Advances in Applied Mathematics
Vol.06 No.08(2017), Article ID:22801,12 pages
10.12677/AAM.2017.68115

Existence and Uniqueness of Solutions to a Class of Multi-Point Fractional Boundary Value Problem on the Infinite Interval

Xiaohong Hao1, Zhilong Cheng2

1Anhui Institute of Information Technology, Wuhu Anhui

2Suzhou University of Science and Technology, Suzhou Jiangsu

Received: Nov. 5th, 2017; accepted: Nov. 19th, 2017; published: Nov. 27th, 2017

ABSTRACT

In this paper, we consider the following multi-point boundary value problem of fractional differential equation on the infinite interval

D 0 + α u ( t ) = f ( t , u ( t ) , D 0 + α 1 u ( t ) ) , t J : = ( 0 , ) , n 1 < α < n ,

u ( 0 ) = D 0 + α 2 u ( 0 ) = D 0 + α 3 u ( 0 ) = = D 0 + α ( n 1 ) u ( 0 ) = 0 , D 0 + α 1 u ( ) = i = 1 m α i D 0 + α 1 u (ξi)

By using Leray-Schauder Nonlinear Alternative theorem and Banach fixed point theorem, some results on the existence and uniqueness of solutions can be established.

Keywords:Fractional Differential Equation, Multi-Point Boundary Value Problem, Nonlinear Alternative Theorem, Banach Fixed Point Theorem

一类无穷区间上的多点分数阶边值问题解的存在性和唯一性

郝晓红1,程智龙2

1安徽信息工程学院,安徽 芜湖

2苏州科技大学数理学院,江苏 苏州

收稿日期:2017年11月5日;录用日期:2017年11月19日;发布日期:2017年11月27日

摘 要

本文讨论一类无穷区间上的多点分数阶边值问题

D 0 + α u ( t ) = f ( t , u ( t ) , D 0 + α 1 u ( t ) ) , t J : = ( 0 , ) , n 1 < α < n ,

u ( 0 ) = D 0 + α 2 u ( 0 ) = D 0 + α 3 u ( 0 ) = = D 0 + α ( n 1 ) u ( 0 ) = 0 , D 0 + α 1 u ( ) = i = 1 m α i D 0 + α 1 u (ξi)

的可解性。通过应用Leray-Schauder非线性抉择定理和Banach压缩映像原理,得到解的存在性和唯一性。最后给出例子说明定理的适用性。

关键词 :分数阶微分方程,多点边值问题,非线性抉择定理,Banach压缩映像原理

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

由于分数计算理论和应用的快速发展,分数阶微分方程引起数学爱好者的极大兴趣。其主要应用于流体力学、分数控制系统、神经分数模型、力学、物理学、黏弹力学、化学工程和经济等方面。分数计算理论是解决微分、积分方程及其它特殊方程的有效工具。

但是分数阶微分方程边值问题的研究还处于初级阶段,尤其是无穷区间上的分数阶微分方程边值问题尚不多见。在以往的参考文献中,多是以下积分边值条件的模型。 [1] 中,赵和葛研究了无穷区间上的分数阶边值问题

D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , t ( 0 , ) , α ( 1 , 2 ) ,

u ( 0 ) = 0 , lim t D 0 + α 1 u ( t ) = β u ( ξ ) ,

其中, 0 < ξ < D 0 + α 是Riemann-Liouvill分数阶导数。

[2] 中,Nieto研究了以下边值问题

D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , t [ 0 , 1 ] , n 1 < α < n , n N ,

u ( 0 ) = u ( 0 ) = u ( 0 ) = = u n 2 ( 0 ) = 0 , u ( 1 ) = i = 1 m 2 a i u ( η i ) ,

其中, n 2 , a i > 0 , 0 < η 1 < η 2 < < η m 2 < 1 , f C ( [ 0 , 1 ] × R , R ) D R 0 + α , D C 0 + α 分别是Riemann-Liouvill分数阶导数和Caputo分数阶导数。

然而,据作者所知,到目前还没有文献研究以下无穷区间上的分数阶边值问题

D 0 + α u ( t ) = f ( t , u ( t ) , D 0 + α 1 u ( t ) ) , t J : = ( 0 , ) , n 1 < α < n , (1.1)

u ( 0 ) = D 0 + α 2 u ( 0 ) = D 0 + α 3 u ( 0 ) = = D 0 + α ( n 1 ) u ( 0 ) = 0 , D 0 + α 1 u ( ) = i = 1 m α i D 0 + α 1 u ( ξ i ) (1.2)

其中 n 1 < α n , n N , n > 2 , 0 < ξ 1 < ξ 2 < < ξ m < + , α i > 0 , i = 1 , 2 , , m f C ( J × R × R , R ) D 0 + α I 0 + α 分别是Riemann-Liouvill分数阶导数和分数阶积分。

α = n 时,问题(1.1) (1.2)是 n 阶多点边值问题,很多文献已做过研究,如 [3] [4] [5] [6] 。

本文应用非线性抉择定理和Banach压缩映像原理研究边值问题(1.1) (1.2)的解的存在性和唯一性。

本文结构如下:第二部分给出背景材料和预备知识;第三部分给出所研究问题(1.1) (1.2)的解的存在性和唯一性;最后给出例子说明我们的主要结论。

2. 预备知识

定义2.1 ( [7] )函数 y : ( 0 , + ) R α 阶Riemann-Liouville分数阶积分为

I 0 + α y ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s , t > 0 ,

其中 α > 0 Γ ( ) 为gamma函数。

定义2.2 ( [7] )函数 y : ( 0 , + ) R α 阶Riemann-Liouville分数阶导数为

D 0 + α y ( t ) = 1 Γ ( n α ) ( d d t ) n 0 t y ( s ) ( t s ) α n + 1 d s ,

其中 α > 0 Γ ( ) 为gamma函数, n = [ α ] + 1

引理2.1 ( [7] )设 f C [ 0 , 1 ] , q p 0 ,则

D 0 + p I 0 + q f ( t ) = I 0 + q p f ( t ) .

引理2.2 ( [7] )若 α > 0 ,则分数阶微分方程 D 0 + α u ( t ) = 0 当且仅当

u ( t ) = c 1 t α 1 + c 2 t α 2 + + c n t α n ,

其中 c i R , i = 1 , 2 , , n ,其中 n 是大于等于 α 的最小整数。

引理2.3 ( [8] )若 α > 0 , u C ( 0 , 1 ) L ( 0 , 1 ) , D c 0 + α u ( t ) C ( 0 , 1 ) L ( 0 , 1 ) ,存在 c i , i = 1 , 2 , , N 使得

I 0 + α D 0 + α u ( t ) = u ( t ) + c 1 t α 1 + c 2 t α 2 + + c N t α N ,

其中 c i R , i = 0 , 1 , 2 , , N 1 N = [ α ] + 1

定义空间

X = { u ( t ) C ( J , R ) : sup t J | u ( t ) | 1 + t α 1 < + , D 0 + α 1 u ( t ) C ( J , R ) , sup t J | D 0 + α 1 u ( t ) | < + }

模为 u = max { sup t J | u ( t ) | 1 + t α 1 , sup t J | D 0 + α 1 u ( t ) | }

定理2.1 ( [9] )设 X 是一个实Banach空间, Ω X 中的有界开子集, 0 Ω , F : Ω ¯ X 是一个全连续算子。则 x Ω , λ > 1 , s . t . F ( x ) = λ x ,或存在不动点 x Ω ¯

引理2.4 ( [9] ) ( X , · ) 是Banach空间。

证明:设 { u n } n = 1 是空间 ( X , · ) 中的Cauchy序列,则对 ε > 0 , N > 0 s . t . t J n , m > N ,有 | u n ( t ) 1 + t α 1 u m ( t ) 1 + t α 1 | < ε ,则 { u n ( t ) 1 + t α 1 } n = 1 一致收敛于 u ( t ) 1 + t α 1 u ( t ) X 。并且 { D 0 + α 1 u n } n = 1 一致收敛于 v X ,并且 sup t J | v ( t ) | < +

接下来证明 v = D 0 + α 1 u

sup t J | u ( t ) | 1 + t α 1 = M 0 2 ,则对于常数 M 0 2 > 0 , t J , N > 0 s . t . n > N 时,有

| u n ( t ) 1 + t α 1 u ( t ) 1 + t α 1 | < M 0 2 .

M i = sup t J | u i ( t ) | 1 + t α 1 , i = 1 , 2 , , N M = max { M i , i = 1 , 2 , , N } ,易得 | u n ( t ) | 1 + t α 1 M , n = 1 , 2 , 。于是对 t J , n 1 < α < n ,有

| 0 1 ( t s ) n 1 α ( 1 + s α 1 ) | u n ( s ) | 1 + s α 1 d s | M 0 t ( t s ) n 1 α ( 1 + s α 1 ) d s = M [ t n α 0 1 ( 1 τ ) n 1 α d τ + t n 1 0 1 ( 1 τ ) n 1 α τ α 1 d τ ] = M n α t n α + B ( α , n α ) M t n 1 ,

其中, B ( α , n α ) 是Beta函数。根据 { D 0 + α 1 u n ( t ) } n = 1 的一致收敛性及Lebesgue控制收敛定理,可得

v ( t ) = lim n + D 0 + α 1 u n ( t ) = lim n + 1 Γ ( n α ) ( d d t ) n 1 0 t ( t s ) n 1 α ( 1 + s α 1 ) u n ( s ) 1 + s α 1 d s = 1 Γ ( n α ) ( d d t ) n 1 0 t ( t s ) n 1 α ( 1 + s α 1 ) u ( s ) 1 + s α 1 d s = D 0 + α 1 u ( t ) .

α = n 时,有

v ( t ) = lim n + u n ( n 1 ) ( t ) = ( d d t ) n 1 lim n + u n ( t ) = u ( n 1 ) ( t ) .

所以, ( X , · ) 是Banach空间。

注意到Arzela-Ascoli定理不能在空间 X 中使用,为此,引入以下改进的紧凑型标准。

引理2.5 ( [10] )设 Z Y 是有界集,那么,当下述条件成立时, Z Y 中是相对紧的:

(i) 对 u ( t ) Z u ( t ) 1 + t α 1 D 0 + α 1 u ( t ) J 的任何紧区间上是等度连续的。

(ii) 对于给定的 ε > 0 常数 T = T ( ε ) > 0 s . t . t 1 , t 2 T , u ( t ) Z ,有

| u ( t 1 ) 1 + t 1 α 1 u ( t 2 ) 1 + t 2 α 1 | < ε , | D 0 + α 1 u ( t 1 ) D 0 + α 1 u ( t 2 ) | < ε .

3. 主要结论

A = ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s ,

B = ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s .

假设以下条件成立:

(H1)存在非负函数 a ( t ) , b ( t ) , c ( t ) L 1 ( J ) , s . t .

| f ( t , x , y ) | a ( t ) | x | + b ( t ) | y | + c ( t ) , 0 + ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t < Γ ( α ) , 0 + c ( t ) d t < + .

(H2)假设 i = 1 m α i < 1 , A < 1

引理3.1 假设(H1) (H2)成立。问题(1.1) (1.2)等价于积分方程

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.1)

证明:由条件(H1),

0 | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t u 0 ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t + 0 c ( t ) d t < + .

所以(3.1)定义有意义。

根据引理2.3,

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + c 1 t α 1 + c 2 t α 2 + + c n t α n . (3.2)

由条件(1.2),可得

c 2 = c 3 = = c n = 0. (3.3)

c 1 = 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] . (3.4)

将(3.3) (3.4)带入(3.2),得

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.5)

定义积分算子 T : X X

T u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.6)

引理3.1证明算子 T 的不动点就是问题(1.1) (1.2)的解。

引理3.2 假设(H1) (H2)成立。则 T : Ω ¯ X 一致连续。其中 Ω = { u X , u < R }

R B 1 A , A < 1.

证明:第一步:证明 T : Ω ¯ X 是相对紧的。

方便起见,在这一步中,记

G = 1 Γ ( α ) ( 1 i = 1 m α i ) | i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s |

V Ω ¯ 中的子集, I J 是一个紧区间, t 1 , t 2 I , t 1 < t 2 ,则对 u ( t ) V ,有

| T u ( t 2 ) 1 + t 2 α 1 T u ( t 1 ) 1 + t 1 α 1 | | 1 Γ ( α ) 0 t 2 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 1 Γ ( α ) 0 t 1 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) 0 t 1 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 1 Γ ( α ) 0 t 1 ( t 1 s ) α 1 1 + t 1 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s | + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | 1 Γ ( α ) t 1 t 2 ( t 2 s ) α 1 1 + t 2 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) 0 t 1 | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | ,

且有

| D 0 + α 1 T u ( t 2 ) D 0 + α 1 T u ( t 1 ) | t 1 t 2 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s .

注意到对 u ( t ) V ,有 f ( t , u ( t ) , D 0 + α 1 u ( t ) ) I 中有界。

故得 T u ( t ) 1 + t α 1 , D 0 + α 1 T u ( t ) I 中一致连续。

接下来证明对 u ( t ) V ,有 f ( t , u ( t ) , D 0 + α 1 u ( t ) ) 满足引理2.5的条件(ii)。

根据条件(H1),

0 | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t u 0 ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t + 0 c ( t ) d t < A u + B R ,

于是,对 ε > 0 ,存在常数 L > 0 ,使得

L | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t < ε . (3.7)

另一方面,因为 lim t + t α 1 1 + t α 1 = 1 ,故 T 1 > 0 , s . t . t 1 , t 2 T 1 ,有

| t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | | 1 t 2 α 1 1 + t 2 α 1 | + | 1 t 1 α 1 1 + t 1 α 1 | < ε . (3.8)

类似地,因为 lim t + ( t L ) α 1 1 + t α 1 = 1 ,故 T 2 > L > 0 , s . t . t 1 , t 2 T 2 , 0 s L ,有

| ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | 1 ( t 2 s ) α 1 1 + t 2 α 1 | + | 1 ( t 1 s ) α 1 1 + t 1 α 1 | | 1 ( t 2 L ) α 1 1 + t 2 α 1 | + | 1 ( t 1 L ) α 1 1 + t 1 α 1 | < ε . (3.9)

T > max { T 1 , T 2 } ,则对 t 1 , t 2 T ,根据(3.7)~(3.9),可得

| T u ( t 2 ) 1 + t 2 α 1 T u ( t 1 ) 1 + t 1 α 1 | 1 Γ ( α ) 0 L | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L t 1 ( t 1 s ) α 1 1 + t 1 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L t 2 ( t 2 s ) α 1 1 + t 2 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) 0 L | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | d s

+ 1 Γ ( α ) L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) L ε + 2 ε Γ ( α ) + G ε = ( max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) L + 2 Γ ( α ) + G ) ε ,

且有

| D 0 + α 1 T u ( t 2 ) D 0 + α 1 T u ( t 1 ) | t 1 t 2 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s < ε .

根据引理2.5知, T V 是相对紧的。

第二步:证明 T : Ω ¯ X 连续。

u n , u Ω ¯ , n = 1 , 2 , ,且当 n + 时,有 u n u 0 ,则

| T u n ( t ) 1 + t α 1 T u ( t ) 1 + t α 1 | 1 Γ ( α ) 0 t | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + 1 Γ (α) 0 t | f ( s,u (s) , D 0 + α−1 u ( s ) ) | d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) 0 | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + 1 Γ ( α ) 0 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s

2 R Γ ( α ) 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 Γ ( α ) 0 t c ( s ) d s + 2 R i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + 2 R Γ ( α ) ( 1 i = 1 m α i ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s 2 R Γ ( α ) A + 2 Γ ( α ) B < + .

且有

| T u n ( t ) 1 + t α 1 T u ( t ) 1 + t α 1 | 2 R 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 0 t c ( s ) d s + 2 R i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s 2 R A + 2 B < + .

根据Lebesgue控制收敛定理, T 连续。

综上, T 全连续。

定理3.1 设(H1),(H2)成立,则边值问题(1.1) (1.2)至少有一个解 u X

证明: Ω 如引理3.2中定义。设 u Ω , λ > 1 , s . t . T u = λ u ,则

| T u ( t ) | 1 + t α 1 1 Γ ( α ) u 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) 0 t c ( s ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s

( 1 Γ ( α ) + 1 Γ ( α ) ( 1 i = 1 m α i ) ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + ( 1 Γ ( α ) + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s A R + B A B 1 A + B = R ,

且有

| D 0 + α 1 T u ( t ) | u 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 0 t c ( s ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s

( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s A R + B = R .

λ R = λ u = T u = max { sup | T u ( t ) | 1 + t α 1 , sup | D 0 + α 1 T u ( t ) | } R .

得到 λ 1 , 这与 λ > 1 矛盾。根据引理1.1, Ω ¯ 中存在一个不动点。故问题(1.1) (1.2)在 X 中至少有一个解。

定理3.2 设(H1),(H2)以及下面的(H3)成立,则边值问题(1.1) (1.2)有唯一解 u X

(H3)存在非负函数 l 1 ( t ) , l 2 ( t ) L 1 ( J ) 使得

| f ( t , x 1 , y 1 ) f ( t , x 2 , y 2 ) | l 1 ( t ) | x 1 x 2 | + l 2 ( t ) | y 1 y 2 |

0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < Γ ( α ) , 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < + ,

k = 2 P 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t + 2 Q 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < 1 ,

成立。其中 P = 1 Γ ( α ) + 2 Γ ( α ) ( 1 i = 1 m α i ) + 1 , Q = 2 | i = 1 m α i | Γ ( α ) ( 1 i = 1 m α i )

证明:对 u 1 , u 2 X ,有

T u 1 T u 2 sup t J | T u 1 T u 2 | 1 + t α 1 + sup t J | D 0 + α 1 T u 1 D 0 + α 1 T u 2 | 1 Γ ( α ) 0 t | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 0 t | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s

P 0 | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + Q 0 ξ i | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s 2 P u 1 u 2 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t

2 Q u 1 u 2 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t { 2 P 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t + 2 Q 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t } u 1 u 2 = k u 1 u 2 .

因为 k < 1 ,所以 T 收敛。根据Banach不动点定理,可得 T 有唯一不动点。故边值问题(1.1) (1.2)有唯一解。

4. 应用

例4.1 考虑边值问题

D 0 + 5 2 u ( t ) = | u ( t ) D 0 + 3 2 u ( t ) | 4 e t 3 2 , t J : = ( 0 , ) ,

u ( 0 ) = D 0 + 1 2 u ( 0 ) = 0 , D 0 + 3 2 u ( ) = i = 1 m α i D 0 + 3 2 u ( ξ i ) ,

其中, α = 5 2 , f ( t , x , y ) = | u ( t ) D 0 + 3 2 u ( t ) | 4 e t 3 2 .

因为

| f ( t , x , y ) | 1 8 e t 3 2 | x | + 1 8 e t 3 2 | y | ,

通过简单计算可知,

0 ( ( 1 + s 3 2 ) 1 8 e t 3 2 + 1 8 e t 3 2 ) d s = 1 3 Γ ( 5 3 ) < Γ ( 2 n 1 2 ) = 3 4 Γ ( 1 2 ) = 3 4 π .

故定理3.1的条件成立。所以边值问题(1.1) (1.2)至少有一个解。

基金项目

安徽省自然科学基金项目支持(KJ2016A071);校质量工程项目支持(2016xjjyxm04)。

文章引用

郝晓红,程智龙. 一类无穷区间上的多点分数阶边值问题解的存在性和唯一性
Existence and Uniqueness of Solutions to a Class of Multi-Point Fractional Boundary Value Problem on the Infinite Interval[J]. 应用数学进展, 2017, 06(08): 956-967. http://dx.doi.org/10.12677/AAM.2017.68115

参考文献 (References)

  1. 1. Zhao, X.K. and Ge, W.G. (2010) Unbounded Solutions for a Fractional Boundary Value Problems on the Infinite In-terval. Acta Applicandae Mathematicae, 109, 495-505.
    https://doi.org/10.1007/s10440-008-9329-9

  2. 2. El-Shahed, M. and Nieto, J.J. (2010) Nontrivial Solutions for a Nonlinear Multi-Point Boundary Value Problem of Fractional Order. Computers & Mathematics with Applications, 59, 3438-3443.
    https://doi.org/10.1016/j.camwa.2010.03.031

  3. 3. Guo, Y., Ji, Y. and Zhang, J. (2007) Three Positive Solutions for a Nonlinear nth-Order m-Point Boundary Value Problem. Nonlinear Analysis: Theory, Methods & Applications, 68, 3485-3492.
    https://doi.org/10.1016/j.na.2007.03.041

  4. 4. Zhang, X.M., Feng, M.Q. and Ge, W.G. (2009) Existence and Nonexistence of Positive Solutions for a Class of nth-Order Three-Point Boundary Value Problems in Banach Spaces. Nonlinear Analysis: Theory, Methods & Applications, 70, 584-597.
    https://doi.org/10.1016/j.na.2007.12.028

  5. 5. Du, Z.J., Liu, W.B. and Lin, X.J. (2007) Multiple Solutions to a Three-Point Boundary Value Problem for Higher-Order Ordinary Differential Equations. Journal of Mathematical Analysis and Applications, 335, 1207-1218.
    https://doi.org/10.1016/j.jmaa.2007.02.014

  6. 6. Wong, J.Y. (2008) Multiple Fixed-Sign Solutions for a System of Higher Order Three-Point Boundary-Value Problems with Deviating Arguments. Computers & Mathematics with Applications, 55, 516-534.
    https://doi.org/10.1016/j.camwa.2007.04.023

  7. 7. Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon.

  8. 8. Podlubny, I. (1999) Fractional Differential Equations. In: Mathematics in Science and Engineering, Vol. 198, Academic Press, New York, London, Toronto.

  9. 9. Bai, Z.B. and Lu, H. (2005) Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 311, 495-505.
    https://doi.org/10.1016/j.jmaa.2005.02.052

  10. 10. Su, X.W. and Zhang, S.Q. (2011) Unbounded Solutions to a Boundary Value Problem of Fractional Order on the Half-Line. Computers & Mathematics with Applications, 61, 1079-1087.
    https://doi.org/10.1016/j.camwa.2010.12.058

期刊菜单