设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(1),15-23
PublishedOnlineJanuary2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.131002
Bernoulli•¼˜m¥äOêŽfžm
Žf
x,Üw_
∗
,â¬
†
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c124F¶¹^Fϵ2023c15F¶uÙFϵ2023c113F
Á‡
©|^gŠŽfžmŽfnا ÐÚEBernoulli•¼˜m¥†þfBernoulliD(k
—ƒéXOêŽfÙäŽfžmŽf§…y²TžmŽf¿Ø•˜"
'…c
OêŽf§žmŽf§þfBernoulliD(
TheTimeOperatoroftheTruncation
OperatoroftheNumberOperatorActing
onBernoulliFunctional
TingYang,LixiaZhang
∗
,CaishiWang
†
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Dec.4
th
,2022;accepted:Jan.5
th
,2023;published:Jan.13
th
,2023
∗1˜Šö"
†ÏÕŠö"
©ÙÚ^:x,Üw_,â¬.Bernoulli•¼˜m¥äOêŽfžmŽf[J].nØêÆ,2023,13(1):15-23.
DOI:10.12677/pm.2023.131002
x
Abstract
Inthispaper,usingthetimeoperatortheoryofself-adjointoperator,weconstructthe
timeofthetruncationoperatorofthenumberoperatoractingonBernoullifunctional
whichiscloselyrelatedtothequantumBernoullinoiseandprovethatthethetime
operatorisnotunique.
Keywords
Numb erOperator,TimeOperator,QuantumBernoulliNoise
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Bernoulli•¼´˜a-‡•¼[1],3êÆÚÔnNõ+•¥2•A^.½Â
3Bernoulli•¼˜mþOêŽf3ïáOrnstein-UhlenbeckŒ+¥ˆüX-‡Ú[2].§Ø
=´gŠŽf,…†þfBernoulliD(kX—ƒéX,U†þfBernoulliD(E†ƒƒ'
MarkovŒ+[3],Ny›©-‡Ôn¿Â.
“žmŽf”˜c5guþfnØµ,3²;ƒéØåÆ¥,žm´z ‡âÔ[‹I¥Uþ
;KÝCþ[4].´·‚5¿ù‡¶¡k ˜½Ø5,Ï•3Ï~þfnØ¥,žm¿Ø
U*ÿ,´˜‡þf¯‡ *ÿž,¤Ižmëê.Lé• ˜ãžmS,<‚ÊH@
•3þfnإؕ3žmŽf[5].1961c,AharonovÚBohmE˜‘HamiltonianHž
mŽf[6],2000c,AsaoArai<?ØäkšòzAŠHamiltonianHžmŽf•3
5[7].2008c,AsaoArai3©z[7]¥?ØM-òz…äkk •‘Af˜mHamiltonianH
äkžmŽf ¿©Ú7‡^‡.É©z[7]¥äklÑAŠHamiltonianžmŽfEé
u,©•ÄBernoulli•¼˜m¥äOêŽfžmŽf.©|„(Xe:31!¥,Ä
k£ÁBernoulli•¼˜mÚOêŽf.e5,0žmŽf ½Â.1n!EBernoulli
•¼˜m¥äOêŽfžmŽf,¿y²TžmŽf¿Ø•˜.
2.ý•£
!{‡0'uþfBernoulli•¼˜m,OêŽfÚžmŽf½Â,PÒÚƒ'(J,•
[SN•„©z[3][8][9]Ú[10].
DOI:10.12677/pm.2023.13100216nØêÆ
x
NL«šKê8,CL«Eê8,Γ•Nk•˜8,=Γ={σ|Γ∈N,#σ<∞},Ù¥,
#(σ)•8ÜσÄê.Dom BL«ŽfB½Â•,B
∗
L«BÝŽf.
‰½˜‡Vǘm(Ω,F,P),Z=(Z
n
)
n≥0
´(Ω,F,P)þ˜Õá‘ÅCþ,÷
v^‡:
P{Z
n
= ε
n
}= θ
n
,P{Z
n
=
−1
ε
n
}= 1−θ
n
,n≥0
Ù¥ε
n
=
q
1−θ
n
θ
n
,0<θ
n
<1.F=σ(Z
n
,n∈N)´Z=(Z
n
)
n≥0
)¤σ-“ê.d©z[8]•,
Z= (Z
n
)
n≥0
´(Ω,F,P)þlÑžmBernoulliD(.
hL«²•ŒÈBernoulli•¼˜m,=
h= L
2
(Ω,F,P).(1)
½Âh·,·i•˜mhþSÈ,¿½h·,·i'u1˜‡CþÝ‚5,'u1‡Cþ‚5,k·k•
ƒA‰ê.d©z[1]Œ•Zäk·bL«5Ÿ,l{Z
σ
|σ∈Γ}´h;KIOÄ,Ù
¥Z
∅
= 1,
Z
σ
=
Y
j∈σ
Z
j
,σ∈Γ,σ6= ∅.(2)
ùÒL²h´˜‡Ã¡‘EHilbert˜m.
éz‡šKêk≥0,3˜mhþ•3k.Žf∂
k
:h→h,÷vk∂
k
k= 1…
∂
k
Z
σ
= 1
σ
(k)Z
σ\k
,∂
∗
k
Z
σ
= [1−1
σ
(k)]Z
σ∪k
,σ∈Γ,(3)
Ù¥∂
∗
k
L«∂
k
ÝŽf,σ\k= σ\{k},σ∪k= σ∪{k},…1
σ
(k)´σŠ•8ÜNf8«
5¼ê.
Žf∂
k
9ÙÝŽf∂
∗
k
¡•Š^uBernoulli•¼«ŽfÚO)Žf,…Žfx{∂
k
,∂
∗
k
}
k≥0
¡•þfBernoulliD([8].
þfBernoulliD(÷vž;K‡†'X(CAR),=
∂
k
∂
l
= ∂
l
∂
k
,∂
∗
k
∂
∗
l
= ∂
∗
l
∂
∗
k
,∂
∗
k
∂
l
= ∂
l
∂
∗
k
(l,k≥0,k6= l),(4)
…
∂
k
∂
k
= ∂
∗
k
∂
∗
k
= 0,∂
k
∂
∗
k
+∂
∗
k
∂
k
= I,(5)
Ù¥I´hþü Žf.
3h¥½Â‚5ŽfN
DomN= {ξ∈h|
X
σ∈Γ
(#σ)
2
|hZ
σ
,ξi|
2
<∞},(6)
Nξ=
X
σ∈Γ
#σhZ
σ
,ξiZ
σ
, ξ∈DomN,(7)
Ù¥#σL«8ÜσÄê.
DOI:10.12677/pm.2023.13100217nØêÆ
x
½Â1d(6)Ú(7)½ÂŽfN‰Š^3Bernoulli•¼þOêŽf.
d©z[3]Œ,é?¿ξ,η∈DomN,
P
∞
k=0
h∂
k
ξ,∂
k
ηi´ýéÂñ,¿…k
hξ,Nηi=
∞
X
k=0
h∂
k
ξ,∂
k
ηi.(8)
lé?¿ξ,η∈DomN,k
hξ,Nηi=
∞
X
k=0
hξ,∂
∗
k
∂
k
ηi,(9)
ùL²Œ±òOêŽfNL«•N=
P
∞
k=0
∂
∗
k
∂
k
.
e¡‰ÑžmŽf½Â,•[SNë•©z[10].
H´Hilbert˜m,H´HþgŠŽf,T´Hþ顎f,e•3Hf˜mD6= {0}
(ؘ½È—),¦D⊂Dom(TH)
T
Dom(HT)…3Dþ÷v;K†'X(CCR)
[T,H] := TH−HT= i,(10)
K¡T•H˜‡žmŽf,½¡T•H;KÝ,Ù¥f˜mD´Žfé(T,H)CCR-•,i
´Jü Žf.
3.̇(J
!̇•ÄäOêŽfžmŽf9Ùƒ'(Ø.
h
n
=Span{Z
σ
|σ∈Γ
n
},Ù¥Γ
n
={σ|σ⊂{0,1,2,···,n}},n•šKê.w,h
n
⊂h,
…{Z
σ
|σ∈Γ
n
}´k•‘Hilbert˜mh
n
˜‡IOÄ.ŽfN
n
•OêŽfNäŽf,
=
N
n
=
n
X
k=0
∂
∗
k
∂
k
.(11)
½n1éu?¿šKên≥0,N
n
´h
n
þk.gŠŽf.
y²ξ∈h
n
,·‚k
kN
n
ξk
2
=



X
σ∈Γ
n
hZ
σ
,ξiN
n
Z
σ



2
=



X
σ∈Γ
n
n
X
k=0
1
σ
(k)hZ
σ
,ξiZ
σ



2
≤
X
σ∈Γ
n



n
X
k=0
1
σ
(k)|
2
|hZ
σ
,ξi



2
≤(n+1)
2
|hZ
σ
,ξi|
2
=
(n+1)
2
kξk
2
,
KkN
n
k≤n+1,lN
n
´k..eyŽfN
n
´é¡.
DOI:10.12677/pm.2023.13100218nØêÆ
x
hN
n
Z
σ
,ξi=
D
N
n
X
τ∈Γ
n
hZ
τ
,Z
σ
iZ
τ
,ξ
E
=
D
X
τ∈Γ
n
hZ
τ
,Z
σ
iN
n
Z
τ
,ξ
E
=
D
X
τ∈Γ
n
#
n
τhZ
τ
,Z
σ
iZ
τ
,ξ
E
= h#
n
σZ
σ
,ξi= hZ
σ
,#
n
σξi=
D
Z
σ
,#
n
σ
X
σ∈Γ
n
hZ
σ
,ξiZ
σ
E
=
D
Z
σ
,
X
σ∈Γ
n
#
n
σhZ
σ
,ξiZ
σ
E
=
D
Z
σ
,
X
σ∈Γ
n
hZ
σ
,ξiN
n
Z
σ
E
= hZ
σ
,N
n
ξi.
nþ,N
n
´k.gŠŽf.
½n2éuh
n
þŽfN
n
,
σ(N
n
) = {0,1,2,···,n+1},
…ˆAŠ-ê•g•C
0
n+1
,···,C
k
n+1
,···,C
n+1
n+1
.
y²d(7)ªÚ(11)ªŒ•
N
n
Z
σ
=
n
X
k=0
1
σ
(k)Z
σ
= #
n
(σ)Z
σ
,
Ù¥#
n
(σ)=
P
n
k=0
1
σ
(k).duZ
σ
´h
n
˜‡IOÄ,KdþªŒ•,#
n
(σ)´N
n
A
Š,Z
σ
•AŠ#
n
(σ)éAA•þ.qN
n
´h
n
þk.‚5Ž f,lN
n
•kX:Ì,
σ(N
n
) = {0,1,2,···,n+1}.eyN
n
AŠ-ê.
ŠâAŠ-ê½ÂŒ•,AŠλ-êmuÙAf˜m‘ê,=m= dim
n
Span{Z
σ
|
σ∈Γ
n
}
o
.u´,#
n
(σ)=0,=σ=∅,AŠ0-êm=dim
n
Span{Z
∅
}
o
=C
0
n+1
=1,
#
n
(σ) = 1,AŠ1-êm= dim
n
Span{Z
σ
|σ∈Γ
n
}
o
= C
1
n+1
,Ón,#
n
(σ) = 2,AŠ2
-êm= C
2
n+1
,±daí,#
n
(σ) =k,AŠkéA-êm= C
k
n+1
,k∈{0,1,2,···,n+1}.
l,AŠ0,···,k,···,n+1-ê•g•C
0
n+1
,···,C
k
n+1
,···,C
n+1
n+1
.
Ï•Γ´Œêá‘,ŒL«{Z
σ
|σ∈Γ}•(e
j
)
n≥1
,¦
{e
1
,e
2
,...,e
j
n
}= {Z
σ
|σ∈Γ
n
},n≥1
Ù¥j
n
= 2
n+1
,Kéz‡n≥1k
h
n
= Span{e
1
,e
2
,···,e
j
n
},j
n
= 2
n+1
,
Ïd,{e
1
,e
2
,···,e
j
n
},j
n
= 2
n+1
´h
n
˜‡IOÄ.
••BOŽ,{E
k
}
n+1
k=0
L«N
n
AŠ,{e
km
|k∈(0,1,...,n+1),m∈(1,2,...,M
k
)}L
«AŠE
k
¤éAA•þ, Ù¥mL«AŠE
k
-ê, M
k
= max{C
k
n+1
|k= 0,···,n+1}.
ddŒN
n
e
km
= E
k
e
km
.
-e
k
=
1
√
M
k
P
M
k
m=1
e
km
,KN
n
e
km
= E
k
e
km
,w,{e
k
}•´h
n
IOX,he
k
,e
l
i=δ
kl
.Ù
DOI:10.12677/pm.2023.13100219nØêÆ
x
¥δ
kl
•Dirac¼ê.e¡½Âh
n
þ‚5ŽfT
n
Xe:
T
n
ϕ:= i
n+1
X
k=1
(
n+1
X
l6=k
he
l
,ϕi
E
k
−E
l
)e
k
,(12)
P
kT
n
ϕk
2
=
n+1
X
k=0




n+1
X
l6=k
he
l
,ϕi
E
k
−E
l




2
.(13)
阇f8D⊂H,Span{D}´dD¥k•õ‡•þ‚5|Üܤ‚5f˜m,e¡-
D
0
= Span
n
e
k
−e
l
|k,l∈{0,1,···,n+1}
o
⊂h
n
.(14)
½n3Žf
ˆ
T
n
:= T
n
|
D
0
´é¡.
y²•Iyé?¿ϕ∈D
0
,khϕ,
ˆ
T
n
ϕi´¢=Œ.
hϕ,
ˆ
T
n
ϕi=
D
ϕ,i
n+1
X
k=0
(
n+1
X
l6=k
he
l
,ϕi
E
k
−E
l
)e
k
E
=
i
n+1
X
k=0
hϕ,e
k
i
n+1
X
l6=k
he
l
,ϕi
E
k
−E
l
,
hϕ,
ˆ
T
n
ϕi
∗
=i
n+1
X
k=0
he
k
,ϕi
n+1
X
l6=k
hϕ,e
l
i
E
k
−E
l
) =
n+1
X
l=0
hϕ,
e
l
i
n+1
X
l6=k
he
k
,ϕi
E
l
−E
k
= hϕ,
ˆ
T
n
ϕi,
lhϕ,
ˆ
T
n
ϕi´¢.
e¡½ny²
ˆ
T
n
´N
n
žmŽf.
½n4顎fT
n
´N
n
˜‡žmŽf,Ù¥D
0
´(
ˆ
T
n
,N
n
)CCR-•.=D
0
⊂Dom(
ˆ
T
n
N
n
)∩
Dom(N
n
ˆ
T
n
)…k
[
ˆ
T
n
,N
n
] = i, ∀ϕ∈D
0
.(15)
y²duN
n
,
ˆ
T
n
´h
n
þk.‚5Žf,w,D
0
´(
ˆ
T
n
,N
n
)CCR-•,=D
0
⊂Dom(
ˆ
T
n
N
n
)∩
Dom(N
n
ˆ
T
n
).eyé?¿ϕ∈D
0
,[
ˆ
T
n
,N
n
] = i.
-ϕ
kl
=
e
k
−e
l
,k
ˆ
T
n
e
k
=i
n+1
X
p=0
(
n+1
X
q6=p
he
q
,e
k
i
E
p
−E
q
)e
p
= i
n+1
X
p6=k
1
E
p
−E
k
e
p
.
DOI:10.12677/pm.2023.13100220nØêÆ
x
u´,ÏLc[OŽ,Œ
ˆ
T
n
ϕ
kl
=
ˆ
T
n
(e
k
−e
l
) =
i
n+1
X
p6=k
1
E
p
−E
k
e
p
−i
n+1
X
p6=l
1
E
p
−E
l
e
p
=
i
1
E
l
−E
k
e
l
+i
n+1
X
p6=k,l
1
E
p
−E
k
e
p
−(i
1
E
k
−E
l
e
k
+i
n+1
X
p6=l,k
1
E
p
−E
l
e
p
) =
i
1
E
l
−E
k
e
l
−i
1
E
k
−E
l
e
k
+i
n+1
X
p6=k,l
1
E
p
−E
k
e
p
−i
n+1
X
p6=l,k
1
E
p
−E
l
e
p
=
i
n+1
X
p6=k,l
(
1
E
p
−E
k
−
1
E
p
−E
l
)e
p
+
i
E
l
−E
k
e
l
−
i
E
k
−E
l
e
k
=
i(E
k
−E
l
)
n+1
X
p6=k,l
1
(E
p
−E
k
)(E
p
−E
l
)
e
p
+
i
E
l
−E
k
e
l
−
i
E
k
−E
l
e
k
,
?˜Ú/,
N
n
ˆ
T
n
ϕ
kl
=N
n
[i(E
k
−E
l
)
n+1
X
p6=k,l
1
(E
p
−E
k
)(E
p
−E
l
)
e
p
+
i
E
l
−E
k
e
l
−
i
E
k
−E
l
e
k
] =
i(E
k
−E
l
)
n+1
X
p6=k,l
1
(E
p
−E
k
)(E
p
−E
l
)
E
p
e
p
+
i
E
l
−E
k
E
l
e
l
−
i
E
k
−E
l
E
k
e
k
.
,˜•¡,
N
n
ϕ
kl
= E
k
e
k
−E
l
e
l
,
?,
ˆ
T
n
N
n
ϕ
kl
=
ˆ
T
n
(E
k
e
k
−E
l
e
l
) = E
k
ˆ
T
n
e
k
−E
l
ˆ
T
n
e
l
=
E
k
i
n+1
X
p6=k
1
E
p
−E
k
e
p
−E
l
i
n+1
X
p6=l
1
E
p
−E
l
e
p
=
iE
k
(
n+1
X
p6=k,l
1
E
p
−E
k
e
p
+
1
E
l
−E
k
e
k
)−iE
l
(
n+1
X
p6=l,k
1
E
p
−E
l
e
p
+
1
E
k
−E
l
e
l
) =
i(E
k
−E
l
)
n+1
X
p6=k,l
E
p
(E
p
−E
k
)(E
p
−E
l
)
e
p
+
i
E
l
−E
k
E
k
e
l
−
i
E
k
−E
l
E
l
e
k
.
nÜþã'X,Œ
N
n
ˆ
T
n
ϕ
kl
−
ˆ
T
n
N
n
ϕ
kl
= iϕ
kl
,
ù¿›Xé?¿ϕ∈D
0
,N
n
ˆ
T
n
−
ˆ
T
n
N
n
= i.nþ,
ˆ
T
n
´N
n
žmŽf.
DOI:10.12677/pm.2023.13100221nØêÆ
x
½n5ÏLé¡6Ä,?ØN
n
žmŽf¿Ø´•˜.
½n5T
1
´h
n
þ顎f,÷vD
0
⊂Dom(T
1
N
n
)∩Dom(N
n
T
1
),¿…é?¿ϕ∈D
0
,
kT
1
N
n
ϕ= N
n
T
1
ϕ,=[T
1
,N
n
] = 0,K
ˆ
T
n
+T
1
´N
n
žmŽf.
y²w,D
0
´(
ˆ
T
n
+T
1
,N
n
)CCR-•.ÏL{üOŽŒ
[T
n
+T
1
,N
n
] =(
ˆ
T
n
+T
1
)N
n
−N
n
(
ˆ
T
n
+T
1
) =
ˆ
T
n
N
n
+T
1
N
n
−N
n
ˆ
T
n
−N
n
T
1
= i.
u´,
ˆ
T
n
+T
1
´N
n
žmŽf.
Ä7‘8
I[g,‰ÆÄ7‘8(No.12261080).
ë•©z
[1]Privault, N. (2008)Stochastic Analysis of Bernoulli Processes.ProbabilitySurveys, 5, 435-483.
https://doi.org/10.1214/08-PS139
[2]Wang,C.S.,Lu,Y.C.andChai,H.F.(2011)AnAlternativeApproachtoPrivault’sDiscrete-
TimeChaoticCalculus.JournalofMathematicalAnalysisandApplications,373,643-654.
https://doi.org/10.1016/j.jmaa.2010.08.021
[3]Wang,C.S.andChen,J.S.(2016)QuantumMarkovSemigroupsConstructedfromQuantum
BernoulliNoises.JournalofMathematicalPhysics,57,ArticleID:023502.
https://doi.org/10.1063/1.4939920
[4]Arai,A.andMatsuzawa,Y.(2008)TimeOperatorsofaHamiltonianwithPurelyDiscrete
Spectrum.ReviewsinMathematicalPhysics,20,951-978.
https://doi.org/10.1142/S0129055X08003481
[5]Pauli, W.(2012) General PrinciplesofQuantumMechanics. SpringerScienceBusinessMedia,
Berlin.
[6]Aharonov,Y.and Bohm,D.(1961)Time intheQuantumTheoryand theUncertaintyRelation
forTimeandEnergy.PhysicalReview,122,1649-1658.
https://doi.org/10.1103/PhysRev.122.1649
[7]Arai,A.(2009)NecessaryandSufficientConditionsforaHamiltonianwithDiscrete
EigenvaluestoHaveTimeOperators.LettersinMathematicalPhysics,87,67-80.
https://doi.org/10.1007/s11005-008-0286-z
[8]Wang, C.S., Chai, H.F.andLu, Y.C. (2010)Discrete-Time QuantumBernoulli Noises.Journal
ofMathematicalPhysics,51,ArticleID:053528.https://doi.org/10.1063/1.3431028
DOI:10.12677/pm.2023.13100222nØêÆ
x
[9]Wang,C.S.andYe,X.J.(2016)QuantumWalkinTermsofQuantumBrnoulliNoises.
QuantumInformationProcess,15,1897-1908.https://doi.org/10.1007/s11128-016-1259-2
[10]Arai,A.(2020)InequivalentRepresentationsofCanonicalCommutationandAnti-
CommutationRelations:Representation-theoreticalViewpointforQuantumPhenomena.
SpringerNature,Berlin.
DOI:10.12677/pm.2023.13100223nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.