Pharmacy Information
Vol.05 No.02(2016), Article ID:17639,7 pages
10.12677/PI.2016.52007

Research Progress of the Antidepressants Targeting the Monomine Receptors and Glutamate System

Yingying Ren1,2, Liangliang Zhou1,2, Huali Wu1,2, Jing Shang1,2*

1Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing Jiangsu

2State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing Jiangsu

Received: May 4th, 2016; accepted: May 23rd, 2016; published: May 26th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Depression is a kind of psychiatric disorders and is characterized by persistent low mood, cognitive impairment and behavioral change. Monoamine neurotransmitter reuptake inhibitors are the most common used antidepressants in clinic, but it needs weeks to work and depressed patients may show resistance to the treatment. With the research on the pathogenesis of depression progressing, species of antidepressants have emerged. Agents regulating monoamine (serotonin, dopamine, noradrenaline, etc.) receptors and glutamate receptors including NMDA receptor, AMPA receptor and metabotropic glutamate receptor and agents that inhibit glutamate release gradually become antidepressant research hotspots with the advantage of rapid-onset. Here, antidepressants targeting monoamine receptors and glutamate system in the market and on clinical trial are reviewed, thus providing guidance for the developing trends of new type antidepressants.

Keywords:Depression, Antidepressant, Monoamine Receptors, Glutamate System

靶向单胺受体及谷氨酸系统抗抑郁药 的研究进展

任莹莹1,2,周良良1,2,吴华丽1,2,尚靖1,2*

1中国药科大学江苏省中药评价与转化重点实验室,江苏 南京

2中国药科大学天然药物活性组分与药效国家重点实验室,江苏 南京

收稿日期:2016年5月4日;录用日期:2016年5月23日;发布日期:2016年5月26日

摘 要

抑郁症是一种精神疾病,伴随着心境持久低落,认知损伤和行为改变。单胺神经递质再摄取抑制剂是临床主流抗抑郁药,但有起效慢、治疗抵抗等局限性。随着抑郁症发病机制研究的不断深入,抗抑郁药物种类层出不穷,其中调节单胺受体(5-羟色胺、多巴胺及肾上腺素受体等)和谷氨酸受体(NMDA、AMPA及代谢型谷氨酸受体)、抑制谷氨酸释放的药物,因具有快速起效等优势而逐渐成为抗抑郁药研发的关注热点。本文主要对近年来已上市和正在临床研究的靶向单胺受体和谷氨酸系统的抗抑郁药进行综述,从而为新型抗抑郁药物的研发方向提供借鉴。

关键词 :抑郁症,抗抑郁药,单胺受体,谷氨酸系统

1. 引言

抑郁症是一种常见的情感障碍性精神疾病,近年来发病率呈上升趋势。抑郁症发病复杂,其中单胺神经递质学说研究最为透彻,认为中枢神经突触所释放的神经递质5-羟色胺(5-HT)、去甲肾上腺素(NE)、多巴胺(DA)等减少可引发抑郁症。针对单胺系统的抗抑郁药可以通过阻断突触前膜对单胺递质的再摄取或减少单胺递质的降解,增加突触间隙神经递质浓度而起效。现临床应用主流抗抑郁药物为新型单胺转运蛋白抑制剂。选择性5-HT再摄取抑制剂(SSRI)类药物是目前抗抑郁治疗的一线用药,代表药物为氟西汀、西酞普兰等。此外,选择性NE再摄取抑制剂(NARI)瑞波西汀,5-HT及NE再摄取抑制剂(SNRI)文拉法辛、米那普仑和度洛西汀,NE及DA再摄取抑制剂(NDRI)安非他酮也在临床广泛应用。经典抗抑郁药结构改造后的药物也有上市,如艾司西酞普兰为外消旋西酞普兰的左旋对映体,为“第六朵金花”。而新上市SNRI药物琥珀酸去甲文拉法辛是文拉法辛的主要活性代谢物,左旋体米那普仑为米那普仑1S,2R对映体,临床试验表明两者治疗重度抑郁症安全有效,为MDD患者提供了新的选择 [1] [2] 。如今,能够同时有效抑制5-HT、NE及DA被重摄取入突触前末端的化合物,越来越受到重视。绿叶制药的三重重摄取抑制剂盐酸安舒法辛(LY03005)于2013年获得中国CFDA、美国FDA批准,进入临床阶段 [3] 。

虽然单胺神经递质再摄取抗抑郁药物临床应用广泛、有一定的疗效,但由于其起效慢,且有抑郁症患者出现治疗抵抗等局限性,作用于其他靶点的药物研发很有必要,而目前研究较热的抗抑郁靶点为单胺受体及谷氨酸系统。抑郁症患者单胺受体功能会发生变化,而抗抑郁药物可通过增强或减弱单胺受体功能而起抗抑郁作用。谷氨酸系统也与抗抑郁发病机制相关,在病理情况下,过量谷氨酸可激活神经细胞膜上NMDA受体,最终导致神经元变性、死亡。目前以谷氨酸系统为作用靶点的抗抑郁药主要通过抑制谷氨酸释放或调控谷氨酸相关受体的功能而起效。本文对已上市及临床研究阶段靶向单胺受体和谷氨酸系统的抗抑郁药物进行综述。

2. 靶向单胺受体的抗抑郁药

2.1. 5-羟色胺受体调节剂

上世纪90年代,许多临床前及临床实验表明,5-HT再摄取抑制剂联合5-HT1A自身受体拮抗剂药物可以使5-HT浓度更快速、显著地增加,然而由于5-HT1A受体拮抗剂选择性较弱,拮抗5-HT1A突触后受体后其增加5-HT功能的优势消失 [4] 。而5-HT1A受体部分激动剂既可以加速5-HT1A自身受体脱敏,又可激活5-HT1A突触后受体,加快5-HT再摄取抑制剂起效和增强疗效。2011年美国上市新药维拉唑酮是兼有5-HT1A受体部分激动和5-HT重摄取抑制作用的双重活性药物。临床研究表明,维拉唑酮治疗重度抑郁症有效,且性功能障碍副作用较小 [5] 。

中枢5-HT2A受体的激活可减弱5-HT神经元放电活动,减少5-HT浓度,进而导致抑郁症状,且抑郁症自杀患者脑内5-HT2A受体表达增加。曲唑酮与奈法唑酮为5-HT再摄取抑制剂及5-HT2A受体拮抗剂,已在临床应用多年,两者抗抑郁药效作用明显,且药效和耐受性与SSRI几无差距 [6] 。但曲唑酮可拮抗α2受体引起低血压不良反应,而奈法唑酮与肾上腺素受体亲和力明显降低,可改善曲唑酮的副作用。

5-HT2C受体在中缝核及向上接DA及NA通路的GABA中间神经元有所表达,中脑GABA神经元5-HT2C受体的激活会抑制DA及NA神经元,减弱前额皮质多巴胺和去甲肾上腺素传递的能力 [7] 。2009年在欧洲上市的阿戈美拉汀是一种褪黑激素受体(MT1和MT2)激动剂同时也是5-HT2C受体拮抗剂,可引起脑内多巴胺和去甲肾上腺素升高,其与SSRI药物抗抑郁药效相当 [7] [8] 。

沃替西汀,于2013年上市,是一种新型治疗重度抑郁症的抗抑郁药,是一种5-HT3,5-HT7和5-HT1D受体拮抗剂,同时也是5-HT1B受体部分激动剂,5-HT1A受体激动剂及5-HT再摄取抑制剂。沃替西汀在治疗重度抑郁症方面与舍曲林、文拉法辛等经典药物药效相当 [9] ,其中5-HT3受体拮抗起重要作用,可通过抑制5-HT3受体介导的GABA中间神经元激活,进而增强锥体神经元活性,且可增强SSRI上调胞外5-HT浓度的效应 [10] 。研究表明,5-HT3受体拮抗剂可以减轻SSRI和SNRI治疗中出现的恶心症状,与SSRI合用可增加突触间隙5-HT浓度,且局部阻止SSRI导致的中缝核5-HT神经元放电活性抑制 [11] 。临床前实验研究表明 [12] [13] ,单独给予5-HT3受体拮抗剂可以改善模型动物的抑郁症状。5-HT7受体是一种特征不明显的G蛋白偶联受体,许多临床前实验表明5-HT7受体拮抗剂具有抗抑郁作用 [14] ,而沃替西汀可通过拮抗5-HT7受体改善动物生理节奏和记忆功能 [15] 。

2.2. 多巴胺受体调节剂

早期第一代D2受体拮抗剂用来治疗精神分裂症,但是其可降低纹状体多巴胺的传递,出现一些锥体外系症状等副作用,联合使用5-HT2A受体拮抗剂可以降低这一副作用 [16] 。大部分第二代抗精神病药物可同时拮抗D2受体和5-HT2A受体,而DA和5-HT活动调节的结合会有效治疗许多精神疾病,如抑郁症和焦虑症等 [17] 。已上市抗抑郁药物盐酸氟哌噻吨和富马酸喹硫平,其为D2受体拮抗剂与5-HT2A受体拮抗剂,且多个该类药物正在临床研究阶段,如卡利拉嗪,它可同时拮抗D2受体,5-HT2A受体,5-HT2B受体和D3受体。但由于耐受性等问题,D2受体拮抗剂并不是多巴胺系统调节药物的首选策略。

长期给予抗抑郁药可激活伏核的DA能神经元,提示DA受体的激活也可作为抗抑郁药物的治疗策略。75%以上的D2受体分布在边缘区尤其是纹状体部位,有研究证实D2受体与奖赏系统关系密切,奖赏感觉是一个众多神经递质和边缘系统结构参与的复杂级联反应,这一过程的最终结果是边缘叶DA旁路的活化。D2受体部分激动剂具有缓冲作用,即在DA浓度低时激活D2受体,而DA浓度高时抑制D2受体的激活,最终目的是要使多巴胺的传递趋于稳定 [16] [17] 。依匹哌咗是一种非典型的抗精神病药,于2015年上市,是新型的血清素-多巴胺活性调节剂,是5-HT1A和D2受体部分激动剂,也是一种潜在的5-HT2A,α1B和α2C肾上腺素受体拮抗剂,可作为对抗抑郁药反应较低的重度抑郁症患者的辅助治疗,具有安全性和有效性 [18] ,临床前研究表明依匹哌咗可改善模型小鼠的认知不足 [19] 。

2.3. 肾上腺素受体调节剂

临床用药米氮平的主要药理作用是拮抗中枢突触前α2肾上腺素能自身受体和异身受体,以及特异性阻断突触后膜5-HT2A和5-HT3受体 [20] 。通过拮抗α2自身受体,可以促进中枢NA释放,而拮抗α2异身受体,可增加5-HT的释放。此外,突触间隙释放增加的NE通过激活位于5-HT能神经元胞体上的α1受体,能直接增强5-HT能神经元的放电率,使药物快速起效。临床研究表明 [21] ,米氮平在治疗重度抑郁症患者时抗抑郁药效与SSRI药物相当。

3. 靶向谷氨酸系统的抗抑郁药

研究显示,谷氨酸调控的突触及神经可塑性在抑郁症的神经生物学基础及抑郁症的治疗中非常关键 [22] ,且谷氨酸系统调控药物可适用于近30%对作用于单胺系统药物不敏感的抑郁症患者 [23] 。谷氨酸是中枢神经系统主要的兴奋性氨基酸,其受体包括离子型(NMDA,AMPA和海人藻酸受体)和代谢型(mGluR) [24] 。调节谷氨酸系统功能的新治疗策略主要包括NMDA受体拮抗剂,AMPA受体增强剂,mGluR调节剂及谷氨酸释放抑制剂。

3.1. NMDA受体拮抗剂

NMDA受体上有谷氨酸结合位点,甘氨酸结合位点,离子通道的孔隙以及N末端的变构结合位点。根据作用位点不同,可将具有抗抑郁作用的NMDA受体拮抗剂分为3类。离子通道阻断剂是通过阻断受体的离子通道发挥拮抗NMDA受体功能的作用,其中非竞争性NMDA受体拮抗剂氯胺酮是一种有效抗抑郁药物,作用机制复杂且目前仍有争议 [25] ,其主要通过迅速激活哺乳动物雷帕霉素靶蛋白(mTOR)信号通路,上调多种与突触相关蛋白表达量,从而提高神经突触的数量以及成熟程度,最终产生抗抑郁效果 [26] [27] 。目前有针对NMDA受体的药物处于临床研究阶段,如盐酸艾氯胺酮,现为临床III阶段。NMDA受体有3个亚单位,包括GluN1,GluN2,GluN3,其中GluN2包括NR2A、NR2B、NR2C和NR2D [28] 。特异性NR2B受体拮抗剂研究较多,其具有神经保护作用且可避免氯胺酮出现幻觉的副作用。抑郁症患者海马处NR1和NR2B亚单位磷酸化升高,而临床前实验表明药物可通过选择性拮抗NMDA受体NR2B部位改善动物抑郁症状 [29] 。NR2B受体拮抗剂MK-0657处于临床II阶段,可以改善治疗抵抗重度抑郁症患者的抑郁症状,且给药后患者血清BDNF水平显著升高 [30] 。此外,NR2B受体拮抗剂EVT-103处于临床I阶段。

甘氨酸结合位点抑制剂目前已有临床研究阶段药物,如美国VistaGen公司正在研究的4-氯代犬尿氨酸,是NMDA甘氨酸B受体拮抗剂,处于临床II阶段。研究表明,单独给予小鼠4-氯代犬尿氨酸可以产生类似氯胺酮的快速起效抗抑郁作用,且具有剂量依赖性 [31] 。谷氨酸结合位点抑制剂主要是谷氨酸结构类似物,对NMDA受体不同亚型选择性低,可引起严重精神类不良反应,较少使用。

3.2. AMPA受体增强剂

研究发现,氯胺酮作用后抑郁症患者脑部AMPA/NMDA活性比增加 [32] 。氯胺酮激活mTOR信号级联而产生抗抑郁的机制是通过AMPA受体的激活,使神经元去极化,激活Ca2+通道,导致脑源性神经营养因子(BDNF)释放,激活TrkB受体,继而激活下游mTOR信号通路 [33] 。AMPA受体增强可以产生抗抑郁作用,AMPA增强剂主要通过增强AMPA受体的响应,与抗抑郁药物的谷氨酸释放抑制作用相互独立,并无矛盾 [34] 。武田制药公司研发的TAK-653,是AMPA受体增强剂,目前处于临床Ⅰ阶段。

3.3. 代谢型谷氨酸受体调节剂

代谢型谷氨酸受体(mGluRs)广泛分布于神经元和胶质细胞突触前膜或突触后膜上,现有8个亚型,mGluRs胞外结合G蛋白,介导第二信使系统信息传递,进而导致分子或细胞通路的激活或抑制 [24] 。研究表明 [23] [25] ,抗抑郁药可作用于mGluRs进而调节谷氨酸传递,但比作用于离子型谷氨酸受体的信号通路调节慢且持续时间长,其中选择性mGlu2/3受体激动、拮抗剂及mGlu5受体拮抗剂具有抗抑郁作用。mGlu5受体在空间上与NMDA受体相邻,受体激活可以增强NMDA受体活性,受体拮抗可以减弱NMDA受体的激活,其在治疗抵抗抑郁症的研究中较为广泛 [36] 。临床前研究显示选择性mGlu5拮抗剂RG7090 其有良好的抗抑郁药效 [37] ,现处于临床II阶段。

3.4. 谷氨酸释放抑制剂

拉莫三嗪是一种抗惊厥药物,由于其抑制谷氨酸释放,已用于双向情感障碍治疗。临床Ⅱ阶段抗抑郁药物利鲁唑原用于治疗肌萎缩侧索硬化症,因其能抑制谷氨酸释放,增加谷氨酸重摄取,且具有神经保护作用,可用于重度抑郁症的治疗,且没有严重副作用发生 [38] 。

4. 小结

单胺类神经递质与抑郁症的关系迄今为止研究最多,此外,许多单胺受体都参与抑郁症的发病中,尤其是5-羟色胺及多巴胺受体。单胺受体调节剂与单胺再摄取抑制剂合用可以增强抗抑郁疗效、加速治疗,另外有许多将两种作用结合的抗抑郁药物,研究显示其与SSRI抗抑郁药物药效相当。由于抑郁症发病复杂,部分抑郁症患者对主流抗抑郁药出现治疗抵抗,这时需要开发作用于单胺系统外的抗抑郁药物。针对谷氨酸系统的快速起效抗抑郁药可以提供新的治疗策略,虽然此类药物目前临床应用有限,但依然具有良好的前景,是临床研究的热点。近年来抑郁症的发病机制和药物治疗靶标的研究取得了很大进展,有许多针对其他靶点的药物,但不是很成熟。因此,我们需要对抗抑郁分子机制进行进一步的探索研究,从而开发出更有效、更快作用、耐受性好的新型抗抑郁药,使抑郁症患者得到更好的治疗。

文章引用

任莹莹,周良良,吴华丽,尚 靖. 靶向单胺受体及谷氨酸系统抗抑郁药的研究进展
Research Progress of the Antidepressants Targeting the Monomine Receptors and Glutamate System[J]. 药物资讯, 2016, 05(02): 38-44. http://dx.doi.org/10.12677/PI.2016.52007

参考文献 (References)

  1. 1. Clayton, A.H., Tourian, K.A., Focht, K., et al. (2015) Desvenlafaxine 50 and 100 mg/d versus Placebo for the Treatment of Major Depressive Disorder: A Phase 4, Randomized Controlled Trial. Journal of Clinical Psychiatry, 76, 562- 569. http://dx.doi.org/10.4088/JCP.13m08978

  2. 2. Palmer, E.C., Binns, L.N. and Carey, H. (2014) Levomilnacipran. Annals of Pharmacotherapy, 48, 1030-1039. http://dx.doi.org/10.1177/1060028014535074

  3. 3. 张方喜, 张雪梅, 蒋王林, 等. 三重再摄取抑制类抗抑郁药的研究进展和盐酸安舒法辛的发现[J]. 中国新药杂志, 2014, 23(16): 1918-1923.

  4. 4. Scorza, M.C., Lladó-Pelfort, L., et al. (2011) Preclinical and Clinical Characterization of the Selective Serotonin-1A Receptor Antagonist DU-125530 for Antide-pressant Treatment. British Journal of Pharmacology, 167, 1021-1034. http://dx.doi.org/10.1111/j.1476-5381.2011.01770.x

  5. 5. Arif, K., Cutler, A.J., Kajdasz, D.K., et al. (2011) A Ran-domized, Double-Blind, Placebo-Controlled, 8-Week Study of Vilazodone, a Serotonergic Agent for the Treatment of Major Depressive Disorder. Journal of Clinical Psychiatry, 72, 441-447. http://dx.doi.org/10.4088/JCP.10m06596

  6. 6. Papakostas, G.I. and Fava, M. (2007) A Meta-Analysis of Clinical Trials Comparing the Serotonin (5HT)-2 Receptor Antagonists Trazodone and Nefazodone with Selective Serotonin Reuptake In-hibitors for the Treatment of Major Depressive Disorder. European Psychiatry: The Journal of the Association of European Psychiatrists, 22, 444-447. http://dx.doi.org/10.1016/j.eurpsy.2007.01.1220

  7. 7. Tardito, D., Molteni, R., Popoli, M., et al. (2012) Synergistic Mechanisms Involved in the Antidepressant Effects of Agomelatine. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 22, S482-S486. http://dx.doi.org/10.1016/j.euroneuro.2012.06.016

  8. 8. Corruble, E., De Bodinat, C., Belaïdi, C., et al. (2013) Efficacy of Agomelatine and Escitalopram on Depression, Subjective Sleep and Emotional Experiences in Patients with Major Depressive Disorder: A 24-wk Randomized Controlled, Double-Blind Trial. International Journal of Neuropsychopharmacology, 16, 2219-2234. http://dx.doi.org/10.1017/S1461145713000679

  9. 9. Citrome, L. (2016) Vortioxetine for Major Depressive Disorder: An Indirect Comparison with Duloxetine, Escitalopram, Levomilnacipran, Sertraline, Venlafaxine, and Vilazodone, Using Number Needed to Treat, Number Needed to Harm, and Likelihood to Be Helped or Harmed. Journal of Affective Disorders, 196, 225-233. http://dx.doi.org/10.1016/j.jad.2016.02.042

  10. 10. Sanchez, C., Asin, K.E. and Artigas, F. (2014) Vortioxetine, a Novel Antidepressant with Multimodal Activity: Review of Preclinical and Clinical Data. Pharmacology & Therapeutics, 145, 43-57. http://dx.doi.org/10.1016/j.pharmthera.2014.07.001

  11. 11. Bétry, C., Overstreet, D., Haddjeri, N., et al. (2015) A 5-HT 3, Receptor Antagonist Potentiates the Behavioral, Neurochemical and Electrophysiological Actions of an SSRI Antidepressant. Pharmacology Biochemistry & Behavior, 131, 136-142. http://dx.doi.org/10.1016/j.pbb.2015.02.011

  12. 12. Gupta, D., Radhakrishnan, M., Thangaraj, D., et al. (2014) Antidepressant and Anti-Anxiety Like Effects of 4i (N-(3- Chlo-ro-2-Methylphenyl) Quinoxalin-2-Carboxamide), a Novel 5-HT 3, Receptor Antagonist in Acute and Chronic Neurobehavioral Rodent Models. European Journal of Pharmacology, 735, 59-67. http://dx.doi.org/10.1016/j.ejphar.2014.04.008

  13. 13. Baldev Kumar, G., Ankur, J., Arghya Kusum, D., et al. (2013) An-tidepressant—Like Activity of 2-(4-Phenylpiperazin- 1-yl)-1, 8-Naphthyridine-3-Carboxylic Acid (7a), a 5-HT3 Receptor Antagonist in Behaviour Based Rodent Models: Evidence for the Involvement of Serotonergic System. Pharmacology Bio-chemistry & Behavior, 109, 91-97. http://dx.doi.org/10.1016/j.pbb.2013.05.006

  14. 14. Nikiforuk, A. (2015) Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs, 29, 1-11. http://dx.doi.org/10.1007/s40263-015-0236-0

  15. 15. Westrich, L., Haddjeri, N., Dkhissi-Benyahya, O., et al. (2015) In-volvement of 5-HT 7, Receptors in Vortioxetine’s Modulation of Circadian Rhythms and Episodic Memory in Rodents. Neuropharmacology, 89, 382-390. http://dx.doi.org/10.1016/j.neuropharm.2014.10.015

  16. 16. Kenji, M., Haruhiko, S., Hitomi, A., et al. (2014) Brexpiprazole I: In Vitro and in Vivo Characterization of a Novel Serotonin-Dopamine Activity Modulator. The Journal of Pharmacology & Experimental Therapeutics, 350, 589-604. http://dx.doi.org/10.1124/jpet.114.213793

  17. 17. Oosterhof, C.A., Mostafa, E.M. and Pierre, B. (2014) Acute Effects of Brexpiprazole on Serotonin, Dopamine, and Norepinephrine Systems: An in Vivo Electrophysiologic Characterization. The Journal of Pharmacology & Experimental Therapeutics, 351, 585-595. http://dx.doi.org/10.1124/jpet.114.218578

  18. 18. Thase, M.E., Youakim, J.M., Skuban, A., et al. (2015) Efficacy and Safety of Adjunctive Brexpiprazole 2 mg in Major Depressive Disorder: A Phase 3, Randomized, Placebo-Controlled Study in Patients with Inadequate Response to Antidepressants. Journal of Clinical Psychiatry, 76, 1224-1231.

  19. 19. Noriko, Y., Takashi, F. and Kenji, H. (2015) Improvement of Dizocilpine-Induced Social Recognition Deficits in Mice by Brexpiprazole, a Novel Serotonin-Dopamine Activity Modulator. European Neuropsychopharmacology, 25, 356- 364. http://dx.doi.org/10.1016/j.euroneuro.2014.12.014

  20. 20. De Boer, T. (1996) The Pharmacologic Profile of Mirtazapine. Journal of Clinical Psychiatry, 57, 19-25.

  21. 21. Dahal, S., Ojha, S.I., Chapagain, M. and Tulachan, P. (2014) Efficacy and Tolerability of Mirtazapine versus Sertraline: An Open, Randomized Study in Acute Treatment in Patients with Major De-pressive Disorder. Journal of Psychiatrists’ Association of Nepal, 3, 29-34. http://dx.doi.org/10.3126/jpan.v3i1.11349

  22. 22. Machado-Vieira, R., Salvadore, G., Ibrahim, L.A., Diaz-Granados, N. and Zarate Jr., C.A. (2009) Targeting Glutamatergic Signaling for the Development of Novel Therapeutics for Mood Disorders. Current Pharmaceutical Design, 15, 1595-1611.

  23. 23. Chaki, S., Ago, Y., Palucha-Paniewiera, A., Matrisciano, F. and Pilc, A. (2012) mGlu2/3 and mGlu5 Receptors: Potential Targets for Novel Antidepressants. Neuropharmacology, 66, 40-52.

  24. 24. Niciu, M.J., Ionescu, D.F., Richards, E.M. and Zarate Jr., C.A. (2014) Glutamate and Its Receptors in the Path-ophysiology and Treatment of Major Depressive Disorder. Journal of Neural Transmission, 121, 907-924. http://dx.doi.org/10.1007/s00702-013-1130-x

  25. 25. Miller, O.H., Moran, J.T. and Hall, B.J. (2016) Two Cellular Hy-potheses Explaining the Initiation of Ketamine’s Antidepressant Actions: Direct Inhibition and Disinhibition. Neurophar-macology, 100, 17-26. http://dx.doi.org/10.1016/j.neuropharm.2015.07.028

  26. 26. Li, N., Lee, B., Liu, R.J., et al. (2010) mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science, 329, 959-964. http://dx.doi.org/10.1126/science.1190287

  27. 27. Li, N., Liu, R.J., Dwyer, J.M., et al. (2011) Glutamate N-Methyl-D-Aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Biological Psychiatry, 69, 754-761. http://dx.doi.org/10.1016/j.biopsych.2010.12.015

  28. 28. Regan, M.C., Romero-Hernandez, A. and Furukawa, H. (2015) A Structural Biology Perspective on NMDA Receptor Pharmacology and Function. Current Opinion in Structural Biology, 33, 68-75. http://dx.doi.org/10.1016/j.sbi.2015.07.012

  29. 29. Peng, W.F., Ding, J., Li, X., Fan, F., Zhang, Q.-Q. and Wang, X. (2015) N-Methyl-D-Aspartate Receptor NR2B Subunit Involved in Depression-Like Behaviours in Lithium Chloride-Pilocarpine Chronic Rat Epilepsy Model. Epilepsy Research, 119, 77-85. http://dx.doi.org/10.1016/j.eplepsyres.2015.09.013

  30. 30. Lobna, I., Nancy, D.G., Libby, J., et al. (2012) A Randomized, Placebo-Controlled, Crossover Pilot Trial of the Oral Selective NR2B Antagonist MK-0657 in Patients with Treat-ment-Resistant Major Depressive Disorder. Journal of Clinical Psychopharmacology, 32, 551-557. http://dx.doi.org/10.1097/JCP.0b013e31825d70d6

  31. 31. Zanos, P., Piantadosi, S.C., Wu, H.Q., et al. (2015) The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition. The Journal of Pharmacology & Experimental Therapeutics, 355, 76-85. http://dx.doi.org/10.1124/jpet.115.225664

  32. 32. Jing, D., Machado-Vieira, R., Maeng, S., Martinowich, K., Manji, H.K. and Zarate Jr., C.A. (2006) Enhancing AMPA to NMDA Throughput as a Convergent Mechanism for Antidepressant Action. Drug Discovery Today: Therapeutic Strategies, 3, 519-526. http://dx.doi.org/10.1016/j.ddstr.2006.11.012

  33. 33. Duman, R.S., Li, N., Liu, R.J., Duric, V. and Aghajanian, G. (2011) Signaling Pathways Underlying the Rapid Antidepressant Actions of Ketamine. Neuropharmacology, 62, 35-41. http://dx.doi.org/10.1016/j.neuropharm.2011.08.044

  34. 34. O’Neill, M.J., David, B., Zimmerman, D.M. and Nisenbaum, E.S. (2004) AMPA Receptor Potentiators for the Treatment of CNS Disorders. Current Drug Target-CNS & Neurological Disorders, 3, 181-194. http://dx.doi.org/10.2174/1568007043337508

  35. 35. Nicoletti, F., Bruno, V., Ngomba, R.T., Gradini, R. and Battaglia, G. (2014) Metabotropic Glutamate Receptors as Drug Targets: What’s New? Current Opinion in Pharmacology, 20, 89-94.

  36. 36. Pałucha-Poniewiera, A., Wierońska, J.M., Brański, P., Burnat, G., Chruścicka, B. and Pilc, A. (2013) Is the mGlu5 Receptor a Possible Target for New Antidepressant Drugs? Pharmacological Reports, 65, 1506-1511. http://dx.doi.org/10.1016/S1734-1140(13)71511-1

  37. 37. Lothar, L., Porter, R.H., Scharf, S.H., et al. (2015) Pharmacol-ogy of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. The Journal of Pharmacology & Experimental Therapeutics, 353, 213-233.

  38. 38. Salardini, E., Zeinoddini, A., Mohammadinejad, P., et al. (2016) Riluzole Combination Therapy for Moder-ate-to-Se- vere Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Psychiatric Re-search, 75, 24-30.

期刊菜单