设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(2),131-148
PublishedOnlineFebruary2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.132016
˜
a
p
−
Laplace
•
§
Ä
)
•
3
5
†
8
¥
5
œœœ
KKK
ú
ô
“
‰
Œ
Æ
ê
Æ
†
O
Ž
Å
‰
ÆÆ
§
ú
ô
7
u
Â
v
F
Ï
µ
2022
c
12
31
F
¶
¹
^
F
Ï
µ
2023
c
1
30
F
¶
u
Ù
F
Ï
µ
2023
c
2
6
F
Á
‡
©
ï
Ä
p
−
Laplace
•
§
µ
−
∆
p
u
+
|
u
|
p
−
2
u
=
Q
n
(
x
)
|
u
|
q
−
2
u,x
∈
R
N
,
Ù
¥
µ
∆
p
u
=
div
(
|∇
u
|
p
−
2
∇
u
)
§
1
<p<N
§
p<q<p
∗
:=
Np
N
−
p
"
n
→∞
ž
§
k
.
¼
ê
Q
n
(
x
)
g
Ø
supp
{
Q
+
n
}
Â
•
k
•
:
8
"
·
‚
æ
^
å
4
Ú
8
¥
;
5
n
y
²
p
−
Laplace
•
§
Ä
)
•
3
5
Ú
8
¥
5
"
'
…
c
p
−
Laplace
§
Ä
)
§
•
3
5
§
8
¥
5
ExistenceandConcentrationof
GroundStatesforaClassof
p
-LaplaceEquation
YingShi
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Dec.31
st
,2022;accepted:Jan.30
th
,2023;published:Feb.6
th
,2023
©
Ù
Ú
^
:
œ
K
.
˜
a
p
−
Laplace
•
§
Ä
)
•
3
5
†
8
¥
5
[J].
n
Ø
ê
Æ
,2023,13(2):131-148.
DOI:10.12677/pm.2023.132016
œ
K
Abstract
Inthispaper,westudythefollowing
p
−
Laplaceequation:
−
∆
p
u
+
|
u
|
p
−
2
u
=
Q
n
(
x
)
|
u
|
q
−
2
u,x
∈
R
N
,
where
∆
p
u
=
div
(
|∇
u
|
p
−
2
∇
u
)
,
p>
1
,
N
≥
1
,
p<q<p
∗
=
Np
N
−
p
(
1
<p<
∞
,
1
≤
N
≤
p
).
Q
n
areboundedfunctionswithself-focusingcoresupp
Q
+
n
whichshrinkstoafinite
setofpointsas
n
→∞
.Viatheconstraintminimizingmethodandtheconcentration
compactnessprinciple,weprovetheexistenceandconcentrationforgroundstates.
Keywords
p
-Laplace,GroundStates,Existence,Concentration
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
‘
X
ê
Æ
!
Ô
n
g
,
‰
Æ
u
Ð
,
p
−
Lapace
•
§
˜
†
´
I
S
2
Œ
‰
ï
ó
Š
ö
ï
Ä
9
:
¯
K
.
3
[1]
¥
,Bonanno-Livrea
y
²
p
−
Laplace
•
§
n
)
•
3
5
.
3
[2]
¥
,Ferrero-Gazzola
y
²
g
.
O
•
½
‡
.
O
•
š
‚
5
p
−
Laplace
•
§
»
•
)
•
3
5
.
3
[3]
¥
§
Liu
y
²
p
-
‡
‚
5
g
.
p
−
Laplace
•
§
Ä
)
•
3
5
.
3
[4]
¥
,Costa-Magalhes
y
²
p
−
Laplace
Ä
•
§
š
²
…
)
•
3
5
.
©
•
Ä
p
−
Laplace
•
§
:
−
∆
p
u
+
|
u
|
p
−
2
u
=
Q
n
(
x
)
|
u
|
q
−
2
u,x
∈
R
N
,
(
E
n
)
Ù
¥
:
N
≥
1, 1
<p<N
,
p<q<p
∗
:=
Np
N
−
p
.
n
→∞
ž
,
k
.
¼
ê
Q
n
(
x
)
g
Ø
supp
{
Q
+
n
}
Â
•
k
•
:
8
.
5
1
é
u
•
§
(
E
n
)
,
¡
{
x
|
Q
n
(
x
)
>
0
}
Ú
{
x
|
Q
n
<
0
}
¥
:
©
O
•
g
à
Ú
à
.
3
©
DOI:10.12677/pm.2023.132016132
n
Ø
ê
Æ
œ
K
z
[5]
¥
,Buryak-Trapani
ï
Ä
g
à
Ú
à
œ
/
,
¿
y
²
f
Ú
V
f
•
3
5
.
é
u
‘
C
Ò
¼
ê
š
‚
5
‡
©•
§
ƒ
'
(
J
§
ë
•
[6–9]
.
p
= 2
ž
,
p
−
Laplace
•
§
Œ
z
•
µ
−
∆
u
+
u
=
Q
n
(
x
)
|
u
|
q
−
2
u,u
∈
H
1
0
(Ω)
,
(1)
Ù
¥
:
Q
n
(
x
)
C
Ò
.
3
[10]
¥
,Ackermann-Szulkin
y
²
µ
(i)
n
→∞
,
8
Ü
{
x
∈
Ω
|
Q
n
>
0
}
Â
:
x
0
ž
,
Š
ö
æ
^
å
4
•{
y
²
Laplace
•
§
(1)
Ä
)
•
3
5
,
¿
?
˜
Ú
y
²
ù
Ä
)
3
x
0
?
'
u
H
1
‰
ê
8
¥
.
(ii)
n
→∞
,
8
Ü
{
x
∈
Ω
|
Q
n
>
0
}
Â
ü
‡
Ø
Ó
:
x
1
6
=
x
2
ž
,
Š
ö
æ
^
ä
¼
ê
•{
y
²
n
¿
©
Œ
ž
Ä
)
•
3
5
9
Ù
H
1
‰
ê
8
¥
5
.
d
ž
,
ù
Ä
)
'
u
H
1
‰
ê
Ø
U
Ó
ž
3
x
1
Ú
x
2
?
8
¥
.
•
?
˜
Ú
(
½
Ä
)
'
u
H
1
‰
ê
3
x
1
?
„
´
x
2
?
8
¥
,Fang-Wang[11]
Ò
A
½
¼
ê
Q
n
(
x
)
é
•
§
(1)
?
1
\
ï
Ä
.
e
-
Q
n
(
x
) =
1
,
|
x
|
<ε
n
,
−
1
,
|
x
|≥
ε
n
,
(
q
1
)
Ù
¥
:
ε
n
→
0.
Š
ö
æ
^
å
4
•{
y
²
(
q
1
)
Ä
)
•
3
5
¿
Ï
LÚ
4
•
•
§
?
1
'
Ä
)
'
u
H
1
‰
ê
3
x
0
?
8
¥
.
e
-
Q
n
(
x
) =
s
1
,x
∈
B
r
1
ε
n
(
x
1
)
,
s
2
,x
∈
B
r
2
ε
n
(
x
2
)
,
−
1
,
Ù
§
,
(
q
2
)
Ù
¥
:
s
1
,s
2
,r
1
,r
2
>
0,
x
1
6
=
x
2
,
ε
n
→
0.
Š
ö
æ
^
8
¥
;
n
y
²
Ä
)
'
u
H
1
‰
ê
3
x
1
?
8
¥
.
É
©
z
Ackermann-Szulkin [10]
Ú
Fang-Wang [11]
é
u
,
©
‘
3
ï
Ä
•
§
(
E
n
)
Ä
)
•
3
5
Ú
H
1
‰
ê
8
¥
5
"
b
(
q
1
)
¤
á
,
·
‚
k
X
e
½
n
.
½
n
1
(i)
(
E
n
)
–
•
3
˜
‡
Ä
)
¶
(ii)
u
n
•
(
E
n
)
˜
‡
Ä
)
.
Š
C
†
ϕ
n
:=
ε
p
q
−
p
n
u
n
(
ε
n
x
)
,
DOI:10.12677/pm.2023.132016133
n
Ø
ê
Æ
œ
K
K
•
3
ϕ
n
f
,
E
P
•
ϕ
n
,
¦
ϕ
n
→
ϕ
u
D
1
,p
(
R
N
)
,
…
ϕ
´
•
§
−
∆
p
u
=
Q
(
x
)
|
u
|
q
−
2
u,x
∈
R
N
,
˜
‡
Ä
)
.
ù
p
Q
(
x
) =
1
,
e
|
x
|
<
1
,
−
1
,
Ù
§
.
(iii)
é
?
¿
δ>
0
,
lim
n
→
0
ˆ
|
x
|≥
δ
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
ˆ
R
N
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
= 0
,
lim
n
→
0
ˆ
|
x
|≥
δ
|∇
u
n
|
q
dx
ˆ
R
N
|
u
n
|
q
dx
= 0
.
5
2
Sobolev
˜
m
D
1
,p
(
R
N
) :=
{
u
|∇
u
∈
L
p
(
R
N
)
,u
∈
L
p
∗
(
R
N
)
}
,
Ù
¥
‰
ê
½
Â
•
k
u
k
D
=
ˆ
R
N
|∇
u
|
p
dx
1
p
.
b
(
q
2
)
¤
á
.
Ø
”
˜
„
5
,
Ø
”
s
1
≤
s
2
¿
½
Â
β
=
r
1
r
2
qp
q
−
p
−
N
s
1
s
2
p
q
−
p
.
e
(
s
1
=
s
2
,
β<
1
½
(
s
1
<s
2
,
β
≤
1
,
·
‚
k
X
e
½
n
.
½
n
2
(i)
(
E
n
)
–
•
3
˜
‡
Ä
)
¶
(ii)
u
n
•
(
E
n
)
˜
‡
Ä
)
.
Š
C
†
ϕ
n
(
x
) :=
ε
p
q
−
p
n
u
n
(
ε
n
x
)
,
K
•
3
ϕ
n
f
,
E
P
•
ϕ
n
,
¦
ϕ
n
(
x
+
x
2
ε
n
)
→
ϕ
u
D
1
,p
(
R
N
)
,
…
ϕ
´
•
§
−
∆
p
ϕ
=
K
2
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
˜
‡
Ä
)
.
ù
p
K
2
=
s
2
,x
∈
B
r
2
(0)
,
−
1
,
Ù
§
;
DOI:10.12677/pm.2023.132016134
n
Ø
ê
Æ
œ
K
(iii)
é
u
?
¿
δ>
0
,
lim
n
→
0
ˆ
|
x
−
x
2
|≥
δ
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
ˆ
R
N
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
= 0
,
lim
n
→
0
ˆ
|
x
−
x
2
|≥
δ
|
u
n
|
q
dx
ˆ
R
N
|
u
n
|
q
dx
= 0
.
©
(
X
e
:
1
!
æ
^
å
4
y
²
½
n
1;
1
n
!
|
^
å
4
Ú
8
¥
;
•{
y
²
½
n
2.
Î
Ò
`
²
:
C
,
C
1
,
C
2
,
···
“
L
~
ê
;
B
r
(
y
) :=
{
x
∈
R
N
||
x
−
y
|
<r
}
L
«
±
y
•
%
r
•
Œ
»
¥
;
|
u
|
p
L
«
L
p
(
R
N
)
¥
‰
ê
;
Q
±
(
x
) = max
{±
Q
(
x
)
,
0
}
L
«
¼
ê
Q
(
x
)
Ü
†
K
Ü
.
2.
½
n
1
y
²
!
æ
^
å
4
•{
•
§
(
E
n
)
Ä
)
•
3
5
,
¿
Ï
L
†
4
•
•
§
'
Œ
±
Ä
)
8
¥
5
§
?
¤
½
n
1
•
ªy
²
.
Ä
k
ò
ε
n
•
ε
,
Š
C
þ
O
†
ϕ
(
x
) :=
ε
p
q
−
p
u
(
εx
)
,
K
d
(
E
n
)
−
∆
p
ϕ
+
ε
p
|
ϕ
|
p
−
2
ϕ
=
Q
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
.
(2)
5
¿
Q
(
x
) =
1
,
|
x
|
<
1
,
−
1
,
|
x
|≥
1
.
/
ª
þ
,
•
§
(2)
4
•
•
§
•
−
∆
p
ϕ
=
Q
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
.
(3)
•
Ä
å
4
¯
K
:
I
0
= inf
ˆ
R
N
|∇
u
|
p
dx
u
∈
D
1
,p
(
R
N
)
,
ˆ
R
N
Q
(
x
)
|
u
|
q
dx
= 1
.
·
‚
k
e
ã
Ú
n
.
Ú
n
1
•
3
¼
ê
u
0
∈
D
1
,p
(
R
N
)
¦
I
0
3
u
0
?
Œ
ˆ
,
¿
…
ϕ
0
=
I
1
q
−
p
0
u
0
•
•
§
(3)
Ä
)
.
y
²
.
{
u
n
}⊂
D
1
,p
(
R
N
)
•
I
0
˜
4
z
S
,
@
o
n
→∞
ž
,
ˆ
R
N
|∇
u
n
|
p
dx
→
I
0
,
ˆ
R
N
Q
(
x
)
|
u
n
|
q
dx
= 1
,n
= 1
,
2
,
···
.
DOI:10.12677/pm.2023.132016135
n
Ø
ê
Æ
œ
K
Ä
k
,
·
‚
y
²
I
0
>
0.
¯¢
þ
,
d
Q
(
x
)
½
Â
Œ
•
ˆ
|
x
|
<
1
|
u
n
|
q
dx
= 1+
ˆ
|
x
|≥
1
|
u
n
|
q
dx
≥
1
.
(4)
qd
H¨older
Ø
ª
Ú
Sobolev
Ø
ª
Œ
ˆ
|
x
|
<
1
|
u
n
|
q
dx
≤
C
ˆ
|
x
|
<
1
|
u
n
|
p
∗
dx
q
p
∗
≤
C
ˆ
R
N
|∇
u
n
|
p
dx
q
p
→
CI
q
p
0
.
(5)
Ï
d
,
d
(4)
Ú
(5)
I
0
≥
C
−
p/q
>
0.
d
I
0
½
Â
,
{
u
n
}
3
D
1
,p
(
R
N
)
¥
k
.
.
f
S
,
E
P
•
{
u
n
}
,
K
n
→∞
ž
u
n
*u
0
u
D
1
,p
(
R
N
)
,u
n
→
u
0
a.e.
u
R
N
,u
n
→
u
0
u
L
r
loc
(
R
N
)
,
∀
1
<r<p
∗
.
5
¿
|
u
n
|
•
4
z
S
,
K
Ø
”
u
n
≥
0.
Ï
d
u
0
≥
0 a.e.
u
R
N
.
é
(4)
e
4
•
,
d
Fatou
Ú
n
ˆ
|
x
|
<
1
u
q
0
dx
≥
1+
ˆ
|
x
|≥
1
u
q
0
dx,
=
ˆ
R
N
Q
(
x
)
u
q
0
dx
≥
1
.
X
J
ˆ
R
N
Q
(
x
)
u
q
0
dx>
1,
K
d
‰
ê
f
e
Œ
ë
Y5
0
<I
0
≤
ˆ
R
N
|∇
u
0
|
p
dx
ˆ
R
N
Q
(
x
)
u
q
0
dx
p
q
<
ˆ
R
N
|∇
u
0
|
p
dx
≤
liminf
n
→∞
ˆ
R
N
|∇
u
n
|
p
dx
=
I
0
,
g
ñ
.
Ï
d
,
I
0
3
u
0
≥
0
?ˆ
,
…
u
0
6
= 0.
-
ϕ
0
=
I
1
q
−
p
0
u
0
,
K
ϕ
0
∈
D
1
,p
(
R
N
)
÷
v
−
∆
p
ϕ
0
=
Q
(
x
)
ϕ
q
−
1
0
≥
0
,
d
ý
•
§
K
5
,
ϕ
0
∈
C
p
(
B
1
)
∩
C
p
(
¯
B
c
1
)
∩
C
(
R
N
)
.
2
d
ý
•
§
r
4
Œ
Š
n
ϕ
0
>
0.
Ï
d
,
•
§
(3)
•
3
Ä
)
.
2
e
5
§
•
Ä
å
4
¯
K
µ
I
ε
= inf
ˆ
R
N
(
|∇
u
|
p
+
ε
p
|
u
|
p
)
dx
u
∈
W
1
,p
(
R
N
)
,
ˆ
R
N
Q
(
x
)
|
u
|
q
dx
= 1
.
DOI:10.12677/pm.2023.132016136
n
Ø
ê
Æ
œ
K
é
u
0
<ε
≤
1,
a
q
u
Ú
n
1
y
²
,
Ø
J
e
ã
·
K
.
·
K
1
•
3
¼
ê
u
ε
∈
W
1
,p
(
R
N
)
¦
I
ε
3
u
ε
?
Œ
ˆ
.
?
˜
Ú
,
ϕ
ε
=
I
1
q
−
p
ε
u
ε
•
•
§
(2)
˜
‡
Ä
)
.
•
y
²
•
§
(2)
Ä
)
H
1
‰
ê
8
¥
5
,
·
‚
‡
^
k
e
ã
Ú
n
.
Ú
n
2
lim
ε
→
0
I
ε
=
I
0
.
y
²
.
d
Ú
n
1,
•
3
¼
ê
u
0
∈
D
1
,p
(
R
N
)
÷
v
ˆ
R
N
Q
(
x
)
u
q
0
dx
= 1
,
ˆ
R
N
|∇
u
0
|
p
dx
=
I
0
.
1
w
ä
¼
ê
χ
(
x
)
÷
v
0
≤
χ
(
x
)
≤
1
,χ
(
x
) = 1
,x
∈
B
1
(0)
,χ
(
x
) = 0
,x
∈
B
c
2
(0)
.
-
w
n
=
c
n
χ
n
u
0
∈
W
1
,p
(
R
N
),
Ù
¥
:
c
n
=
ˆ
R
N
Q
(
x
)
χ
q
n
u
q
0
dx
−
1
q
,χ
n
(
x
) =
χ
x
n
.
du
ˆ
R
N
Q
(
x
)
|
w
n
|
q
dx
= 1
,
K
d
I
ε
½
Â
limsup
ε
→
0
I
ε
≤
limsup
ε
→
0
ˆ
R
N
(
|∇
w
n
|
p
+
ε
p
w
p
n
)
dx
=
ˆ
R
N
|∇
w
n
|
p
dx.
5
¿
n
→∞
ž
,
c
n
→
1,
χ
n
u
0
→
u
0
u
D
1
,p
(
R
N
),
=
w
n
→
u
0
u
D
1
,p
(
R
N
).
Ï
d
,
-
n
→∞
,
limsup
ε
→
0
I
ε
≤
ˆ
R
N
|∇
u
0
|
p
dx
=
I
0
.
u
ε
>
0
•
I
ε
ˆ
¼
ê
,
K
d
I
0
½
Â
liminf
ε
→
0
I
ε
= liminf
ε
→
0
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
u
p
ε
)
dx
≥
liminf
ε
→
0
ˆ
R
N
|∇
u
ε
|
p
dx
≥
I
0
.
Ï
d
,lim
ε
→
0
I
ε
=
I
0
.
y
.
.
2
•
§
Ä
u
þ
ã
O
,
·
‚
y
²
½
n
1.
½
n
1
y
²
.
d
·
K
1,
•
§
(2)
•
3
Ä
)
.
Ï
L
C
þ
O
†
Ø
J
y
²
•
§
(
E
n
)
–
•
3
˜
‡
Ä
)
.
Ï
d
,(
i
)
¤
á
.
u
n
•
•
§
(
E
n
)
Ä
)
,
K
ϕ
ε
n
=
ε
p
q
−
p
n
u
n
(
ε
n
x
)
•
(2)
Ä
)
.
Ï
d
,
•
3
I
ε
n
ˆ
DOI:10.12677/pm.2023.132016137
n
Ø
ê
Æ
œ
K
¼
ê
u
ε
n
∈
W
1
,p
(
R
N
)
¦
ϕ
ε
n
=
I
1
q
−
p
ε
n
u
ε
n
.
d
Ú
n
2,
u
ε
n
3
D
1
,p
(
R
N
)
¥
k
.
.
Ï
d
,
3
f
¿
Â
e
,
ε
n
→
0
ž
,
u
ε
n
*u
0
u
D
1
,p
(
R
N
)
,u
ε
n
→
u
0
a.e.
R
N
,u
ε
n
→
u
0
in
L
r
loc
(
R
N
)
,
1
<r<p
∗
.
du
ˆ
|
x
|
<
1
u
q
ε
n
dx
= 1+
ˆ
|
x
|≥
1
u
q
ε
n
dx.
(6)
d
Fatou
Ú
n
ˆ
R
N
Q
(
x
)
u
q
0
dx
≥
1
.
d
‰
ê
f
e
Œ
ë
Y5
,
Ú
n
2,
Ú
I
0
½
Â
Œ
ˆ
R
N
|∇
u
0
|
p
dx
≤
liminf
ε
n
→
0
ˆ
R
N
|∇
u
ε
n
|
p
dx
≤
liminf
ε
n
→
0
ˆ
R
N
(
|∇
u
ε
n
|
p
+
ε
p
|
u
ε
n
|
p
)
dx
=lim
ε
n
→
0
I
ε
n
=
I
0
≤
ˆ
R
N
|∇
u
0
|
p
dx
ˆ
R
N
Q
(
x
)
u
q
0
dx
p
q
.
Ï
d
,
I
0
3
u
0
?
Œ
ˆ
,
=
ˆ
R
N
|∇
u
0
|
p
dx
=
I
0
>
0
,
ˆ
R
N
Q
(
x
)
u
q
0
dx
= 1
.
(7)
?
˜
Ú
§
·
‚
lim
ε
→
0
ˆ
R
N
|∇
u
ε
n
|
p
dx
=
ˆ
R
N
|∇
u
0
|
p
dx,
lim
ε
→
0
ε
p
n
ˆ
R
N
u
p
ε
n
dx
= 0
.
?
,
d
f
Â
ñ
Ú
Ä
Ø
ª
|
ξ
2
|
p
≥|
ξ
1
|
p
+
p
|
ξ
1
|
p
−
2
ξ
1
·
(
ξ
2
−
ξ
1
)+
C
(
p
)
|
ξ
2
−
ξ
1
|
p
,
∀
ξ
1
,ξ
2
∈
R
N
,p>
2
Œ
lim
ε
→
0
ˆ
R
N
|∇
(
u
ε
n
−
u
0
)
|
p
dx
= 0
.
-
ϕ
0
:=
I
1
q
−
p
0
u
0
≥
0,
K
d
Ú
n
1
y
²
L
§
Ø
J
y
ϕ
0
•
•
§
(3)
Ä
)
.
Š
â
Ú
n
2,
•
§
(2)
Ä
)
ϕ
ε
n
3
D
1
,p
(
R
N
)
¥
Â
ñ
4
•
•
§
(3)
Ä
)
ϕ
0
.
Ï
d
,(
ii
)
¤
á
.
d
(6),(7),
Ú
Br´ezis-Lieb
Ú
n
Ø
J
lim
ε
n
→
0
ˆ
R
N
u
q
ε
n
dx
=
ˆ
R
N
u
q
0
dx,
lim
ε
n
→
0
ˆ
R
N
|
u
ε
n
−
u
0
|
q
dx
= 0
.
DOI:10.12677/pm.2023.132016138
n
Ø
ê
Æ
œ
K
Ï
d
,
é
?
¿
δ>
0,
lim
ε
n
→
0
ˆ
|
x
|≤
δ
ε
n
u
q
ε
n
dx
=
ˆ
R
N
u
q
0
dx.
5
¿
u
n
(
x
) =
ε
−
p
q
−
p
n
I
−
1
q
−
p
ε
n
u
ε
n
(
ε
−
1
n
x
)
,
K
n
→
+
∞
ž
,
ˆ
|
x
|≥
δ
|
u
n
|
q
dx
ˆ
R
N
|
u
n
|
q
dx
≤
ˆ
|
x
|≥
δ
|
u
n
|
q
dx
ˆ
R
N
Q
x
ε
n
|
u
n
|
q
dx
=
ˆ
|
x
|≥
δ
ε
n
u
q
ε
n
dx
ˆ
R
N
Q
(
x
)
|
u
ε
n
|
q
dx
=
ˆ
|
x
|≥
δ
ε
n
u
q
ε
n
dx
→
0
.
du
lim
ε
n
→
0
ˆ
|
x
|≤
δ
ε
n
|∇
u
ε
n
|
p
dx
=
ˆ
R
N
|∇
u
0
|
p
dx,
lim
ε
n
→
0
ε
p
n
ˆ
R
N
u
p
ε
n
dx
= 0
,
K
n
→∞
ž
,
d
Ú
n
2
ˆ
|
x
|≥
δ
(
|∇
u
n
|
p
+
u
p
n
)
dx
ˆ
R
N
(
|∇
u
n
|
p
+
u
p
n
)
dx
=
I
−
1
ε
n
ˆ
|
x
|≥
δ
ε
n
(
|∇
u
ε
n
|
p
+
ε
p
n
|
u
ε
n
|
p
)
dx
→
0
.
Ï
d
,(
iii
)
¤
á
.
y
.
.
2
3.
½
n
2
y
²
!
Ï
L
†
4
•
•
§
?
1
'
,
æ
^
8
¥
;
5
n
y
²
•
§
(
E
n
)
Ä
)
'
u
H
1
‰
ê
3
A
½
:
?
8
¥
,
?
¤
½
n
2
y
²
.
Ø
”
b
8
¥
:
x
1
= 0,
ε
n
•
ε
.
Š
C
þ
O
†
ϕ
(
x
) =
ε
p
q
−
p
u
(
εx
)
,
K
d
•
§
(
E
n
)
−
∆
p
ϕ
+
ε
p
|
ϕ
|
p
−
2
ϕ
=
Q
ε
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
.
(8)
Ù
¥
:
Q
ε
(
x
) =
s
1
,x
∈
B
r
1
(0)
,
s
2
,x
∈
B
r
2
(
x
2
ε
)
,
−
1
,
Ù
§
.
DOI:10.12677/pm.2023.132016139
n
Ø
ê
Æ
œ
K
d
Ú
n
1
y
²
L
§
Ø
J
u
y
å
4
¯
K
J
ε
= inf
ˆ
R
N
(
|∇
u
|
p
+
ε
p
|
u
|
p
)
dx
u
∈
W
1
,p
(
R
N
)
,
ˆ
R
N
Q
ε
(
x
)
|
u
|
q
dx
= 1
•
3
ˆ
¼
ê
u
ε
∈
W
1
,p
(
R
N
).
-
ϕ
ε
=
J
1
q
−
p
ε
u
ε
,
K
d
ý
•
§
K
5
n
Ø
Ú
r
•
Œ
Š
n
Œ
•
ϕ
ε
´
•
§
(8)
Ä
)
.
a
q
/
,
å
4
¯
K
J
0
= inf
ˆ
R
N
|∇
u
|
p
dx
u
∈
D
1
,p
(
R
N
)
,
ˆ
R
N
K
2
(
x
)
|
u
|
q
dx
= 1
.
•
3
ˆ
¼
ê
u
0
∈
D
1
,p
(
R
N
),
…
ϕ
0
=
J
1
q
−
p
ε
u
0
´
4
•
•
§
−
∆
p
ϕ
=
K
2
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
(9)
Ä
)
,
Ù
¥
:
K
2
(
x
) =
s
2
,x
∈
B
r
2
(0)
,
−
1
,
Ù
§
.
Ä
k
§
·
‚
y
²
e
ã
Ú
n
.
Ú
n
3
limsup
ε
→
0
J
ε
≤
J
0
.
y
²
.
Ø
J
y
²
J
0
•
3
ˆ
¼
ê
u
0
∈
D
1
,p
(
R
N
),
K
ˆ
R
N
K
2
(
x
)
u
p
0
dx
= 1
,
ˆ
R
N
|∇
u
0
|
p
dx
=
J
0
.
1
w
ä
¼
ê
χ
(
x
)
÷
v
0
≤
χ
(
x
)
≤
1
,χ
(
x
) = 1
,x
∈
B
1
(0)
,χ
(
x
) = 0
,x
∈
B
c
2
(0)
.
-
w
n
(
x
) =
c
n
χ
n
u
0
∈
W
1
,p
(
R
N
)
,
Ù
¥
:
χ
n
(
x
) =
χ
x
n
,c
n
=
ˆ
R
N
K
2
(
x
)
χ
q
n
(
x
)
u
q
0
(
x
)
dx
−
1
q
.
Q
ε
(
x
+
x
2
ε
) =
s
1
ž
,
x
+
x
2
ε
<r
1
.
K
ε>
0
¿
©
ž
,
é
∀
n<
1
2
|
x
2
|
ε
−
r
1
,
k
x
n
>
2
x
|
x
2
|
ε
−
r
1
>
2
x
|
x
2
|
ε
−|
x
+
x
2
ε
|
≥
2
|
x
|
|
x
|
= 2
.
DOI:10.12677/pm.2023.132016140
n
Ø
ê
Æ
œ
K
d
ž
χ
n
(
x
) = 0.
Ï
d
,
d
Q
ε
(
x
)
Ú
K
2
(
x
)
½
Â
ˆ
R
N
Q
ε
(
x
)
w
q
n
x
−
x
2
ε
dx
=
ˆ
R
N
Q
ε
x
+
x
2
ε
w
q
n
dx
=
ˆ
R
N
K
2
(
x
)
w
q
n
dx
= 1
.
¤
±
§
d
J
ε
½
Â
limsup
ε
→
0
J
ε
≤
limsup
ε
→
0
ˆ
R
N
|∇
w
n
(
·−
x
2
/ε
)
|
p
+
ε
p
w
p
n
(
·−
x
2
/ε
)
dx
=
ˆ
R
N
|∇
w
n
|
p
dx.
w
,
,
n
→∞
ž
,
c
n
→
1
…
χ
n
u
0
→
u
0
u
D
1
,p
(
R
N
),
K
w
n
(
x
)
→
u
0
u
D
1
,p
(
R
N
).
Ï
d
,
n
→∞
ž
,limsup
ε
→
0
J
ε
≤
J
0
.
y
.
.
2
£
K
1
(
x
) =
s
1
,x
∈
B
r
1
(0)
,
−
1
,
Ù
§
,
K
2
(
x
) =
s
2
,x
∈
B
r
2
(0)
,
−
1
,
Ù
§
,
½
Â
K
3
(
x
) =
s
2
s
1
K
1
r
1
r
2
x
=
s
2
,x
∈
B
r
2
(0)
,
−
s
2
s
1
,
Ù
§
.
P
β
=
r
1
r
2
qp
q
−
p
−
N
s
1
s
2
p
q
−
p
.
·
‚
b
s
1
=
s
2
,β<
1
,
½
ö
s
1
<s
2
,β
≤
1
.
5
3
b
s
1
≤
s
2
.
d
K
2
Ú
K
3
½
Â
,
x
∈
B
r
2
(0)
ž
,
K
3
(
x
) =
K
2
(
x
) =
s
2
;
x/
∈
B
r
2
(0)
ž
,
K
3
(
x
)
<
−
1 =
K
2
(
x
)
.
Ï
d
,
K
3
≤
K
2
.
-
u
ε
∈
W
1
,p
(
R
N
)
´
J
ε
ˆ
¼
ê
,
K
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
=
J
ε
,
ˆ
R
N
Q
(
x
)
u
q
ε
dx
= 1
.
d
Ú
n
3
Œ
,
{
u
ε
}
3
D
1
,p
(
R
N
)
¥
k
.
.
e
¡
y
²
ε>
0
¿
©
ž
,
u
ε
3
x
2
ε
?
8
¥
.
Ú
n
4
·
‚
k
liminf
ε
→
0
ˆ
B
r
2
x
2
ε
u
q
ε
dx>
0
,
lim
ε
→
0
ˆ
B
r
1
(0)
u
q
ε
dx
= 0
.
y
²
.
œ
/
1
lim
ε
→
0
ˆ
B
r
1
(0)
u
q
ε
dx
=
ˆ
B
r
2
x
2
ε
u
q
ε
dx
= 0
.
DOI:10.12677/pm.2023.132016141
n
Ø
ê
Æ
œ
K
¯¢
þ
,
d
s
1
>
0,
s
2
>
0,
Ú
s
1
ˆ
B
r
1
(0)
u
q
ε
dx
+
s
2
ˆ
B
r
2
x
2
ε
u
q
ε
dx
≥
1
•
,
œ
/
1
Ø
¤
á
.
œ
/
2.
liminf
ε
→
0
ˆ
B
r
1
(0)
u
q
ε
dx>
0
,
liminf
ε
→
0
ˆ
B
r
2
x
2
ε
u
q
ε
dx>
0
.
-
ϕ
1
,ε
=
r
p
1
s
1
r
p
2
s
2
1
q
−
p
u
ε
r
1
r
2
x
,ϕ
2
,ε
(
x
) =
u
ε
x
+
x
2
ε
,
(10)
K
liminf
ε
→
0
ˆ
B
r
2
(0)
β
−
1
s
2
s
1
ϕ
q
1
,ε
dx>
0
,
liminf
ε
→
0
ˆ
B
r
2
(0)
ϕ
q
2
,ε
dx>
0
.
du
ϕ
1
,ε
Ú
ϕ
2
,ε
3
D
1
,p
(
R
N
)
¥
k
.
,
K3
f
¿Â
e
,
ε
→
0
ž
,
ϕ
i,ε
*ϕ
i,
0
u
D
1
,p
(
R
N
)
,ϕ
i,ε
→
ϕ
i,
0
u
L
q
loc
(
R
N
)
,ϕ
i,ε
→
ϕ
i,
0
a.e.
u
R
N
,i
= 1
,
2
.
é
u
i
= 1
,
2,
d
ϕ
i,ε
>
0
,
ϕ
i,
0
≥
0.
?
˜
Ú
,
ϕ
i,
0
6
= 0
,i
= 1
,
2.
ε>
0
¿
©
ž
,
é
∀
R<
|
x
2
|
2
ε
,
·
‚
k
B
R
(
x
2
ε
)
∩
B
R
(0) =
∅
.
5
¿
Q
−
ε
(
x
) =
K
−
1
(
x
)
,Q
−
ε
(
x
+
x
2
ε
) =
K
−
2
(
x
)
,
∀
x
∈
B
R
(0)
,
K
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx
+
ˆ
B
r
2
x
2
ε
Q
+
ε
u
q
ε
dx
≥
1+
ˆ
B
R
(0)
Q
−
ε
u
q
ε
dx
+
ˆ
B
R
x
2
ε
Q
−
ε
u
q
ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−
1
s
2
s
1
K
−
1
r
1
r
2
x
ϕ
q
1
,ε
dx
+
ˆ
B
R
(0)
K
−
2
ϕ
q
2
,ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−
1
K
−
3
ϕ
q
1
,ε
dx
+
ˆ
B
R
(0)
K
−
2
ϕ
q
2
,ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−
1
K
−
3
ϕ
q
1
,
0
dx
+
ˆ
B
R
(0)
K
−
2
ϕ
q
2
,
0
dx
+
o
(1)
,
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx
+
ˆ
B
r
2
x
2
ε
Q
+
ε
u
q
ε
dx
=
ˆ
B
r
2
(0)
β
−
1
K
+
3
ϕ
q
1
,ε
+
K
+
2
ϕ
q
2
,ε
dx
=
ˆ
B
r
2
(0)
β
−
1
K
+
3
ϕ
q
1
,
0
+
K
+
2
ϕ
q
2
,
0
dx
+
o
(1)
.
DOI:10.12677/pm.2023.132016142
n
Ø
ê
Æ
œ
K
-
R
→∞
,
·
‚
k
ˆ
B
r
2
(0)
β
−
1
K
+
3
ϕ
q
1
,
0
+
K
+
2
ϕ
q
2
,
0
dx
≥
1+
ˆ
R
N
β
−
1
K
−
3
ϕ
q
1
,
0
+
K
−
2
ϕ
q
2
,
0
dx.
Ï
d
,
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
+
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
≥
1
.
e
¡
©
n
«
œ
¹
?
Ø
:
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
≥
1
,
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
≤
0;(11)
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
≤
0
,
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
≥
1;(12)
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx>
0
,
ˆ
R
N
K
2
ϕ
q
2
,
0
dx>
0
.
(13)
b
(11)
¤
á
.
d
Ú
n
3
J
0
≥
limsup
ε
→
0
J
ε
= limsup
ε
→
0
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
≥
limsup
ε
→
0
ˆ
B
R
(0)
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
+
ˆ
B
R
x
2
ε
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
!
≥
ˆ
B
Rr
2
r
1
(0)
β
−
1
|∇
ϕ
1
,
0
|
p
dx
+
ˆ
B
R
(0)
|∇
ϕ
2
,
0
|
p
dx.
-
R
→∞
,
d
β
≤
1
Ú
5
3
J
0
>
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
≥
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
p
q
=
β
p
q
−
1
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
K
3
ϕ
q
1
,
0
dx
p
q
≥
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
K
2
ϕ
q
1
,
0
dx
p
q
≥
J
0
.
g
ñ
.
DOI:10.12677/pm.2023.132016143
n
Ø
ê
Æ
œ
K
b
(12)
¤
á
.
a
q
u
(11)
?
Ø
,
·
‚
k
J
0
≥
limsup
ε
→
0
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
≥
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
+
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx
>
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx
≥
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
p
q
≥
J
0
.
g
ñ
.
b
(13)
¤
á
.
d
5
3,
β
≤
1,
Ú
J
0
½
Â
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
≥
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
K
2
ϕ
q
1
,
0
dx
p
q
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
p
q
≥
J
0
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
p
q
.
Ï
d
,
a
q
u
(11)
?
Ø
,
·
‚
k
J
0
≥
limsup
ε
→
0
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
≥
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
+
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx
≥
J
0
"
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
p
q
+
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
p
q
#
>J
0
.
g
ñ
.
Ï
d
,
Ï
L
ü
Ø
(11),(12),
Ú
(13),
œ
/
2
Ø
¤
á
.
œ
/
3
liminf
ε
→
0
ˆ
B
r
1
(0)
u
q
ε
dx>
0
,
lim
ε
→
0
ˆ
B
r
2
x
2
ε
u
q
ε
dx
= 0
.
d
(10)
Ø
J
ϕ
1
,ε
÷
v
−
∆
p
ϕ
+
r
p
1
r
−
p
2
ε
p
|
ϕ
|
p
−
2
ϕ
=
J
ε
s
−
1
1
s
2
Q
ε
(
r
−
1
2
r
1
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
.
-
ε
→
0,
K
ϕ
1
,
0
∈
D
1
,P
(
R
N
)
÷
v
−
∆
p
ϕ
=
J
1
K
3
(
x
)
|
ϕ
|
q
−
2
ϕ,x
∈
R
N
,
DOI:10.12677/pm.2023.132016144
n
Ø
ê
Æ
œ
K
Ù
¥
µ
J
1
=
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx>
0
.
d
ý
•
§
K
5
n
Ø
Ú
r
4
Š
n
ϕ
1
,
0
>
0.
5
¿
3
B
R
(0)
þ
,
Q
−
ε
=
s
1
s
2
K
−
3
…
é
R<
1
2
|
x
2
|
ε
−
r
2
,
ˆ
B
r
2
(0)
β
−
1
K
+
3
ϕ
q
1
,
0
dx
+
o
(1) =
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx
+
ˆ
B
r
2
x
2
ε
Q
+
ε
u
q
ε
dx
≥
1+
ˆ
B
R
(0)
Q
−
ε
u
q
ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−
1
K
−
3
ϕ
q
1
,
0
dx
+
o
(1)
.
-
R
→∞
,
K
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
≥
1
.
Ï
d
,
d
Ú
n
3
J
0
≥
limsup
ε
→
0
ˆ
R
N
(
|∇
u
ε
|
p
+
ε
p
|
u
ε
|
p
)
dx
≥
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
≥
ˆ
R
N
β
−
1
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
β
−
1
K
3
ϕ
q
1
,
0
dx
p
q
=
β
(
p
q
−
1)
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
K
3
ϕ
q
1
,
0
dx
p
q
>
ˆ
R
N
|∇
ϕ
1
,
0
|
p
dx
ˆ
R
N
K
2
ϕ
q
1
,
0
dx
p
q
≥
J
0
.
g
ñ
.
Ï
d
,
œ
/
3
Ø
¤
á
.
Ï
L
ü
Ø
œ
/
1,2,3
,
·
‚
liminf
ε
→
0
ˆ
B
r
2
x
2
ε
u
q
ε
dx>
0
,
lim
ε
→
0
ˆ
B
r
1
(0)
u
q
ε
dx
= 0
.
y
.
.
2
e
5
§
·
‚
y
²
e
¡·
K
.
·
K
2
lim
ε
→
0
J
ε
=
J
0
.
DOI:10.12677/pm.2023.132016145
n
Ø
ê
Æ
œ
K
y
²
.
d
Ú
n
4
s
2
ˆ
B
r
2
x
2
ε
u
q
ε
dx
= 1+
ˆ
R
N
\
B
r
1
(0)
∪
B
r
2
x
2
ε
u
q
ε
dx
−
s
1
ˆ
B
r
1
(0)
u
q
ε
dx
= 1+
ˆ
R
N
\
B
r
2
x
2
ε
u
q
ε
dx
+
o
(1)
.
d
(10)
ˆ
B
r
2
(0)
K
+
2
ϕ
q
2
,ε
dx
= 1+
ˆ
R
N
K
−
2
ϕ
q
2
,ε
dx
+
o
(1)
.
-
ε
→
0,
d
Û
Ü
Sobolev
;
i
\
½
n
Ú
Fatou
Ú
n
ˆ
B
r
2
(0)
K
+
2
ϕ
q
2
,
0
dx
≥
1+
ˆ
R
N
K
−
2
ϕ
q
2
,
0
dx,.
Ï
d
,
ˆ
R
N
K
2
ϕ
q
2
,
0
dx
≥
1
.
d
‰
ê
f
e
Œ
ë
Y5
,
Ú
n
3,
Ú
J
0
½
Â
´
R
N
|∇
ϕ
2
,
0
|
p
dx
(
´
R
N
K
2
ϕ
q
2
,
0
dx
)
p
q
≤
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx
≤
liminf
ε
→
0
J
ε
≤
limsup
ε
→
0
J
ε
≤
J
0
≤
´
R
N
|∇
ϕ
2
,
0
|
p
dx
(
´
R
N
K
2
ϕ
q
2
,
0
dx
)
p
q
.
Ï
d
,
J
0
3
ϕ
2
,
0
?
Œ
ˆ
,
…
lim
ε
→
0
J
ε
=
J
0
.
y
.
.
2
•
§
·
‚
¤
½
n
2
y
²
.
½
n
2
y
²
.
5
¿
•
§
(8)
•
3
Ä
)
,
K
Ï
L
C
þ
O
†
Ø
J
y
²
(
E
n
)
•
3
Ä
)
.
Ï
d
,(
i
)
¤
á
.
u
n
>
0
•
(
E
n
)
Ä
)
,
K
ϕ
ε
n
=
ε
p
q
−
p
n
u
n
(
ε
n
x
)
•
•
§
(8)
Ä
)
.
Ï
d
,
•
3
J
ε
ˆ
¼
ê
u
ε
n
∈
W
1
,p
(
R
N
)
¦
ϕ
ε
n
=
J
1
q
−
p
ε
n
u
ε
n
.
5
¿
ϕ
2
,ε
n
=
J
−
1
q
−
p
ε
n
ϕ
ε
n
(
·
+
x
2
/ε
n
)
,
…
d
·
K
2
y
²
lim
ε
n
→
0
ε
p
n
ˆ
R
N
|
ϕ
2
,ε
n
|
p
dx
= 0
,
lim
ε
n
→
0
ˆ
R
N
|
ϕ
2
,ε
n
|
p
dx
=
ˆ
R
N
|
ϕ
2
,
0
|
p
dx,
lim
ε
n
→
0
ˆ
R
N
|∇
ϕ
2
,ε
n
|
p
dx
=
ˆ
R
N
|∇
ϕ
2
,
0
|
p
dx,
Ù
¥
:
ϕ
2
,
0
•
J
0
ˆ
¼
ê
.
Ï
d
,
ε
n
→
0
ž
,
ϕ
2
,ε
n
→
ϕ
2
,
0
u
D
1
,p
(
R
N
)
∩
L
q
(
R
N
).
¤
±
d
·
K
2
,
ϕ
ε
n
→
J
−
1
q
−
p
0
ϕ
2
,
0
u
D
1
,p
(
R
N
).
(
ii
)
¤
á
.
DOI:10.12677/pm.2023.132016146
n
Ø
ê
Æ
œ
K
-
ε
n
→
0,
é
?
¿
δ>
0,
·
‚
k
ˆ
R
N
\
B
δ
(
x
2
)
|
u
n
|
q
dx
ˆ
R
N
|
u
n
|
q
dx
=
ˆ
R
N
\
B
δ
ε
n
(0)
|
ϕ
2
,ε
n
|
q
dx
ˆ
R
N
|
ϕ
2
,ε
n
|
q
dx
≤
s
q
2
ˆ
R
N
\
B
δ
ε
n
(0)
u
q
ε
n
dx
→
0
,
ˆ
R
N
\
B
δ
(
x
2
)
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
ˆ
R
N
(
|∇
u
n
|
p
+
|
u
n
|
p
)
dx
=
J
−
1
ε
n
ˆ
R
N
\
B
δ
ε
n
(0)
(
|∇
ϕ
2
,ε
n
|
p
+
ε
p
n
|
ϕ
2
,ε
n
|
p
)
dx
→
0
.
Ï
d
,(
iii
)
¤
á
.
y
.
.
2
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
“
c
‘
8
(11901531);
I
[
3
Æ
Ä
7
”
/
•
Ü
Š
‘
8
(202008330417);
ú
ô
Ž
g
,
‰
Æ
Ä
7
-
:
‘
8
(LZ22A010001).
ë
•
©
z
[1]Bonanno,G. andLivrea, R.(2003) Multiplicity Theoremsfor theDirichlet ProblemInvolving
the
p
-Laplacian.
NonlinearAnalysis:Theory,MethodsandApplications
,
54
,1-7.
https://doi.org/10.1016/S0362-546X(03)00027-0
[2]Ferrero, A.and Gazzola,F. (2003) OnSubcriticality Assumptions for the Existence of Ground
StatesofQuasilinearEllipticEquations.
AdvancesinDifferentialEquations
,
8
,1081-1106.
https://doi.org/10.57262/ade/1355926580
[3]Liu,S.(2010)OnGroundStatesofSuperlinearp-LaplacianEquationsin
R
N
.
Journalof
MathematicalAnalysisandApplications
,
361
,48-58.
https://doi.org/10.1016/j.jmaa.2009.09.016
[4]Costa,D.G.andMagalh˜aes,C.A.(1995)ExistenceResultsforPerturbationsofthep-
Laplacian.
NonlinearAnalysis:Theory,MethodsandApplications
,
24
,409-418.
https://doi.org/10.1016/0362-546X(94)E0046-J
[5]Buryak,A.V.,Trapani,P.D.,Skryabin,D.V.andTrillo,S.(2002)OpticalSolitonsDueto
QuadraticNonlinearities:FromBasicPhysicstoFuturisticApplications.
PhysicsReports
,
370
,63-235.https://doi.org/10.1016/S0370-1573(02)00196-5
[6]Afrouzi,G.A.,Mahdavi,S.andNaghizadeh,Z.(2007)TheNehariManifoldforp-Laplacian
Equation withDirichlet Boundary Condition.
NonlinearAnalysis:ModellingandControl
,
12
,
143-155.
DOI:10.12677/pm.2023.132016147
n
Ø
ê
Æ
œ
K
[7]Binding,P.A.,Dr´abek,P.andHuang,Y.(1997)OnNeumannBoundaryValueProblemsfor
Some QuasilinearEllipticEquations.
ElectronicJournalofDifferentialEquations
,
1997
,1-11.
[8]Wu,T.(2007)MultiplicityofPositiveSolutionofp-LaplacianProblemswithSign-Changing
WeightFunction.
InternationalJournalofMathematicalAnalysis
,
1
,557-563.
[9]Zhong,X. andZou,W. (2014)A Concentration Behavior forSemilinearElliptic Systemswith
IndefiniteWeight.
ActaMathematicaSinica,EnglishSeries
,
30
,2014-2026.
https://doi.org/10.1007/s10114-014-3509-5
[10]Ackermann,N.andSzulkin,A.(2013)AConcentrationPhenomenonforSemilinearElliptic
Equations.
ArchiveforRationalMechanicsandAnalysis
,
207
,1075-1089.
https://doi.org/10.1007/s00205-012-0589-1
[11]Fang,X.andWang,Z.(2020)LimitingProfileofSolutionsforSchr¨odingerEquationswith
ShrinkingSelf-FocusingCore.
CalculusofVariationsandPartialDifferentialEquations
,
59
,
ArticleNo.129.https://doi.org/10.1007/s00526-020-01799-1
DOI:10.12677/pm.2023.132016148
n
Ø
ê
Æ