设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(2),149-157
PublishedOnlineFebruary2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.132017
n−o“ê†n−Ñt(
oooZZZ
HʘŒÆêƆ&E‰ÆÆ,ôÜH
ÂvFϵ2022c1231F¶¹^Fϵ2023c130F¶uÙFϵ2023c26F
Á‡
©lp ÝÑu§ÄkïÄn−o“ê(~ê§§´Š•o“êg,í2§´Ä¦{
$Ž•n−‚5$Ž˜«“êX Ú"ÙgÏL½Â 6/þn−Ñt)ÒÚÑn−Ñt(
½Â95Ÿ§n−o“ê†n−Ñt(˜˜éA'X"•3•þmþïÄ{ƒmþn−o
“ê§‰Ñn−o“ê{†n−ÑtN'X"
'…c
n−Ñt(§n−o“ê§n−o“ê
n−LieAlgebraandn−PoissonStructure
JiaLi
CollegeofMathematicsandInformationScience,NanchangHangkongUniversity,Nanchang
Jiangxi
Received:Dec.31
st
,2022;accepted:Jan.30
th
,2023;published:Feb.6
th
,2023
Abstract
Inthispaper,wefirststudythestructuralconstantsofn−Liealgebras,whichisa
naturalgeneralizationofLiealgebrasandanalgebraicsystemwhosebasicmultipli-
©ÙÚ^:oZ.n−o“ê†n−Ñt([J].nØêÆ,2023,13(2):149-157.
DOI:10.12677/pm.2023.132017
oZ
cationoperationsarelinearoperationsofn−elements.Secondly,thedefinitionand
propertiesofn−Poissonstructurearederivedbydefiningthen−Poissonbracketona
manifoldandtheone-to-onecorrespondencebetween n−Liealgebrasand n−Poisson
structureisobtained.Finally,we studythen−Lie algebrasoncotangentbundles,and
give therelationbetween thecomorphismofn−Lie algebrasandn−Poisson mapping.
Keywords
n−PissonStructure,n−LieAlgebras,n−LieAlgebroids
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
n−o“ê[1,2](q¡•Filippov“ê,Nambu-Poisson“ê)´dc€éêÆ[Filippov
31985cJÑ,dõ“êXÚ@®•@/A^ÔnïÄ+•.3Nambu−åÆXÚ
¥[3,4] [f
1
,···,f
n
]=det(
∂f
i
∂x
j
)´•;.˜‡Ã•‘n−o“ê~f.CAcn−o“êk•2
•A^˜m,¦n−o“ê(œ„uÐ.3[5]¥k•õ'un−o“êSN.{¤
þ,Poisson(Ñt)•ïÄ;åÆXÚ$Ä•§ÚÅð½ÆÄ¯K,3Œ*ÿþ“êþ
Ú?˜‡V *Ò$Ž,53;åÆïÄ¥å-‡Š^,¡•Ñt)Ò.d[6]Ú\
Courant“ê˜‡š~-‡5Ÿ´§¡˜m´˜‡o2−“ê,¦Ñt(†p(—
ƒƒ'.^ponØ•{ïÄÑtAÛ¥¯K,Ø=Ur?‰ÆuÐ,„U•Ï·‚^
•p*:3•pgþ5*Ú)û¯K.n−o“ê´én−o“ê9ƒmí2,´3•
þmþïÄ.
©d[7]¥Šö‰Ño“ꆕþ˜m¥Ñt(˜˜éA'X,UYïÄn−o“ê
n−Ñt(éA'X.36/MþNM—î•þ|8Ü‘k•þ|)Ò$Ž¤o“
ê,K3C
∞
(M)þ•Œ±Ú\)Ò$Ž,=Ñt)Ò.éA 3p•þ|þn−Ñt)Ò.X
3•þmþÚ\o“ê½Â,UY?Ømþn−Ñt6/{ƒn−o“ê.
2.n−o“ê†n−Ñt(éA'X
½Â1.[
i
] ´•þ˜mgþ˜|Ä,i=1,···,dimg,K½Â˜‡n−o“ê(~ê,X
e[
i
1
,···,
i
n
]
g
=
P
n
k=1
C
k
i
1
···i
n

k
DOI:10.12677/pm.2023.132017150nØêÆ
oZ
½Â2.[1]˜‡n−o“ê´˜‡•þ˜mg±9˜‡n−-‚5‡é¡)Ò$Ž[·,···,·]
g
:
∧
n
g→g,¦é?¿
i
,
j
∈g,±eÄðª¤á:
[
i
1
,···,
i
n−1
,[
j
1
,···,
j
n
]]
g
=
X
k
[
j
1
,···,
j
k−1
,[
i
1
,···,
i
n−1
,
j
k
],
j
k+1
,···,
j
n
](1)
½Âad: ∧
n−1
g→gl(g) Xe,
ad

i
1
,···,
i
n−1
: 
j
k
→[
i
1
,···,
i
n−1
,
j
k
],∀
i
,
j
∈g(2)
Keq:n-Liealgebraduad

i
1
,···,
i
n−1
´˜‡f,=
ad

i
1
,···,
i
n−1
[
j
1
,···,
j
n
]
g
=
n
X
k=1
[
j
1
,···,ad

i
1
,···,
i
n−1

j
k
,
j
n
]
g
.(3)
·K1.éu˜‡n−o“ê,Ù(~ê÷vª
C
l
j
1
···j
n
C
m
i
1
···i
n−1
,l
=
n
X
k=1
C
l
i
1
···i
n−1
,j
k
C
m
j
1
···j
k−1
,l,j
k+1
···j
n
y²
[
i
1
,···,
i
n−1
,
n
X
l=1
C
l
j
1
···j
n

l
] =
n
X
k=1
[
j
1
,···,
j
k−1
,
n
X
l=1
C
l
i
1
···i
n−1
,j
k

l
,···,
j
n
]
n
X
l=1
n
X
m=1
C
l
j
1
···j
n
C
m
i
1
···i
n−1
,l

m
=
n
X
k=1
n
X
l=1
n
X
m=1
C
l
i
1
···i
n−1
,j
k
C
m
j
1
···j
k−1
,l,j
k+1
···j
n

m
C
l
j
1
···j
n
C
m
i
1
···i
n−1
,l
=
n
X
k=1
C
l
i
1
···i
n−1
,j
k
C
m
j
1
···j
k−1
,l,j
k+1
···j
n
½Â3.[8]6/Mþn−Ñt)Ò´˜‡n−-‚5N{.,...,.}: C
∞
(M)×...×C
∞
(M) −→
C
∞
(M)÷v:
(1)‡é¡:é?¿f
i
∈C
∞
(M),(1 ≤i≤n),σ∈S
n
(S
n
´né¡+),
{f
1
,···,f
n
}= (−1)
ε(σ)
{f
σ(1)
,···,f
σ(n)
}.
(2)4ÙZ[5Ÿ:é?¿f
i
,g∈C
∞
(M),(1 ≤i≤n),
{f
1
g,f
2
,···,f
n
}= f
1
{g,f
2
,···,f
n
}+g{f
1
,f
2
,···,f
n
}.
(3)Äðª:é?¿f
i
,g
j
∈C
∞
(M),(1 ≤i≤n−1,1 ≤j≤n),
{f
1
,···,f
n−1
,{g
1
,···,g
n
}}=
n
X
j=1
{g
1
,···,{f
1
,···,f
n−1
,g
j
},···,g
n
}.
DOI:10.12677/pm.2023.132017151nØêÆ
oZ
XJ{.,...,.}´˜‡n−Ñt)Ò,K•3n−•þ|π∈Γ(∧
n
TM) ÷vπ(df
1
∧···∧df
n
)=
{f
1
,···,f
n
},¡•n−Ñt•þ|.3Ä[
i
]e,n−Ñt•þ|Œ±L«•
π=
X
C
k
i
1
···i
n

k
∂
∂
i
1
∧···∧
∂
∂
i
n
.
K‚5n−Ñt(¤(½(~ê{C
k
i
1
···i
n
}=•n−o“ê((~ê.
ƒ‡géó˜mg
∗
Ä•[µ
i
],¦<µ
i
,
j
>= δ
i
j
#Kg
∗
þ¼êf•:
df|
µ
=
n
X
i=1
∂f
∂
k
|
µ
d
k
|
µ
∈T
∗
g
∗
|
µ
∀f∈C
∞
(g
∗
),µ∈g
∗
.
5¿gÄ•{
1
,···,
n
},T
∗
g
∗
kÄ{d
1
|
µ
,···,d
n
|
µ
},§‚ƒmŒ±ïáÓ'XT
∗
g
∗
|
µ
→g,
d
k
|
µ
7→
k
,∀k= 1,···,n,
2-
{f
1
,···,f
n
}(µ) =<µ,[df
1
|
µ
,···,df
n
|
µ
] >.
Ù¥<,>L«éó˜mƒmé$Ž,Ïd
{f
1
,···,f
n
}(µ) =
n
X
k=1
∂f
1
∂
i
1
,···,
∂f
n
∂
i
n
C
k
i
1
···i
n

k
(µ).
AOég
∗
þ‹I¼êk
{
i
1
,···,
i
n
}(µ) =
X
C
k
i
1
···i
n

i
k
(µ).
ddg
∗
þn−‚5Ñt(,Œ±±e½n.
½n1•þ˜m†Ùéó˜mþn−o“ê(ƒmkg,˜˜éA'X,¦ü«(k
ƒÓ(~ê.
e¡‰Ñn−Ñt(d^‡.
½n2 e{.,...,.}´˜‡n−Ñt)Ò,KkL
X
f
1
...f
n−1
Π = 0
y²

L
X
f
1
...f
n−1
Π

(dg
1
,...,dg
n
)
= L
X
f
1
...f
n−1
(Π(dg
1
,...,dg
n
)−
n
X
i=1
Π

dg
1
,...,L
X
f
1
...f
n−1
dg
i
,...,dg
n

= L
X
f
1
...f
n−1
({g
1
,...,g
n
})−
n
X
i=1
{g
1
,...,L
X
f
1
...f
n−1
g
i
,...,g
n
}
= {f
1
,...,f
n−1
,{g
1
,...,g
n
}}−
n
X
i=1
{g
1
,...,{f
1
,...,f
n−1
,g
i
},...,g
n
}.
DOI:10.12677/pm.2023.132017152nØêÆ
oZ
(M,π) ´n−‘Ñt6/,§)Ò•{f
1
,···,f
n
}=π(df
1
,···,d
f
n
).Œ±pј‡N
π
]
: ∧
n−1
(M) →X(M),½ÂXe:
{f
1
,···,f
n−1
,g}= π(df
1
,···,d
f
n−1
,dg) =<X
f
1
,···,f
n−1
,dg>
Ù¥X
f
1
,···,f
n−1
´dπ(½M—î•þ|
3.n−Ñt6/þ{ƒn−o“ê
½Â4[8]M´˜‡6/,f:E→M´•þm,6/Mþ˜‡n−o“ê´˜‡n
|(E,ρ,M),Ù¥ρ:∧
n−1
E→TM´mN,…3Γ(∧
n−1
E)ÚX(M)ƒmpo“êÓ,
=é?¿f∈C
∞
(M),X
1
,···,X
n−1
,Y∈Γ(E),k
[ρ(X
1
∧···∧X
n−1
),ρ(Y
1
∧···∧Y
n−1
)] =
n−1
X
i=1
ρ(Y
1
∧···[X
1
,···,X
n−1
,Y
i
]∧···∧Y
n−1
),
[X
1
,···,X
n−1
,fY] = f[X
1
,···,X
n−1
,Y]+ρ(X
1
∧···∧X
n−1
)(f)Y.
ρ¡•eN.
(M,π)´˜‡n−Ñt6/,ƒmV=TMþ•3˜‡n−Ñt(π
TM
¦é?¿
f
1
,···,f
n
k{f
1T
,···,f
nT
}
TM
={f
1
,···,f
n
}
T
,ùpπ
TM
´˜‡n−Ñt(,KŒ±3éóm
∧
n−1
T
∗
Mþ½Â˜‡n−o“ê,Ù¥eN÷v
ρ(df
1
,···,df
n−1
) = X
f
1
,···,f
n−1
= π
]
(df
1
,···,df
n−1
),ρ= π
]
: ∧
n−1
T
∗
π
→TM.
·K2.3n−o“ê¡þ)Ò÷v[df
1
,···,df
n−1
] = d{f
1
,···,f
n
}.
y²φ
df
1
=f
1T
,φ
[df
1
,···,df
n
]
={φdf
1
,···,φdf
n
}={f
1T
,···,f
nT
}={df
1
,···,df
n
}
T
=
φ
d{f
1
,···,f
n
}
α
1
,···,α
n−1
,α
n
∈Ω
1
(M)K½Â˜‡n−{ƒmN:
π
]
(α
1
∧···∧
n−1
)(α
n
) = π(α
1
,···,α
n−1
,α
n
),
½Â)Ò
{α
1
,···,α
n−1
,α
n
}= L
Π
]
(α
1
∧···∧α
n−1
)
α
n
−L
Π
]
(α
n
)
(α
1
,···,α
n−1
)−dΠ(α
1
,···,α
n−1
,α
n
).
N´
{α
1
,···,α
n−1
,fα
n
}= f{α
1
,···,α
n−1
,α
n
}+Π
]
(α
1
∧···∧α
n−1
)(f)α
n
.
·‚{ƒmn−o“ê.
DOI:10.12677/pm.2023.132017153nØêÆ
oZ
½Â5 ˜‡•þm{÷vXe†ã
E
1
Φ
E
//

E
2

M
1
Φ
M
//
M
2
Φ
E
: M
1
→M
2
´ÄN,‰½˜‡•þm{3¡þŒ±.£N
Φ
∗
E
: Γ(E
2
) →Γ(E
1
)(4)
½Â6E
1
→M
1
,E
2
→M
2
´ü‡n−o“ê,eΦ
E
: E
1
E
2
´˜‡n−o“ê{,
´˜‡•þm{XJ÷v:
(1).£N(4))Ò5Ÿ,
(2)eN÷v:ρ
1
(Φ
∗
E
(Y
1
∧···∧Y
n−1
)) ∼
φ
M
ρ
2
(Y
1
∧···∧Y
n−1
)Œ±Xe†ã
E
1
Φ
E
//
ρ
1

E
2
ρ
2

TM
1
TΦ
M
//
TM
2
E
2
¡´Y
1
,···,Y
n−1
,Y
n
,f´M
2
þ1w¼ê,KkΦ
∗
[Y
1
,···,Y
n−1
,fY
n
]
= [Φ
∗
Y
1
,···,Φ
∗
Y
n−1
,(Φ
∗
f)Φ
∗
Y
n
],KÏLn−o“ê½Âúª:
((Φ
∗
(ρ
2
(Y
1
∧···∧Y
n−1
)f))−ρ
1
(Φ
∗
(Y
1
∧···∧Y
n−1
))(Φ
∗
f))Φ
∗
Y
n
= 0
ùy²(Φ
∗
(ρ
2
(Y
1
∧···∧Y
n−1
)f)) = ρ
1
(Φ
∗
(Y
1
∧···∧Y
n−1
))(Φ
∗
f).
½n3 E
1
→M
1
,E
2
→M
2
´ü‡n−o“ê,•þm{Φ
E
: E
1
E
2
´˜‡n−“ê
{…=éóNΦ
E
∗
: E
∗
1
→E
∗
2
´˜‡n−ÑtN.
y²éu{Φ
E
: E
1
E
2
Ú?¿Y
1
,···,Y
n−1
,Y
n
∈Γ(E
2
),k
φ
Φ
∗
E
Y
i
= Φ
∗
E
φ
Y
i
.
‰½¡Y
1
,···,Y
n−1
,Y
n
∈Γ(E
2
),f∈C
∞
(M
2
),k
φ
Φ
∗
E
[Y
1
,···,Y
n−1
,Y
n
]
= Φ
∗
E
φ
[Y
1
,···,Y
n−1
,Y
n
]
= Φ
∗
E
{φ
Y
1
,···,φ
Y
n−1
,φ
Y
n
.}
φ
[Φ
∗
E
Y
1
,···,Φ
∗
E
Y
n−1
,Φ
∗
E
Y
n
]
= {φ
Φ
∗
E
Y
1
,···,φ
Φ
∗
E
Y
n−1
,φ
Φ
∗
E
Y
n
}= {Φ
∗
E
φ
Y
1
,···,Φ
∗
E
φ
Y
n−1
,Φ
∗
E
φ
Y
n
.}
p
∗
1
Φ
∗
E
∗
(ρ
2
((Y
1
∧···∧Y
n−1
))f) = Φ
∗
E
∗
p
∗
2
(ρ
2
((Y
1
∧···∧Y
n−1
))f) = Φ
∗
E
∗
{φ
Y
1
,···,φ
Y
n−1
,p
∗
2
f.}
DOI:10.12677/pm.2023.132017154nØêÆ
oZ
ùª†>un−o“ê,m>un−Ñt.
½Â7Φ:M
1
→M
2
´1wN ,n−•þ|ϑ∈X
n
(M
1
) †•þ|ζ∈X
n
(M
2
) ¡•´
Φ−ƒ'XJ÷v:
ζ
Φ(x)
= (d
x
Φ)
∗
ϑ
x
,∀x∈M
1
.
dΦ ‡©Œ±pN(d
x
Φ)
∗
: ∧
n
T
x
M
1
→∧
n
T
Φ(x)
M
2
,ζ= Φ
∗
ϑ.
·K3.(M
1
,π
M
1
)Ú(M
2
,π
M
2
)´ü‡n−Ñt6/,‰½1wNΦ:M
1
→M
2
,ŒX
ed'X:
(1)π
M
1
†π
M
2
´Φƒ'.
(2)éux∈M
1
÷vXe†ã
∧
n−1
T
∗
x
M
1
(d
x
Φ)
∗
//
Π
]
M
1

∧
n−1
T
∗
Φ(x)
M
2
Π
]
M
2

T
x
M
1
(d
x
Φ)
∗
//
T
Φ(x)
M
2
y²
((dΦ)
∗
Π
M
1
)(α
1
,···,α
n−1
,α
n
) = Π
M
2
(α
1
,α
2
,···,α
n
)
⇔((dΦ)
∗
α
n
)(Π
]
M
1
((dΦ)
∗
(α
1
,···,α
n−1
))) = α
n
(Π
]
M
2
(α
1
,···,α
n−1
))
⇔α
n
(dΦ(Π
]
M
1
((dΦ)
∗
(α
1
,···,α
n−1
)))) = α
n
(Π
]
M
2
(α
1
,···,α
n−1
)).
½Â8 E→M´n−o“ê,÷XN⊆M•3•þfmF⊆E,XJ÷v:
(1)E¡´X
1
,···,X
n−1
,Y,•›3NþF¡3)Ò[·,·],
(2)ρ(F) ⊆TN.KF¡•˜‡n−of“ê.
·K4.XJF⊆E´÷XN⊆M˜‡n−of“ê,KF7kn−o“ê(,éA
eN•ρ: E→TN,)Ò$Ž•:
[X
1
|
N
,···,X
n−1
|
N
,Y|
N
] = [X
1
,···,X
n−1
,Y]|
N
,X
1
|
N
,···,X
n−1
|
N
,Y|
N
∈Γ(F).
y²y²)Ò´û½Â,Y|
N
= 0,K[X
1
,···,X
n−1
,Y]|
N
= 0.PY= Σ
i
f
i
Y
i
,f
i
∈C
∞
(M)
36/Nþu0,K
[X
1
,···,X
n−1
,Y]
N
=
X
i
f
i
|
N
[X
1
,···,X
n−1
,Y
i
]|
N
+(ρ(X
1
∧···∧X
n−1
)f
i
)|
N
Y
i
|
N
= 0.
ùpρ(X
1
∧···∧X
n−1
)f
i
= 0,Ï•ρ(X
1
∧···∧X
n−1
)†Nƒƒ.
E→M´˜‡n−o“ê,N⊆M´˜‡f6/.ρ
−1
(TN) ⊆E´˜‡1wfm.K
†Nƒƒ•þ|o)ÒE†Nƒƒ,ρ
−1
(TN)⊆E´÷XN⊆M˜‡n−of“ê
DOI:10.12677/pm.2023.132017155nØêÆ
oZ
.
i: N→M´˜‡i\N,Ài
!
E:= ρ
−1
(TN)´•›3Nþ˜‡n−o“êû½Â,±
eü«AÏœ¹:
(1)XJρ†Nƒƒ(ie.ρ(E|
N
) ⊆TN),Ki
!
E= E|
N
.
(2)XJρ†Nî(ρ(E)+Φ
∗
(TN) = TM),Ki
!
E´˜‡û½Â,
rank(i
!
E) = rank(E)−dim(M)+dim(N),i
!
TM= TN.
½Â9XJE
1
→M
1
,E
2
→M
2
´ü‡n−o “ê,˜‡•þmNΦ
E
:E
1
→E
2
´˜‡
n−o“êXJ§ãGr(Φ
E
) ⊆E
2
×E
−
1
´÷XGr(Φ
M
)˜‡n−of“ê.
˜‡n−Ñt•þ|π??†Nƒƒ,Kf6/N⊆M´˜‡n−Ñtf6/.½Â˜‡•þ
|π
N
∈∧
n
TN⊆∧
n
TM,éuNj: N→M,Kπ
N
∼
j
π,éAn−Ñt)ÒXe:
{j
∗
f
1
,···j
∗
f
n
}
N
= j
∗
{f
1
,···f
n
}.
½n4Xe^‡d:
(1)N´˜‡n−Ñtf6/.
(2)Π
]
(∧
n−1
T
∗
M|
N
) ⊆TN.
(3)¤kM—î•þ|X
f
1
,···,f
n−1
,(f
1
,···,f
n−1
) ∈C
∞
(M)†Nƒƒ.
(4)3n−Ñt)Òe,¼êf
1
|
N
,···,f
n−1
|
N
= 0´˜‡n−o“ênŽ.
y²(1),(2)w,d,^‡(3)¤áž,K36/N?u0¼ê´nŽ,Kg|
N
= 0žk
{f
1
,···,f
n−1
,g}|
N
=X
f
1
,···,f
n−1
(g)|
N
=0 ϕX
f
1
,···,f
n−1
†Nƒƒ.(4)y,ƒ‡XJ(4)¤á,
Kg|
N
= 0žk{f
1
,···,f
n−1
,g}|
N
= 0,=<dg,X
f
1
,···,f
n−1
>|
N
= X
f
1
,···,f
n−1
(g)|
N
= 0,y..
ë•©z
[1]Filippov,T.(1985)n-LieAlgebras.SiberianMathematicalJournal,26,879-891.
https://doi.org/10.1007/BF00969110
[2]Kasymov,Sh.M.(1987)OnaTheoryofn-LieAlgebras.AlgebraandLogic,26,155-166.
https://doi.org/10.1007/BF02009328
[3]Nambu,Y.(1973)GeneralizedHamiltonianDynamics.PhysicalReviewD,7,2405-2412.
https://doi.org/10.1103/PhysRevD.7.2405
[4]Takhtajan,L.(1994)OnFoundationoftheGeneralizedNambuMechanics.Communications
inMathematicalPhysics,160,295-315.https://doi.org/10.1007/BF02103278
DOI:10.12677/pm.2023.132017156nØêÆ
oZ
[5]deAzc´arraga,J.A.andIzquierdo,J.M.(2010)n-aryAlgebras:AReviewwithApplications.
JournalofPhysicsA:MathematicalandTheoretical,43,ArticleID:293001.
[6]Liu,Z.,Weinstein,A.andXu,P.(1997)ManinTriplesforLieBialgebroids.JournalofDif-
ferentialGeometry,45,547-745.https://doi.org/10.4310/jdg/1214459842
[7]Meinrenken,E.(2018)PoissonGeometryfromaDiracPerspective.LettersinMathematical
Physics,108,447-498.
[8]Vallejo,J.A.(2001)Nambu-PoissonManifoldsandAssociatedn-aryLieAlgebroids.Journal
ofPhysicsA:MathematicalandGeneral,34,9753.
https://doi.org/10.1088/0305-4470/34/45/501
DOI:10.12677/pm.2023.132017157nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.