设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(2),131-148
PublishedOnlineFebruary2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.132016
˜ap−Laplace•§Ä)•35†8¥5
œœœKKK
úô“‰ŒÆêƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2022c1231F¶¹^Fϵ2023c130F¶uÙFϵ2023c26F
Á‡
©ïÄp−Laplace•§µ
−∆
p
u+|u|
p−2
u= Q
n
(x)|u|
q−2
u,x∈R
N
,
Ù¥µ∆
p
u=div(|∇u|
p−2
∇u)§1 <p<N§p<q<p
∗
:=
Np
N−p
"n→∞ž§k.¼êQ
n
(x)
gØsupp{Q
+
n
}Â •k•:8"·‚æ^å4Ú8¥;5ny²p−Laplace•§Ä
)•35Ú8¥5"
'…c
p−Laplace§Ä)§•35§8¥5
ExistenceandConcentrationof
GroundStatesforaClassof
p-LaplaceEquation
YingShi
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Dec.31
st
,2022;accepted:Jan.30
th
,2023;published:Feb.6
th
,2023
©ÙÚ^:œK.˜ap−Laplace•§Ä)•35†8¥5[J].nØêÆ,2023,13(2):131-148.
DOI:10.12677/pm.2023.132016
œK
Abstract
Inthispaper,westudythefollowingp−Laplaceequation:
−∆
p
u+|u|
p−2
u= Q
n
(x)|u|
q−2
u,x∈R
N
,
where∆
p
u=div(|∇u|
p−2
∇u),p>1,N≥1,p<q<p
∗
=
Np
N−p
(1<p<∞,1≤N≤p).
Q
n
areboundedfunctionswithself-focusingcoresuppQ
+
n
whichshrinkstoafinite
setofpointsasn→∞.Viatheconstraintminimizingmethodandtheconcentration
compactnessprinciple,weprovetheexistenceandconcentrationforgroundstates.
Keywords
p-Laplace,GroundStates,Existence,Concentration
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‘XêÆ!Ông,‰ÆuÐ,p−Lapace•§˜†´IS2Œ‰ïóŠöïÄ9:
¯K.3[1]¥,Bonanno-Livreay²p−Laplace•§n)•35.3[2]¥,Ferrero-Gazzola
y²g.O•½‡.O•š‚5p−Laplace•§»•)•35.3[3]¥§Liuy²
p-‡‚5g.p−Laplace •§Ä)•35.3[4]¥,Costa-Magalhesy²p−Laplace
Ä•§š²…)•35.
©•Äp−Laplace•§:
−∆
p
u+|u|
p−2
u= Q
n
(x)|u|
q−2
u,x∈R
N
,(E
n
)
Ù¥: N≥1, 1 <p<N,p<q<p
∗
:=
Np
N−p
.n→∞ž,k.¼êQ
n
(x)gØsupp{Q
+
n
}
 •k•:8.
51éu•§(E
n
),¡{x|Q
n
(x)>0}Ú{x|Q
n
<0}¥:©O•gàÚà.3©
DOI:10.12677/pm.2023.132016132nØêÆ
œK
z[5]¥,Buryak-TrapaniïÄgàÚàœ/,¿y²fÚVf•35.éu
‘CÒ¼êš‚5 ‡©•§ƒ'(J§ë•[6–9].
p= 2ž,p−Laplace•§Œz•µ
−∆u+u= Q
n
(x)|u|
q−2
u,u∈H
1
0
(Ω),(1)
Ù¥:Q
n
(x)CÒ.3[10]¥,Ackermann-Szulkiny²µ
(i)n→∞,8Ü{x∈Ω|Q
n
>0}Â :x
0
ž,Šöæ^å4•{y²Laplace•§
(1)Ä)•35,¿?˜Úy²ùÄ)3x
0
?'uH
1
‰ê8¥.
(ii)n→∞,8Ü{x∈Ω|Q
n
>0} ü‡ ØÓ:x
1
6= x
2
ž,Š öæ^ä¼ê•{y
²n¿©ŒžÄ)•359ÙH
1
‰ê8¥5.dž,ùÄ)'uH
1
䐯
UÓž3x
1
Úx
2
?8¥.
•?˜Ú(½Ä)'uH
1
‰ê3x
1
?„´x
2
?8¥,Fang-Wang[11]ÒA½¼ê
Q
n
(x)é•§(1)?1\ïÄ.e-
Q
n
(x) =





1,|x|<ε
n
,
−1,|x|≥ε
n
,
(q
1
)
Ù¥: ε
n
→0.Šöæ^å4•{y²(q
1
)Ä)•35¿ÏLÚ4••§?1'
Ä)'uH
1
‰ê3x
0
?8¥.e-
Q
n
(x) =













s
1
,x∈B
r
1
ε
n
(x
1
),
s
2
,x∈B
r
2
ε
n
(x
2
),
−1,Ù§,
(q
2
)
Ù¥: s
1
,s
2
,r
1
,r
2
>0,x
1
6=x
2
,ε
n
→0.Šöæ^8¥;ny²Ä)'uH
1
‰ê3x
1
?
8¥.
É©zAckermann-Szulkin [10]ÚFang-Wang [11]éu,©‘3ïÄ•§(E
n
)Ä)
•35ÚH
1
‰ê8¥5"
b(q
1
)¤á,·‚kXe½n.
½n1(i)(E
n
) –•3˜‡Ä)¶
(ii)u
n
•(E
n
)˜‡Ä).Š C†
ϕ
n
:= ε
p
q−p
n
u
n
(ε
n
x),
DOI:10.12677/pm.2023.132016133nØêÆ
œK
K•3ϕ
n
f,EP•ϕ
n
,¦ϕ
n
→ϕuD
1,p
(R
N
),…ϕ´•§
−∆
p
u= Q(x)|u|
q−2
u,x∈R
N
,
˜‡Ä).ùp
Q(x) =





1,e|x|<1,
−1,Ù§.
(iii)é?¿δ>0,
lim
n→0
ˆ
|x|≥δ
(|∇u
n
|
p
+|u
n
|
p
)dx
ˆ
R
N
(|∇u
n
|
p
+|u
n
|
p
)dx
= 0,lim
n→0
ˆ
|x|≥δ
|∇u
n
|
q
dx
ˆ
R
N
|u
n
|
q
dx
= 0.
52Sobolev˜mD
1,p
(R
N
) := {u|∇u∈L
p
(R
N
),u∈L
p
∗
(R
N
)},Ù¥‰ê½Â•
kuk
D
=

ˆ
R
N
|∇u|
p
dx

1
p
.
b(q
2
) ¤á.Ø”˜„5,Ø”s
1
≤s
2
¿½Âβ=

r
1
r
2

qp
q−p
−N

s
1
s
2

p
q−p
.e
(
s
1
= s
2
,
β<1
½
(
s
1
<s
2
,
β≤1,
·‚kXe½n.
½n2(i)(E
n
)–•3˜‡Ä)¶
(ii)u
n
•(E
n
)˜‡Ä).Š C†
ϕ
n
(x) := ε
p
q−p
n
u
n
(ε
n
x),
K•3ϕ
n
f,EP•ϕ
n
,¦ϕ
n
(x+
x
2
ε
n
) →ϕuD
1,p
(R
N
),…ϕ´•§
−∆
p
ϕ= K
2
(x)|ϕ|
q−2
ϕ,x∈R
N
˜‡Ä).ùp
K
2
=





s
2
,x∈B
r
2
(0),
−1,Ù§;
DOI:10.12677/pm.2023.132016134nØêÆ
œK
(iii)éu?¿δ>0,
lim
n→0
ˆ
|x−x
2
|≥δ
(|∇u
n
|
p
+|u
n
|
p
)dx
ˆ
R
N
(|∇u
n
|
p
+|u
n
|
p
)dx
= 0,lim
n→0
ˆ
|x−x
2
|≥δ
|u
n
|
q
dx
ˆ
R
N
|u
n
|
q
dx
= 0.
©(Xe:1!æ^ å4y²½n1;1n!|^å4Ú8¥;•{y²½n
2.ÎÒ`²:C,C
1
,C
2
,···“L~ê;B
r
(y) := {x∈R
N
||x−y|<r}L«±y•%r•Œ»
¥;|u|
p
L«L
p
(R
N
)¥‰ê;Q
±
(x) = max{±Q(x),0}L«¼êQ(x)܆KÜ.
2.½n1y²
!æ^å4•{•§(E
n
)Ä)•35,¿ÏL†4••§'Œ±Ä
)8¥5§?¤½n1•ªy².
Äkòε
n
•ε,ŠCþO†
ϕ(x) := ε
p
q−p
u(εx),
Kd(E
n
)
−∆
p
ϕ+ε
p
|ϕ|
p−2
ϕ= Q(x)|ϕ|
q−2
ϕ,x∈R
N
.(2)
5¿
Q(x) =





1,|x|<1,
−1,|x|≥1.
/ªþ,•§(2)4••§•
−∆
p
ϕ= Q(x)|ϕ|
q−2
ϕ,x∈R
N
.(3)
•Äå4¯K:
I
0
= inf

ˆ
R
N
|∇u|
p
dx



u∈D
1,p
(R
N
),
ˆ
R
N
Q(x)|u|
q
dx= 1

.
·‚keãÚn.
Ún1•3¼êu
0
∈D
1,p
(R
N
)¦I
0
3u
0
?Œˆ,¿…ϕ
0
= I
1
q−p
0
u
0
••§(3)Ä
).
y².{u
n
}⊂D
1,p
(R
N
)•I
0
˜4zS,@on→∞ž,
ˆ
R
N
|∇u
n
|
p
dx→I
0
,
ˆ
R
N
Q(x)|u
n
|
q
dx= 1,n= 1,2,···.
DOI:10.12677/pm.2023.132016135nØêÆ
œK
Äk,·‚y²I
0
>0.¯¢þ,dQ(x)½ÂŒ•
ˆ
|x|<1
|u
n
|
q
dx= 1+
ˆ
|x|≥1
|u
n
|
q
dx≥1.(4)
qdH¨olderØªÚSobolevØªŒ
ˆ
|x|<1
|u
n
|
q
dx≤C

ˆ
|x|<1
|u
n
|
p
∗
dx

q
p
∗
≤C

ˆ
R
N
|∇u
n
|
p
dx

q
p
→CI
q
p
0
.(5)
Ïd,d(4) Ú(5)I
0
≥C
−p/q
>0.
dI
0
½Â,{u
n
}3D
1,p
(R
N
)¥k..fS,EP•{u
n
},Kn→∞ž
u
n
*u
0
uD
1,p
(R
N
),u
n
→u
0
a.e.uR
N
,u
n
→u
0
uL
r
loc
(R
N
),∀1 <r<p
∗
.
5¿|u
n
|•4zS,KØ”u
n
≥0.Ïdu
0
≥0 a.e.uR
N
.é(4)e4•,dFatou Ú
n
ˆ
|x|<1
u
q
0
dx≥1+
ˆ
|x|≥1
u
q
0
dx,
=
ˆ
R
N
Q(x)u
q
0
dx≥1.
XJ
ˆ
R
N
Q(x)u
q
0
dx>1,Kd‰êfeŒëY5
0 <I
0
≤
ˆ
R
N
|∇u
0
|
p
dx

ˆ
R
N
Q(x)u
q
0
dx

p
q
<
ˆ
R
N
|∇u
0
|
p
dx≤liminf
n→∞
ˆ
R
N
|∇u
n
|
p
dx= I
0
,
gñ.Ïd, I
0
3u
0
≥0?ˆ,…u
0
6= 0.
-ϕ
0
= I
1
q−p
0
u
0
,Kϕ
0
∈D
1,p
(R
N
)÷v
−∆
p
ϕ
0
= Q(x)ϕ
q−1
0
≥0,
dý•§K5,
ϕ
0
∈C
p
(B
1
)∩C
p
(
¯
B
c
1
)∩C(R
N
).
2dý•§r4ŒŠnϕ
0
>0.Ïd,•§(3)•3Ä).2
e5§•Äå4¯Kµ
I
ε
= inf

ˆ
R
N
(|∇u|
p
+ε
p
|u|
p
)dx



u∈W
1,p
(R
N
),
ˆ
R
N
Q(x)|u|
q
dx= 1

.
DOI:10.12677/pm.2023.132016136nØêÆ
œK
éu0 <ε≤1,aquÚn1y²,ØJeã·K.
·K1•3¼êu
ε
∈W
1,p
(R
N
)¦I
ε
3u
ε
?Œˆ.?˜Ú,ϕ
ε
=I
1
q−p
ε
u
ε
••§(2)
˜‡Ä).
•y²•§(2)Ä)H
1
‰ê8¥5,·‚‡^keãÚn.
Ún2lim
ε→0
I
ε
= I
0
.
y².dÚn1,•3¼êu
0
∈D
1,p
(R
N
)÷v
ˆ
R
N
Q(x)u
q
0
dx= 1,
ˆ
R
N
|∇u
0
|
p
dx= I
0
.
1wä¼êχ(x)÷v
0 ≤χ(x) ≤1,χ(x) = 1,x∈B
1
(0),χ(x) = 0,x∈B
c
2
(0).
-w
n
= c
n
χ
n
u
0
∈W
1,p
(R
N
),Ù¥:
c
n
=

ˆ
R
N
Q(x)χ
q
n
u
q
0
dx

−
1
q
,χ
n
(x) = χ

x
n

.
du
ˆ
R
N
Q(x)|w
n
|
q
dx= 1,
KdI
ε
½Â
limsup
ε→0
I
ε
≤limsup
ε→0
ˆ
R
N
(|∇w
n
|
p
+ε
p
w
p
n
)dx=
ˆ
R
N
|∇w
n
|
p
dx.
5¿n→∞ž,c
n
→1, χ
n
u
0
→u
0
uD
1,p
(R
N
),=w
n
→u
0
uD
1,p
(R
N
).Ïd,-n→∞,
limsup
ε→0
I
ε
≤
ˆ
R
N
|∇u
0
|
p
dx= I
0
.
u
ε
>0•I
ε
ˆ¼ê,KdI
0
½Â
liminf
ε→0
I
ε
= liminf
ε→0
ˆ
R
N
(|∇u
ε
|
p
+ε
p
u
p
ε
)dx≥liminf
ε→0
ˆ
R
N
|∇u
ε
|
p
dx≥I
0
.
Ïd,lim
ε→0
I
ε
= I
0
.y..2
•§ÄuþãO,·‚y²½n1.
½n1 y².d·K1,•§(2)• 3Ä).ÏLCþO†ØJy²•§(E
n
)–•3
˜‡Ä).Ïd,(i)¤á.
u
n
••§(E
n
)Ä),Kϕ
ε
n
= ε
p
q−p
n
u
n
(ε
n
x)•(2)Ä).Ïd,•3I
ε
n
ˆ
DOI:10.12677/pm.2023.132016137nØêÆ
œK
¼êu
ε
n
∈W
1,p
(R
N
)¦ϕ
ε
n
= I
1
q−p
ε
n
u
ε
n
.dÚn2,u
ε
n
3D
1,p
(R
N
)¥k..Ïd,3f¿
Âe,ε
n
→0ž,
u
ε
n
*u
0
uD
1,p
(R
N
),u
ε
n
→u
0
a.e.R
N
,u
ε
n
→u
0
inL
r
loc
(R
N
),1 <r<p
∗
.
du
ˆ
|x|<1
u
q
ε
n
dx= 1+
ˆ
|x|≥1
u
q
ε
n
dx.(6)
dFatouÚn
ˆ
R
N
Q(x)u
q
0
dx≥1.
d‰êfeŒëY5,Ún2,ÚI
0
½ÂŒ
ˆ
R
N
|∇u
0
|
p
dx≤liminf
ε
n
→0
ˆ
R
N
|∇u
ε
n
|
p
dx
≤liminf
ε
n
→0
ˆ
R
N
(|∇u
ε
n
|
p
+ε
p
|u
ε
n
|
p
)dx
=lim
ε
n
→0
I
ε
n
= I
0
≤
ˆ
R
N
|∇u
0
|
p
dx

ˆ
R
N
Q(x)u
q
0
dx

p
q
.
Ïd,I
0
3u
0
?Œˆ,=
ˆ
R
N
|∇u
0
|
p
dx= I
0
>0,
ˆ
R
N
Q(x)u
q
0
dx= 1.(7)
?˜Ú§·‚
lim
ε→0
ˆ
R
N
|∇u
ε
n
|
p
dx=
ˆ
R
N
|∇u
0
|
p
dx,lim
ε→0
ε
p
n
ˆ
R
N
u
p
ε
n
dx= 0.
?,dfÂñÚÄØª
|ξ
2
|
p
≥|ξ
1
|
p
+p|ξ
1
|
p−2
ξ
1
·(ξ
2
−ξ
1
)+C(p)|ξ
2
−ξ
1
|
p
,∀ξ
1
,ξ
2
∈R
N
,p>2
Œ
lim
ε→0
ˆ
R
N
|∇(u
ε
n
−u
0
)|
p
dx= 0.
-ϕ
0
:=I
1
q−p
0
u
0
≥0,KdÚn1y²L§ØJyϕ
0
••§(3)Ä).ŠâÚn2,•
§(2)Ä)ϕ
ε
n
3D
1,p
(R
N
)¥Âñ4••§(3)Ä)ϕ
0
.Ïd,(ii)¤á.
d(6),(7),ÚBr´ezis-LiebÚnØJ
lim
ε
n
→0
ˆ
R
N
u
q
ε
n
dx=
ˆ
R
N
u
q
0
dx,lim
ε
n
→0
ˆ
R
N
|u
ε
n
−u
0
|
q
dx= 0.
DOI:10.12677/pm.2023.132016138nØêÆ
œK
Ïd,é?¿δ>0,
lim
ε
n
→0
ˆ
|x|≤
δ
ε
n
u
q
ε
n
dx=
ˆ
R
N
u
q
0
dx.
5¿
u
n
(x) = ε
−
p
q−p
n
I
−
1
q−p
ε
n
u
ε
n
(ε
−1
n
x),
Kn→+∞ž,
ˆ
|x|≥δ
|u
n
|
q
dx
ˆ
R
N
|u
n
|
q
dx
≤
ˆ
|x|≥δ
|u
n
|
q
dx
ˆ
R
N
Q

x
ε
n

|u
n
|
q
dx
=
ˆ
|x|≥
δ
ε
n
u
q
ε
n
dx
ˆ
R
N
Q(x)|u
ε
n
|
q
dx
=
ˆ
|x|≥
δ
ε
n
u
q
ε
n
dx→0.
du
lim
ε
n
→0
ˆ
|x|≤
δ
ε
n
|∇u
ε
n
|
p
dx=
ˆ
R
N
|∇u
0
|
p
dx,lim
ε
n
→0
ε
p
n
ˆ
R
N
u
p
ε
n
dx= 0,
Kn→∞ž,dÚn2
ˆ
|x|≥δ
(|∇u
n
|
p
+u
p
n
)dx
ˆ
R
N
(|∇u
n
|
p
+u
p
n
)dx
= I
−1
ε
n
ˆ
|x|≥
δ
ε
n
(|∇u
ε
n
|
p
+ε
p
n
|u
ε
n
|
p
)dx→0.
Ïd,(iii)¤á.y..2
3.½n2y²
!ÏL†4••§?1',æ^8¥;5ny²•§(E
n
)Ä)'uH
1
‰ê3A½
:?8¥,?¤½n2 y².
Ø”b8¥:x
1
= 0, ε
n
•ε.ŠCþO†
ϕ(x) = ε
p
q−p
u(εx),
Kd•§(E
n
)
−∆
p
ϕ+ε
p
|ϕ|
p−2
ϕ= Q
ε
(x)|ϕ|
q−2
ϕ,x∈R
N
.(8)
Ù¥:
Q
ε
(x) =













s
1
,x∈B
r
1
(0),
s
2
,x∈B
r
2
(
x
2
ε
),
−1,Ù§.
DOI:10.12677/pm.2023.132016139nØêÆ
œK
dÚn1y²L§ØJuyå4¯K
J
ε
= inf

ˆ
R
N
(|∇u|
p
+ε
p
|u|
p
)dx



u∈W
1,p
(R
N
),
ˆ
R
N
Q
ε
(x)|u|
q
dx= 1

•3ˆ¼êu
ε
∈W
1,p
(R
N
).-ϕ
ε
= J
1
q−p
ε
u
ε
,Kdý•§K5nØÚr•ŒŠnŒ
•ϕ
ε
´•§(8)Ä).
aq/,å4¯K
J
0
= inf

ˆ
R
N
|∇u|
p
dx



u∈D
1,p
(R
N
),
ˆ
R
N
K
2
(x)|u|
q
dx= 1

.
•3ˆ¼êu
0
∈D
1,p
(R
N
),…ϕ
0
= J
1
q−p
ε
u
0
´4••§
−∆
p
ϕ= K
2
(x)|ϕ|
q−2
ϕ,x∈R
N
(9)
Ä),Ù¥:
K
2
(x) =



s
2
,x∈B
r
2
(0),
−1,Ù§.
Äk§·‚y²eãÚn.
Ún3limsup
ε→0
J
ε
≤J
0
.
y².ØJy²J
0
•3ˆ¼êu
0
∈D
1,p
(R
N
),K
ˆ
R
N
K
2
(x)u
p
0
dx= 1,
ˆ
R
N
|∇u
0
|
p
dx= J
0
.
1wä¼êχ(x)÷v
0 ≤χ(x) ≤1,χ(x) = 1,x∈B
1
(0),χ(x) = 0,x∈B
c
2
(0).
-
w
n
(x) = c
n
χ
n
u
0
∈W
1,p
(R
N
),
Ù¥:
χ
n
(x) = χ

x
n

,c
n
=

ˆ
R
N
K
2
(x)χ
q
n
(x)u
q
0
(x)dx

−
1
q
.
Q
ε
(x+
x
2
ε
) = s
1
ž,


x+
x
2
ε


<r
1
.Kε>0¿©ž,é∀n<
1
2

|x
2
|
ε
−r
1

,k



x
n



>2



x
|x
2
|
ε
−r
1



>2



x
|x
2
|
ε
−|x+
x
2
ε
|



≥2
|x|
|x|
= 2.
DOI:10.12677/pm.2023.132016140nØêÆ
œK
džχ
n
(x) = 0.Ïd,dQ
ε
(x)ÚK
2
(x)½Â
ˆ
R
N
Q
ε
(x)w
q
n

x−
x
2
ε

dx=
ˆ
R
N
Q
ε

x+
x
2
ε

w
q
n
dx=
ˆ
R
N
K
2
(x)w
q
n
dx= 1.
¤±§dJ
ε
½Â
limsup
ε→0
J
ε
≤limsup
ε→0
ˆ
R
N

|∇w
n
(·−x
2
/ε)|
p
+ε
p
w
p
n
(·−x
2
/ε)

dx=
ˆ
R
N
|∇w
n
|
p
dx.
w,,n→∞ž,c
n
→1…χ
n
u
0
→u
0
uD
1,p
(R
N
),Kw
n
(x)→u
0
uD
1,p
(R
N
).Ïd,
n→∞ž,limsup
ε→0
J
ε
≤J
0
.y..2
£
K
1
(x) =





s
1
,x∈B
r
1
(0),
−1,Ù§,
K
2
(x) =





s
2
,x∈B
r
2
(0),
−1,Ù§,
½Â
K
3
(x) =
s
2
s
1
K
1

r
1
r
2
x

=





s
2
,x∈B
r
2
(0),
−
s
2
s
1
,Ù§.
P
β=

r
1
r
2

qp
q−p
−N

s
1
s
2

p
q−p
.
·‚b
s
1
= s
2
,β<1, ½ös
1
<s
2
,β≤1.
53bs
1
≤s
2
.dK
2
ÚK
3
½Â,x∈B
r
2
(0)ž,K
3
(x) = K
2
(x) = s
2
;x/∈B
r
2
(0)
ž,K
3
(x) <−1 = K
2
(x).Ïd, K
3
≤K
2
.
-u
ε
∈W
1,p
(R
N
)´J
ε
ˆ¼ê,K
ˆ
R
N
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx= J
ε
,
ˆ
R
N
Q(x)u
q
ε
dx= 1.
dÚn3Œ, {u
ε
}3D
1,p
(R
N
)¥k..e¡y²ε>0¿©ž,u
ε
3
x
2
ε
?8¥.
Ún4·‚k
liminf
ε→0
ˆ
B
r
2

x
2
ε

u
q
ε
dx>0,lim
ε→0
ˆ
B
r
1
(0)
u
q
ε
dx= 0.
y².œ/1
lim
ε→0
ˆ
B
r
1
(0)
u
q
ε
dx=
ˆ
B
r
2

x
2
ε

u
q
ε
dx= 0.
DOI:10.12677/pm.2023.132016141nØêÆ
œK
¯¢þ,ds
1
>0,s
2
>0,Ú
s
1
ˆ
B
r
1
(0)
u
q
ε
dx+s
2
ˆ
B
r
2

x
2
ε

u
q
ε
dx≥1
•,œ/1ؤá.
œ/2.
liminf
ε→0
ˆ
B
r
1
(0)
u
q
ε
dx>0,liminf
ε→0
ˆ
B
r
2

x
2
ε

u
q
ε
dx>0.
-
ϕ
1,ε
=

r
p
1
s
1
r
p
2
s
2

1
q−p
u
ε

r
1
r
2
x

,ϕ
2,ε
(x) = u
ε

x+
x
2
ε

,(10)
K
liminf
ε→0
ˆ
B
r
2
(0)
β
−1

s
2
s
1

ϕ
q
1,ε
dx>0,liminf
ε→0
ˆ
B
r
2
(0)
ϕ
q
2,ε
dx>0.
duϕ
1,ε
Úϕ
2,ε
3D
1,p
(R
N
)¥k.,K3f¿Âe,ε→0ž,
ϕ
i,ε
*ϕ
i,0
uD
1,p
(R
N
),ϕ
i,ε
→ϕ
i,0
uL
q
loc
(R
N
),ϕ
i,ε
→ϕ
i,0
a.e.uR
N
,i= 1,2.
éui= 1,2,dϕ
i,ε
>0,ϕ
i,0
≥0.?˜Ú, ϕ
i,0
6= 0,i= 1,2.ε>0¿©ž,é∀R<
|x
2
|
2ε
,
·‚kB
R
(
x
2
ε
)∩B
R
(0) = ∅.5¿
Q
−
ε
(x) = K
−
1
(x),Q
−
ε
(x+
x
2
ε
) = K
−
2
(x),∀x∈B
R
(0),
K
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx+
ˆ
B
r
2

x
2
ε

Q
+
ε
u
q
ε
dx
≥1+
ˆ
B
R
(0)
Q
−
ε
u
q
ε
dx+
ˆ
B
R

x
2
ε

Q
−
ε
u
q
ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−1

s
2
s
1

K
−
1

r
1
r
2
x

ϕ
q
1,ε
dx+
ˆ
B
R
(0)
K
−
2
ϕ
q
2,ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−1
K
−
3
ϕ
q
1,ε
dx+
ˆ
B
R
(0)
K
−
2
ϕ
q
2,ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−1
K
−
3
ϕ
q
1,0
dx+
ˆ
B
R
(0)
K
−
2
ϕ
q
2,0
dx+o(1),
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx+
ˆ
B
r
2

x
2
ε

Q
+
ε
u
q
ε
dx=
ˆ
B
r
2
(0)

β
−1
K
+
3
ϕ
q
1,ε
+K
+
2
ϕ
q
2,ε

dx
=
ˆ
B
r
2
(0)

β
−1
K
+
3
ϕ
q
1,0
+K
+
2
ϕ
q
2,0

dx+o(1).
DOI:10.12677/pm.2023.132016142nØêÆ
œK
-R→∞,·‚k
ˆ
B
r
2
(0)

β
−1
K
+
3
ϕ
q
1,0
+K
+
2
ϕ
q
2,0

dx≥1+
ˆ
R
N

β
−1
K
−
3
ϕ
q
1,0
+K
−
2
ϕ
q
2,0

dx.
Ïd,
ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx+
ˆ
R
N
K
2
ϕ
q
2,0
dx≥1.
e¡©n«œ¹?Ø:
ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx≥1,
ˆ
R
N
K
2
ϕ
q
2,0
dx≤0;(11)
ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx≤0,
ˆ
R
N
K
2
ϕ
q
2,0
dx≥1;(12)
ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx>0,
ˆ
R
N
K
2
ϕ
q
2,0
dx>0.(13)
b(11)¤á.dÚn3
J
0
≥limsup
ε→0
J
ε
= limsup
ε→0
ˆ
R
N
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx
≥limsup
ε→0
ˆ
B
R
(0)
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx+
ˆ
B
R

x
2
ε

(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx
!
≥
ˆ
B
Rr
2
r
1
(0)
β
−1
|∇ϕ
1,0
|
p
dx+
ˆ
B
R
(0)
|∇ϕ
2,0
|
p
dx.
-R→∞,dβ≤1Ú53
J
0
>
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx≥
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx

ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx

p
q
=
β
p
q
−1
ˆ
R
N
|∇ϕ
1,0
|
p
dx

ˆ
R
N
K
3
ϕ
q
1,0
dx

p
q
≥
ˆ
R
N
|∇ϕ
1,0
|
p
dx

ˆ
R
N
K
2
ϕ
q
1,0
dx

p
q
≥J
0
.
gñ.
DOI:10.12677/pm.2023.132016143nØêÆ
œK
b(12)¤á.aqu(11)?Ø,·‚k
J
0
≥limsup
ε→0
ˆ
R
N
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx
≥
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx+
ˆ
R
N
|∇ϕ
2,0
|
p
dx
>
ˆ
R
N
|∇ϕ
2,0
|
p
dx≥
ˆ
R
N
|∇ϕ
2,0
|
p
dx

ˆ
R
N
K
2
ϕ
q
2,0
dx

p
q
≥J
0
.
gñ.
b(13)¤á.d53,β≤1,ÚJ
0
½Â
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx≥
ˆ
R
N
|∇ϕ
1,0
|
p
dx

ˆ
R
N
K
2
ϕ
q
1,0
dx

p
q

ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx

p
q
≥J
0

ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx

p
q
.
Ïd,aqu(11)?Ø,·‚k
J
0
≥limsup
ε→0
ˆ
R
N
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx
≥
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx+
ˆ
R
N
|∇ϕ
2,0
|
p
dx
≥J
0
"

ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx

p
q
+

ˆ
R
N
K
2
ϕ
q
2,0
dx

p
q
#
>J
0
.
gñ.
Ïd,ÏLüØ(11),(12),Ú(13),œ/2 ؤá.
œ/3
liminf
ε→0
ˆ
B
r
1
(0)
u
q
ε
dx>0,lim
ε→0
ˆ
B
r
2

x
2
ε

u
q
ε
dx= 0.
d(10)ØJϕ
1,ε
÷v
−∆
p
ϕ+r
p
1
r
−p
2
ε
p
|ϕ|
p−2
ϕ= J
ε
s
−1
1
s
2
Q
ε
(r
−1
2
r
1
x)|ϕ|
q−2
ϕ,x∈R
N
.
-ε→0,Kϕ
1,0
∈D
1,P
(R
N
)÷v
−∆
p
ϕ= J
1
K
3
(x)|ϕ|
q−2
ϕ,x∈R
N
,
DOI:10.12677/pm.2023.132016144nØêÆ
œK
Ù¥µ
J
1
=
ˆ
R
N
|∇ϕ
1,0
|
p
dx>0.
dý•§K5nØÚr4Šnϕ
1,0
>0.
5¿3B
R
(0)þ,Q
−
ε
=
s
1
s
2
K
−
3
…éR<
1
2

|x
2
|
ε
−r
2

,
ˆ
B
r
2
(0)
β
−1
K
+
3
ϕ
q
1,0
dx+o(1) =
ˆ
B
r
1
(0)
Q
+
ε
u
q
ε
dx+
ˆ
B
r
2

x
2
ε

Q
+
ε
u
q
ε
dx
≥1+
ˆ
B
R
(0)
Q
−
ε
u
q
ε
dx
= 1+
ˆ
B
Rr
2
r
1
(0)
β
−1
K
−
3
ϕ
q
1,0
dx+o(1).
-R→∞,K
ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx≥1.
Ïd,dÚn3
J
0
≥limsup
ε→0
ˆ
R
N
(|∇u
ε
|
p
+ε
p
|u
ε
|
p
)dx
≥
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx≥
ˆ
R
N
β
−1
|∇ϕ
1,0
|
p
dx

ˆ
R
N
β
−1
K
3
ϕ
q
1,0
dx

p
q
= β
(
p
q
−1)
ˆ
R
N
|∇ϕ
1,0
|
p
dx

ˆ
R
N
K
3
ϕ
q
1,0
dx

p
q
>
ˆ
R
N
|∇ϕ
1,0
|
p
dx

ˆ
R
N
K
2
ϕ
q
1,0
dx

p
q
≥J
0
.
gñ.Ïd,œ/3ؤá.
ÏLüØœ/1,2,3,·‚
liminf
ε→0
ˆ
B
r
2

x
2
ε

u
q
ε
dx>0,lim
ε→0
ˆ
B
r
1
(0)
u
q
ε
dx= 0.
y..2
e5§·‚y²e¡·K.
·K2lim
ε→0
J
ε
= J
0
.
DOI:10.12677/pm.2023.132016145nØêÆ
œK
y².dÚn4
s
2
ˆ
B
r
2

x
2
ε

u
q
ε
dx= 1+
ˆ
R
N
\

B
r
1
(0)∪B
r
2

x
2
ε

u
q
ε
dx−s
1
ˆ
B
r
1
(0)
u
q
ε
dx
= 1+
ˆ
R
N
\B
r
2

x
2
ε

u
q
ε
dx+o(1).
d(10)
ˆ
B
r
2
(0)
K
+
2
ϕ
q
2,ε
dx= 1+
ˆ
R
N
K
−
2
ϕ
q
2,ε
dx+o(1).
-ε→0,dÛÜSobolev;i\½nÚFatou Ún
ˆ
B
r
2
(0)
K
+
2
ϕ
q
2,0
dx≥1+
ˆ
R
N
K
−
2
ϕ
q
2,0
dx,.
Ïd,
ˆ
R
N
K
2
ϕ
q
2,0
dx≥1.
d‰êfeŒëY5,Ún3,ÚJ
0
½Â
´
R
N
|∇ϕ
2,0
|
p
dx
(
´
R
N
K
2
ϕ
q
2,0
dx)
p
q
≤
ˆ
R
N
|∇ϕ
2,0
|
p
dx≤liminf
ε→0
J
ε
≤limsup
ε→0
J
ε
≤J
0
≤
´
R
N
|∇ϕ
2,0
|
p
dx
(
´
R
N
K
2
ϕ
q
2,0
dx)
p
q
.
Ïd,J
0
3ϕ
2,0
?Œˆ,…lim
ε→0
J
ε
= J
0
.y..2
•§·‚¤½n2y².
½n2y².5¿•§(8)•3Ä),KÏLCþO†ØJy²(E
n
)•3Ä).
Ïd,(i)¤á.
u
n
>0•(E
n
)Ä), Kϕ
ε
n
= ε
p
q−p
n
u
n
(ε
n
x)••§(8)Ä).Ïd,•3J
ε
ˆ
¼êu
ε
n
∈W
1,p
(R
N
)¦ϕ
ε
n
= J
1
q−p
ε
n
u
ε
n
.5¿
ϕ
2,ε
n
= J
−
1
q−p
ε
n
ϕ
ε
n
(·+x
2
/ε
n
),
…d·K2y²
lim
ε
n
→0
ε
p
n
ˆ
R
N
|ϕ
2,ε
n
|
p
dx= 0,
lim
ε
n
→0
ˆ
R
N
|ϕ
2,ε
n
|
p
dx=
ˆ
R
N
|ϕ
2,0
|
p
dx,
lim
ε
n
→0
ˆ
R
N
|∇ϕ
2,ε
n
|
p
dx=
ˆ
R
N
|∇ϕ
2,0
|
p
dx,
Ù¥:ϕ
2,0
•J
0
ˆ¼ê.Ïd,ε
n
→0ž, ϕ
2,ε
n
→ϕ
2,0
uD
1,p
(R
N
)∩L
q
(R
N
).¤±d·
K2,ϕ
ε
n
→J
−
1
q−p
0
ϕ
2,0
uD
1,p
(R
N
).(ii)¤á.
DOI:10.12677/pm.2023.132016146nØêÆ
œK
-ε
n
→0,é?¿δ>0,·‚k
ˆ
R
N
\B
δ
(x
2
)
|u
n
|
q
dx
ˆ
R
N
|u
n
|
q
dx
=
ˆ
R
N
\B
δ
ε
n
(0)
|ϕ
2,ε
n
|
q
dx
ˆ
R
N
|ϕ
2,ε
n
|
q
dx
≤s
q
2
ˆ
R
N
\B
δ
ε
n
(0)
u
q
ε
n
dx→0,
ˆ
R
N
\B
δ
(x
2
)
(|∇u
n
|
p
+|u
n
|
p
)dx
ˆ
R
N
(|∇u
n
|
p
+|u
n
|
p
)dx
= J
−1
ε
n
ˆ
R
N
\B
δ
ε
n
(0)
(|∇ϕ
2,ε
n
|
p
+ε
p
n
|ϕ
2,ε
n
|
p
)dx→0.
Ïd,(iii)¤á.y..2
Ä7‘8
I[g,‰ÆÄ7“c‘8(11901531);I[3ÆÄ7”/•ÜŠ‘8(202008330417);úôŽ
g,‰ÆÄ7-:‘8(LZ22A010001).
ë•©z
[1]Bonanno,G. andLivrea, R.(2003) Multiplicity Theoremsfor theDirichlet ProblemInvolving
thep-Laplacian.NonlinearAnalysis:Theory,MethodsandApplications,54,1-7.
https://doi.org/10.1016/S0362-546X(03)00027-0
[2]Ferrero, A.and Gazzola,F. (2003) OnSubcriticality Assumptions for the Existence of Ground
StatesofQuasilinearEllipticEquations.AdvancesinDifferentialEquations,8,1081-1106.
https://doi.org/10.57262/ade/1355926580
[3]Liu,S.(2010)OnGroundStatesofSuperlinearp-LaplacianEquationsinR
N
.Journalof
MathematicalAnalysisandApplications,361,48-58.
https://doi.org/10.1016/j.jmaa.2009.09.016
[4]Costa,D.G.andMagalh˜aes,C.A.(1995)ExistenceResultsforPerturbationsofthep-
Laplacian.NonlinearAnalysis:Theory,MethodsandApplications,24,409-418.
https://doi.org/10.1016/0362-546X(94)E0046-J
[5]Buryak,A.V.,Trapani,P.D.,Skryabin,D.V.andTrillo,S.(2002)OpticalSolitonsDueto
QuadraticNonlinearities:FromBasicPhysicstoFuturisticApplications.PhysicsReports,
370,63-235.https://doi.org/10.1016/S0370-1573(02)00196-5
[6]Afrouzi,G.A.,Mahdavi,S.andNaghizadeh,Z.(2007)TheNehariManifoldforp-Laplacian
Equation withDirichlet Boundary Condition.NonlinearAnalysis:ModellingandControl,12,
143-155.
DOI:10.12677/pm.2023.132016147nØêÆ
œK
[7]Binding,P.A.,Dr´abek,P.andHuang,Y.(1997)OnNeumannBoundaryValueProblemsfor
Some QuasilinearEllipticEquations.ElectronicJournalofDifferentialEquations, 1997,1-11.
[8]Wu,T.(2007)MultiplicityofPositiveSolutionofp-LaplacianProblemswithSign-Changing
WeightFunction.InternationalJournalofMathematicalAnalysis,1,557-563.
[9]Zhong,X. andZou,W. (2014)A Concentration Behavior forSemilinearElliptic Systemswith
IndefiniteWeight.ActaMathematicaSinica,EnglishSeries,30,2014-2026.
https://doi.org/10.1007/s10114-014-3509-5
[10]Ackermann,N.andSzulkin,A.(2013)AConcentrationPhenomenonforSemilinearElliptic
Equations.ArchiveforRationalMechanicsandAnalysis,207,1075-1089.
https://doi.org/10.1007/s00205-012-0589-1
[11]Fang,X.andWang,Z.(2020)LimitingProfileofSolutionsforSchr¨odingerEquationswith
ShrinkingSelf-FocusingCore.CalculusofVariationsandPartialDifferentialEquations,59,
ArticleNo.129.https://doi.org/10.1007/s00526-020-01799-1
DOI:10.12677/pm.2023.132016148nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.