W.J. and Moon, S.K. (2010) Cordycepin Suppresses TNF-Alpha-Induced Invasion, Migration and Matrix Metalloproteinase-9 Expression in Human Bladder Cancer Cells. Phytotherapy Research, 24, 1755-1761. https://doi.org/10.1002/ptr.3132

  56. 56. Lee, Y.R., Noh, E.M., Jeong, E.Y., et al. (2009) Cordycepin Inhibits UVB-Induced Matrix Metalloproteinase Expression by Suppressing the NF Kappa B Pathway in Human Dermal Fibroblasts. Experimental and Molecular Medicine, 41, 548-554. https://doi.org/10.3858/emm.2009.41.8.060

  57. 57. Ren, Z.H., Cui, J.H., Huo, Z.R., et al. (2012) Cordycepin Suppresses TNF-α-Induced NF-κB Activation by Reducing p65 Transcriptional Activity, Inhibiting IκBα Phosphorylation, and Blocking IKKγ Ubiquitination. International Immunopharmacology, 14, 698-703. https://doi.org/10.1016/j.intimp.2012.10.008

期刊菜单