设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(1),74-80
PublishedOnlineJanuary2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.131008
²¡þ±~°ü«•Ý4à-‚6
ëë묬¬©©©
∗
§§§ÜÜÜLLL
H“‰ŒÆ§H&²
ÂvFϵ2022c1222F¶¹^Fϵ2023c121F¶uÙFϵ2023c129F
Á‡
©Ì‡ïÄ²¡þü«•Ý4à-‚6,3ùü«6e,XJЩ4à-‚´2Â~°
-‚,@o3ùü«6euÐ,-‚E,±2Â~°,¿…°Ý†Ð©-‚° ݃.AO/,
XJЩ-‚´~°-‚,@o3ùü«6e-‚©ª±~°,¿…°Ý†Ð©-‚°Ýƒ"
'…c
•Ý6§2Â°Ý¼ê§~°-‚
Closed-ConvexCurvilinearFlowswith
TwoKindsofLengthPreservingConstant
WidthonthePlane
HuiwenZhao
∗
,ZeyuanZhang
YunnanNormalUniversity,KunmingYunnan
Received:Dec.22
nd
,2022;accepted:Jan.21
st
,2023;published:Jan.29
th
,2023
∗ÏÕŠö"
©ÙÚ^:묩,ÜL.²¡þ±~°ü«•Ý4à-‚6[J].nØêÆ,2023,13(1):74-80.
DOI:10.12677/pm.2023.131008
묩§ÜL
Abstract
Inthispaper,wemainlystudytwokindsoflengthpreservingclosedconvexcurve
flowsontheplane.Underthesetwokindsofflows,iftheinitialclosedconvexcurve
isageneralizedconstantwidthcurve,thenthecurvewillstillmaintainageneralized
constantwidthunderthesetwokindsofflows,andthewidthisequaltothewidth
oftheinitialcurve.Especially,iftheinitialcurveisaconstantwidthcurve,thenthe
curvewillalwaysmaintainaconstantwidthunderthesetwokindsofflows,andthe
widthisequaltothewidthoftheinitialcurve.
Keywords
PreserveLengthFlow,GeneralizedWidthFunction,ConstantWidthCurve.
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
²¡þ-‚6ïÄ´AÛ©ÛÆ˜‡©|,Cc5,Ñuˆ«Ôny–Úy¢¯KI
‡,-‚ÉåK•)ƒA65Ÿ•5•õ'5ÚïÄ.31984c§GageHamilton3
©[1]¥ïÄͶ-‚ 6
(
∂F(u,t)
∂t
=k(u,t)N(u,t)
F(u,0)=F
0
(u)
(1.1)
ª¥F(u,t):[a,b]×[0,∞)→R
2
´˜x²¡4-‚,k(u,t)´ƒ é-Ç,N(u,t)´ü S{•þ.
y²Щ-‚•²¡{ü4à-‚ž,K3üzL§¥˜†±à5,…3k•žmS ¤
˜‡:.©[2–5]ïÄo«ØÓa.•Ý6.
©Ì‡ïĄݼꥹk| ¼êü«•Ý-‚6,•ÄXJЩ-‚´°Ý
•ω
m
(θ,0)2Â~°-‚,@o-‚3ùü«6euÐ,´Ä±2Â~°,¿…°Ý†Ð©
-‚°Ýƒ?
DOI:10.12677/pm.2023.13100875nØêÆ
묩§ÜL
Äk32010c,ŠŸp3©[5]¥ïÄL„ݼꕱe(-‚6.F
0
´Ð©4à-‚,
F(u,t):S
1
×[0,T)→R
2
´˜x²¡1w-‚.F(u,t)÷v±eüz•§



∂F
∂t
=

p(u,t)−
1
k(u,t)

N(u,t)
F(u,0)=F
0
(u)
(1.2)
Ù¥p=p(u,t)•üz-‚| ¼ê,N=N
in
(u,t)•üz-‚ü S{•þ,k(u,t)•üz-
‚-Ç.
l©[5]¥Œ±µF
0
´²¡þЩ4à-‚,-‚F(u,t)36(1.2)eüz,3üzL§¥
-‚X(u,t)±4à5ØC,…-‚3uÐL§¥C5,•ÝL(t)±ØC,¡ÈA(t)O
Œ,žmªuáž,3C
∞
ÝþeÂñk•.
duUCuЕ§ƒ•©þ•K•-‚ëêL«,جK•uÐ-‚AÛ/G,¤±
·‚ÀJ·ƒ•©þ5{z-‚1•AÛ©Û,Ïd,3©[5]¥Œ±•ÄXe†ª(1.2)d
uЯKµ



∂F
∂t
=

p(u,t)−
1
k(u,t)

N(u,t)−
1
k
∂
(
p(u,t)−
1
k(u,t)
)
∂s
T(u,t)
F(u,0)=F
0
(u)
(1.3)
Ù¥T(u,t)•ü ƒ•þ.
ƒ32017c,À(Ú‘²3©[6]¥•ïÄL„ݼꥹk| ¼ê-‚6.F
0
´
Щ4à-‚,F(u,t):S
1
×[0,T)→R
2
´˜x²¡1w-‚.F(u,t)÷v±eüz•§



∂F
∂t
=

p(u,t)−α
L(t)
2π
+(1−α)
2A(t)
L(t)

N(u,t)
F(u,0)=F
0
(u)
(1.4)
Ù¥p=p(u,t)•üz-‚| ¼ê,N=N
in
(u,t)•üz-‚ü S{•þ,L(t)•üz-‚
•Ý,A(t)•üz-‚¡È,0≤α≤1§3αØÓŠœ¹e,üz-‚•ÝÚ¡ÈüN
5ØÓ,©Ì‡ïÄα=1œ¹,=



∂F
∂t
=

p(u,t)−
L(t)
2π

N(u,t)
F(u,0)=F
0
(u)
.(1.5)
l©[6]¥Œ±µF
0
´²¡þЩ4à-‚,-‚F(u,t)36(1.5)eüz,3üzL§¥
-‚X(u,t)±4à5ØC,…-‚3uÐL§¥C5,•ÝL(t)±ØC,¡ÈA(t)O
Œ,žmªuáž,3C
∞
ÝþeÂñk•.
duUCuЕ§ƒ•©þ•K•-‚ëêL«,جK•uÐ-‚AÛ/G,¤±
·‚ÀJ·ƒ•©þ5{z-‚1•AÛ©Û,Ïd,3©[6]¥Œ±•ÄXe†ª(1.5)d
uЯKµ



∂F
∂t
=

p(u,t)−
L(t)
2π
+

N(u,t)−
1
k
∂
(
p(u,t)−
L(t)
2π
)
∂s
T(u,t)
F(u,0)=F
0
(u)
(1.6)
DOI:10.12677/pm.2023.13100876nØêÆ
묩§ÜL
©̇½nQãXe:
½n1.1 XJЩ4à-‚´°Ý•ω
m
(θ,0)2Â~°-‚,@o36(1.3)euÐ,-‚
±2Â~°,¿…°Ý†Ð©-‚°Ýƒ.
½n1.2 XJЩ4à - ‚´°Ý•ω
m
(θ,0)=m·
L(0)
2π
2Â~°-‚,@o36(1.6)eu
Ð,-‚±2Â~°,¿…°Ý†Ð©-‚°Ýƒ.
©(Sü:
©©•n‡Ü©,1˜Ü©•ÚóÚ̇½n,ùܩ̇0„ݼꥹk| ¼ê
ü«•Ý-‚6ïÄµ9(J,Óž‰Ñ©ïÄ8Ú̇(J;1Ü©•ý
•£,ùܩ̇½Â| ¼ê!°Ý¼ê±92Â°Ý¼ê,±9ü‡-‡Ún;1nÜ©
•̇½ny²,ùܩ̇|^ŠŸp3©[5]¥9À(Ú‘²3©[6]¥ïÄ²¡þü
«•Ý4à-‚6‰Ñ©̇½ny².
2.ý•£
½Â2.1[7]à8| ¼ê:K•k.4à8,3²¡þ?¿À‹IXx0y.g:0Ú
‚0R.ŠR†u0R…†Kƒ‘?¿˜†‚G
1
(P
1
,θ).8p
1
þ(.•p,=
p=sup{p
1
:G
1
(p
1
,θ)∩K6=∅},(2.1)
Ù¥G
1
†K•š˜L«G
1
†Kƒ¿g.†(2.1)ª¥pƒA †‚G(p,θ)w,•K| ‚,
¡•K÷θ••| ‚.¼êp(θ)¡•à8K| ¼ê.
½Â2.2[7]°Ý¼ê:Ú?¼ê
ω(θ)=p(θ)+p(θ+π),(2.2)
w,,ω(θ)´éu••θ,Úθ+πü²1| ¼êmål,¡•à8K÷θ••°Ý,¼êω(θ)¡
•à8K°Ý¼ê.
½Â2.3[8]2Â°Ý¼ê:éuêm≥2,ω(θ)=p(θ)+p(θ+π)í2/ª•µ
ω
m
(θ)=p(θ)+p

θ+
2π
m

+···+p

θ+
2(m−1)π
m

(2.3)
Ï•
1+cos

2π
m

+···+cos

2(m−1)π
m

=0,
sin

2π
m

+···+sin

2(m−1)π
m

=0
¤±ω
m
(θ)†:OÀÃ',…§±Ï•
2π
m
.
DOI:10.12677/pm.2023.13100877nØêÆ
묩§ÜL
Ún2.1[5]XJ4à-‚F(u,t)Uì•§(1.2)üz,Kk
p
t
=
1
k
−p(2.4)
Ún2.2[6]XJ4à-‚F(u,t)Uì•§(1.5)üz,Kk
p
t
=
L
2π
−p(2.5)
3.̇½ny²
½n1.1y²d
p+p
θθ
=
1
k
(3.1)
2dÚn2.1Œ
p
t
=p
θθ
(3.2)
qd½Â2.3Œ
∂ω
m
(θ,t)
∂t
=
∂
∂t
(p(θ,t))+
∂
∂t

p

θ+
2π
m
,t

+···+
∂
∂t

p

θ+
2(m−1)π
m
,t

=
∂
2
p(θ,t)
∂θ
2
+
∂
2
p

θ+
2π
m
,t

∂θ
2
+···+
∂
2
p

θ+
2(m−1)π
m
,t

∂θ
2
=
∂
2
ω
m
(θ,t)
∂θ
2
(3.3)
XJЩ-‚´°Ý•ω
m
(θ,0)~°-‚,@ok
ω
m
(θ,t)=
1
2
√
πt
Z
+∞
−∞
ω
m
(θ,0)e
−
(θ−u)
2
4t
du=ω
m
(θ,0)(3.4)
=3uÐ¥-‚2Â~°5±ØC,¿…°Ý†Ð©-‚ƒ.
íØ1[5] AO/,m=2ž,XJЩ-‚´~°-‚,@o-‚36(1.3)e©ª±~°,
¿…°ÝØC.
½n1.2y²d½Â2.3†Ún2.2
∂ω
m
(θ,t)
∂t
=
∂
∂t
(p(θ,t))+
∂
∂t

p

θ+
2π
m
,t

+···+
∂
∂t

p

θ+
2(m−1)π
m
,t

=
L(0)
2π
−p(θ,t)+
L(0)
2π
−p

θ+
2π
m
,t

+···+
L(0)
2π
−p

θ+
2(m−1)π
m
,t

=m·
L(0)
2π
−ω
m
(θ,t).
(3.5)
DOI:10.12677/pm.2023.13100878nØêÆ
묩§ÜL
d(3.5)†Ð©^‡
(
∂ω
m
(θ,t)
∂t
=m·
L(0)
2π
−ω
m
(θ,t)
ω
m
(θ,0)=m·
L(0)
2π
(3.6)
e¡)•§(3.6),Äk-
ω
m
(θ,t)=C(t)e
−t
(3.7)
é(3.7)üà'ut¦
∂ω
m
(θ,t)
∂t
=
dC(t)
dt
e
−t
−C(t)e
−t
(3.8)
ò(3.7)“\(3.6)2éá(3.8)
dC(t)
dt
=e
t
m·
L(0)
2π
(3.9)
é(3.9)†mü>È©
C(t)=ω
m
(θ,0)+m·
L(0)
2π

e
t
−1

(3.10)
ò(3.10)“\(3.7)
ω
m
(θ,t)=

ω
m
(θ,0)+m·
L(0)
2π

e
t
−1


e
−t
(3.11)
Ï•ω
m
(θ,0)=m·
L(0)
2π
,¤±ω
m
(θ,t)=m·
L(0)
2π
,=½n1.2¤á.
íØ2AO/,m=2ž,XJЩ4à-‚´°Ýω(θ,0)=
L(0)
π
~°-‚,@o3
6(1.6)euÐ,-‚±~°,¿…°Ý†Ð©-‚°Ýƒ.
©`:3½n1.1¥,em=2,KT(J3©[5]¥Š ŸpïÄ.©(J3½Â2Â
°Ý¼êÄ:þéƒc(J?1í2,ƒéuƒc®k(J,¬•´L˜.
ë•©z
[1]Gage,M.E.(1984)CurveShorteningMakesConvexCurvesCircular.InventionesMathemati-
cae,76,357-364.https://doi.org/10.1007/BF01388602
[2]Pan,S.L.(2001)OnaPerimeter-PreservingPlaneCurveFlow.Applied Mathematics-AJournal
ofChineseUniversities,16,409-417.https://doi.org/10.1007/s11766-001-0009-z
[3]Pan,S.L.andYang,J.N.(2008)OnaNon-LocalPerimeter-PreservingCurveEvolutionProb-
lemforConvexPlaneCurves.ManuscriptaMathematica,127,469-484.
https://doi.org/10.1007/s00229-008-0211-x
[4]Ma,L.andZhu,A.Q.(2012)OnaLengthPreservingCurveFlow.Monatshefte f¨ur Mathematik,
165,57-78.https://doi.org/10.1007/s00605-011-0302-8
[5]ŠŸp.²¡þ˜«•Ý-‚6[D]:[a¬Æ Ø©].þ°:uÀ“‰ŒÆ,2010.
[6]À(,‘².²¡þ˜a1wà-‚6[J].A^êÆ†OŽêÆÆ,2017,31(1):114-121.
[7]r•²,‘¹ƒ.‡©AÛ[M].®:®p˜Ñ‡,2008.
DOI:10.12677/pm.2023.13100879nØêÆ
묩§ÜL
[8]Ou,K.andPan,S.L.(2010)SomeRemarksaboutClosedConvexCurves.PacificJournalof
Mathematics,248,393-401.https://doi.org/10.2140/pjm.2010.248.393
DOI:10.12677/pm.2023.13100880nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.