Advances in Applied Mathematics
Vol.06 No.07(2017), Article ID:22434,7 pages
10.12677/AAM.2017.67102

A New Error Bound for Linear Complementarity Problems for Weakly Chained Diagonally Dominant B-Matrices

Xia Jing, Lei Gao

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji Shaanxi

Received: Oct. 2nd, 2017; accepted: Oct. 16th, 2017; published: Oct. 24th, 2017

ABSTRACT

In this paper, by the infinity norm bound of inverse matrix of weakly chained diagonally dominant M-matrices, we give a new error bound for the linear complementarity problem when the matrix involved is a weakly chained diagonally dominant B-matrix, which improves some existing ones. Numerical examples are given to show the corresponding results.

Keywords:P-Matrix, Weakly Chained Diagonally Dominant B-Matrix, Linear Complementarity Problem, Error Bound

弱链对角占优B-矩阵线性互补问题误差界 的新估计式

井霞,高磊

宝鸡文理学院,数学与信息科学学院,陕西 宝鸡

收稿日期:2017年10月2日;录用日期:2017年10月16日;发布日期:2017年10月24日

摘 要

本文利用弱链对角占优M-矩阵逆矩阵无穷范数上界的估计式,结合不等式放缩技术,给出弱链对角占优B-矩阵线性互补问题误差界的一个新估计式。数值算例表明,新估计式改进了现有的几个结果。

关键词 :P-矩阵,弱链对角占优B-矩阵,线性互补问题,误差界

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

线性互补问题在力学、交通、经济、金融和控制等诸多领域具有广泛应用,如市场均衡问题、最优停止问题、期权定价问题、弹性接触问题和自由边界问题等 [1] [2] [3] [4] 。线性互补问题( L C P ( M , q ) )是指求 x R n ,满足

x 0 , M x + q 0 , ( M x + q ) T x = 0

其中 M R n × n 为实矩阵,实向量 q R n 。众所周知,当矩阵M为P-矩阵(所有主子式都是正的 [1] )时, L C P ( M , q ) 不仅存在唯一解 [2] ,而且易于误差分析 [4] 。2006年,陈小君等给出P-矩阵线性互补问题的误差界 [5] :

x x * max d [ 0 , 1 ] n ( I D + D M ) 1 r ( x ) (1)

其中 r ( x ) = min { x , M x + q } 为向量 x M x + q 对应位置分量最小值, D = d i a g ( d i ) 。不难发现,求解误差界(1)中的最小化问题 max d [ 0 , 1 ] n ( I D + D M ) 1 十分困难。因此,近年来有众多专家和学者关注于误差界的估计问题,并给出了一些简单易算的估计式 [6] - [13] 。本文将研究P-矩阵的一个重要子类——弱链对角占优B-矩阵的线性互补问题的误差界估计问题,应用弱链对角占优M-矩阵的逆矩阵无穷范数上界的估计式,得到弱链对角占优B-矩阵线性互补问题误差界的一个新估计式。数值算例表明,新估计式改进了现有的几个结果。

2. 预备知识

C n × n ( R n × n )表示所有n阶复矩阵(实矩阵)构成的集合,指标集 N = { 1 , 2 , , n } 。设 A = [ a i j ] R n × n ,对任意的 i , j , k N , i j ,记

R i ( A ) = j i | a i j | u i ( A ) = 1 | a i i | j = i + 1 n | a i j |

h l ( k 1 ) = j = k l 1 | a l j | h j ( k 1 ) | a j j | + j = i + 1 n | a i j | (2)

c k = max k i n { h i ( k 1 ) | a i i | } , k = 1 , 2 , , n

q k ( A ) = max 1 i n k { | a i + k , k | + h = k + 1 , h i + k n | a i + k , k | c k | a i + k , i + k | } , k = 1 , 2 , , n .

定义1 [14] :设 A = [ a i j ] C n × n ,若对任意的 i N ,有

| a i i | R i ( A )

且对每个 i J ( A ) = { i N : | a i i | > R i ( A ) } ϕ 存在非零元素链 a i i 1 , a i 1 i 2 , , a i r j 满足 j J ( A ) ,则称A为弱链对角占优矩阵。

定义2 [15] :设 A = [ a i j ] R n × n ,记 M = B + + C ,其中

B + = [ b i j ] = ( m 11 r 1 + m 1 n r 1 + m n 1 r n + m n n r n + ) , r i + = max { 0 , m i j | j i } , (3)

B + 为弱链对角占优矩阵且所有的主对角元素皆为正,则称 A 为弱链对角占优矩阵。

文献 [15] 给出结果:设 M = [ m i j ] R n × n 是弱链对角占优B-矩阵,记 M = B + + C ,其中 B + = [ b i j ] 形如(3)式,则

max d [ 0 , 1 ] n ( I D + D M ) 1 i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 b j j β ¯ j , (4)

其中 β ¯ i = b i i j = i + 1 n | b i j | > 0 j = 1 0 b j j β ¯ j = 1

为了给出本文结论,先介绍几个预备引理:

引理1 [16] :设 A = [ a i j ] R n × n 是弱链对角占优M-矩阵, u k q k < 1 , k = 1 , , n ,则

A 1 max { 1 a 11 ( 1 u 1 q 1 ) + i = 2 n [ 1 a i i ( 1 u i q i ) j = 1 i 1 u j ( A ) 1 u j ( A ) q j ( A ) ] , i = 2 n q 1 a 11 ( 1 u 1 q 1 ) + i = 2 n [ q i a i i ( 1 u i q i ) j = 1 i 1 1 1 u j q j ] } ,

其中 u j ( A ) q j ( A ) 如(2)式所定义。

引理2 [11] :设 γ > 0 η 0 ,则对任意的 x [ 0 , 1 ] ,有

1 1 x γ x 1 min { γ , 1 } η x 1 x + γ x η γ .

3. 主要结果

本节给出弱链对角占优B-矩阵线性互补问题误差界新的上界估计式,并和现有结果进行比较。首先给出一个引理:

引理3:设矩阵 M = [ m i j ] R n × n 主对角元全为正,记 M = B + + C ,其中 B + 形如(3)式。令 B D = I D + D B + = [ b ¯ i j ] ,则对任意的 k = 1 , 2 , , n , l = k , k + 1 , , n

h l ( k 1 ) ( B D + ) | b ¯ l l | h l ( k 1 ) ( B + ) | b l l | ,(5)

其中 h l ( k 1 ) 如(2)式所定义。

证明:下面利用数学归纳法证明(5)式成立。

情形一:k = 1,此时 l = 1 , 2 , , n

当l = 1时,

h 1 ( 0 ) ( B D + ) | b ¯ 11 | = d 1 j = 2 n | b 1 j | 1 d 1 + d 1 b 11 j = 2 n | b 1 j | b 11 = h 1 ( 0 ) ( B + ) | b 11 |

假设当 l = i ( 2 < i < n ) 时, h i ( 0 ) ( B D + ) | b ¯ i i | h i ( 0 ) ( B + ) | b ¯ i i | 式成立,现证 l = i + 1 时(5)式也成立,利用引理2易证

h i + 1 ( 0 ) ( B D + ) | b ¯ i + 1 , i + 1 | = j = k n | b ¯ i + 1 , j | | b ¯ j j | h j ( 0 ) ( B D + ) + j = i + 2 n | b ¯ i + 1 , j | | b ¯ i + 1 , i + 1 | h i + 1 ( 0 ) ( B + ) | b i + 1 , i + 1 | .

因此,对于 l = 1 , 2 , , n ,有 h l ( 0 ) ( B D + ) | b ¯ l l | h l ( 0 ) ( B + ) | b 11 |

情形二:当 k = 2 , 3 , , n 时,同理可证(5)式成立。

综合情形一与情形二,结论成立。

定理1:设 M R n × n 是弱链对角占优B-阵, M = B + + C ,其中 B + = [ b i j ] 形如(3)式。若 u k ( B + ) q k ( B + ) < 1 k = 1 , , n ,则

max d [ 0 , 1 ] n ( I D + D M ) 1 ( n 1 ) max { 1 min { α 1 ( B + ) , 1 } + i = 2 n [ 1 min { α i ( B + ) , 1 } j = 1 n b j j u j ( B + ) α i ( B + ) ] , q 1 ( B + ) min { α 1 ( B + ) , 1 } + i = 2 n [ q i ( B + ) min { α i ( B + ) , 1 } j = 1 i 1 b j j α j ( B + ) ] } (6)

其中 α i ( B + ) = b i i j = i + 1 n | b i j | q i ( B + ) q i ( B + ) 由(2)式所给。

证明:令 M D = I D + D M ,则

M D = I D + D M = I D + D ( B + + C ) = B D + + C D ,其中 B D + = I D + D B + C D = D C 。由文献 [15] 中的定理2知,是弱链严格对角占优M-阵

M D 1 ( n 1 ) ( B D + ) 1 . (7)

由引理1知

( B D + ) 1 max { 1 b ¯ 11 [ 1 u 1 ( B D + ) q 1 ( B D + ) ] + i = 2 n [ 1 b ¯ i i [ 1 u i ( B D + ) q i ( B D + ) ] j = 1 n u j ( B D + ) 1 u j ( B D + ) q j ( B D + ) ] , q 1 ( B D + ) b ¯ 11 [ 1 u 1 ( B D + ) q 1 ( B D + ) ] + i = 2 n [ q i ( B D + ) b ¯ i i [ 1 u i ( B D + ) q i ( B D + ) ] j = 1 i 1 1 1 u j ( B D + ) q j ( B D + ) ] } .

由引理2和引理3,得

u i ( B D + ) = j = i + 1 n | b i j | d i 1 d i + b i i d i j = i + 1 n | b i j | b i i = u i ( B + )

q k ( B D + ) = max 1 i n k { | b ¯ i + k , k | + h = k + 1 , h i + k n | b ¯ i + k , h | c ¯ k | b ¯ i + k , i + k | } max 1 i n k d i + k [ | b i + k , k | + h = k + 1 , h i + k n | b i + k , h | c k ] 1 d i + k , i + k + d i + k , i + k | b i + k , i + k | max 1 i n k { | b i + k , k | + h = k + 1 , h i + k n | b i + k , h | c k | b i + k , i + k | } = q k ( B + ) ,

1 b ¯ i i [ 1 u i ( B D + ) q i ( B D + ) ] = 1 b ¯ i i b ¯ i i u i ( B D + ) q i ( B D + ) 1 b ¯ i i j = i + 1 n | b ¯ i j | q i ( B + ) 1 min { b i i j = i + 1 n | b i j | q i ( B + ) , 1 } = 1 min { α i ( B + ) , 1 } ,

1 1 u j ( B D + ) q j ( B D + ) b j j b j j k = j + 1 n | b j k | q j ( B + ) = b j j α j ( B + ) .

( B D + ) 1 max { 1 min { α 1 ( B + ) , 1 } + i = 2 n [ 1 min { α i ( B + ) , 1 } j = 1 n b j j u j ( B + ) α i ( B + ) ] , q 1 ( B + ) min { α 1 ( B + ) , 1 } + i = 2 n [ q i ( B + ) min { α i ( B + ) , 1 } j = 1 i 1 b j j α j ( B + ) ] } .(8)

由(7)式和(8)式可知,(6)式成立。

4. 数值算例

例:考虑弱链对角占优B-矩阵 [15] :

M = [ 1. 5 0. 2 0. 4 0. 5 0 .1 1.5 0.5 0.1 0.5 0.1 1.5 0.1 0.4 0.4 0.8 1.8 ] ,

M = B + + C ,其中

B + = [ 1 0. 3 0.1 0 0.6 1 0 0.4 0 0.6 1 0.4 0.4 0.4 0 1 ] .

由(4)式得

max d [ 0 , 1 ] 4 ( I D + D M ) 1 41 .1111 ,

由文献 [17] 中的(5)式得

max d [ 0 , 1 ] 4 ( I D + D M ) 1 38 .6334 ,

由应用定理1中的(6)式得

max d [ 0 , 1 ] 4 ( I D + D M ) 1 10 .4724 .

显然,(7)式优于(4)式和文献 [17] 中的(5)式。

基金项目

陕西省自然科学基础研究计划项目(2017JQ3020);陕西省高校科协青年人才托举基金(20160234);宝鸡文理学院重点项目(ZK2017095, ZK2017021)。

文章引用

井霞,高磊. 弱链对角占优B-矩阵线性互补问题误差界的新估计式
A New Error Bound for Linear Complementarity Problems for Weakly Chained Diagonally Dominant B-Matrices[J]. 应用数学进展, 2017, 06(07): 850-856. http://dx.doi.org/10.12677/AAM.2017.67102

参考文献 (References)

  1. 1. Chen, X. and Xiang, S. (2007) Perturbation Bounds of P-Matrix Linear Complementarity Problems. SIAM Journal on Optimization, 18, 1250-1265. https://doi.org/10.1137/060653019

  2. 2. Cottle, R.W., Pang, J. and Stone, R E. (1992) The Linear Complementarity Problem. Academic Press, San Diego, 1-20.

  3. 3. Murty, K.G. (1998) Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin, 5-18.

  4. 4. 黎稳, 郑华. 线性互补问题的数值分析[J]. 华南师范大学学报: 自然科学版, 2015, 47(3): 1-9.

  5. 5. Chen, X. and Xiang, S. (2006) Computation of Error Bounds for P-Matrix Linear Complementarity Problem. Mathematical Programming, 106, 513-525. https://doi.org/10.1007/s10107-005-0645-9

  6. 6. Chen, T., Li, W., Wu, X., and Vong, S. (2015) Error Bounds for Linear Complementarity Problems of MB-Matrices. Numerical Algorithms, 70, 341-356. https://doi.org/10.1007/s11075-014-9950-9

  7. 7. Dai, P. (2011) Error Bounds for Linear Complementarity Problems of DB-Matrices. Linear Algebra and Its Applications, 434, 830-840. https://doi.org/10.1016/j.laa.2010.09.049

  8. 8. Dai, P., Lu C. and Li Y. (2013) New Error Bounds for Linear Complementarity Problem with an SB-Matrix. Numerical Algorithms, 64, 741-757.

  9. 9. García-Esnaola, M. and Peña, J.M. (2012) Error Bounds for Linear Complementarity Problems Involving BS-Matrices. Applied Mathematics Letters, 25, 1379-1383. https://doi.org/10.1016/j.aml.2011.12.006

  10. 10. García-Esnaola, M. and Peña, J.M. (2016) B-Nekrasov Matrices and Error Bounds for Linear Complementarity Problems. Numerical Algorithms, 72, 435-445. https://doi.org/10.1007/s11075-015-0054-y

  11. 11. Li, C. and Li, Y. (2016) Note on Error Bounds for Linear Complementarity Problems for B-Matrices. Applied Mathematics Letters, 57, 108-113.

  12. 12. Li, C. and Li, Y. (2016) Weakly Chained Diagonally B-Matrices and Error Bounds for Linear Complementarity Problems. Numerical Algorithms, 73, 985-998. https://doi.org/10.1007/s11075-016-0125-8

  13. 13. Li, C., Gan, M.T. and Yang, S.R. (2016) A New Error Bounds for Linear Complementarity Problems for B-Matrices. The Electronic Journal of Linear Algebra, 31, 476-484. https://doi.org/10.13001/1081-3810.3250

  14. 14. Shivakumar, P.N. and Chew, K.H. (1974) A Sufficient Condition for Nonva-nishing of Determinants. Proceedings of the American Mathematical Society, 43, 63-66. https://doi.org/10.1090/S0002-9939-1974-0332820-0

  15. 15. Li, C. and Li, Y. (2016) Weakly Chained Diagonally Dominant B-Matrices and Error Bounds for Linear Complementarity Problems. Numerical Algorithms, 73, 985-998. https://doi.org/10.1007/s11075-016-0125-8

  16. 16. 刘新, 杨晓英. 弱链对角占优M-矩阵A的 [J]. 河南科学, 2014, 4: 491-495.

  17. 17. 孙德淑. 弱链对角占优B-矩阵线性互补问题的误差界估计[J]. 西南师范大学学报: 自然科学版, 2017, 42: 25-31.

期刊菜单