设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(2),634-644
PublishedOnlineFebruary2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.122067
¦)Øªåš‚5`z¯K
&6•SQP•{
444©©©###§§§‰‰‰UUUÀÀÀ
H㲌ÆÚO†êÆÆ§H&²
ÂvFϵ2023c121F¶¹^Fϵ2023c220F¶uÙFϵ2023c227F
Á‡
éØªåš‚5`z¯K¦)þ®²kéõ`z•{§~XSg5y(SQP)•{§
©K´3SQP`z•{Ä:þïÄ¿ïá˜‡ò&6••{†Ù(Ü•{))&6
•SQP•{§,‰Ñ ƒA¢~éTŽ{?1ꊢ[§¿òÙ†5SQP•{?1'
"•Ñ3·^‡e§&6•SQP•{ƒukSQP•{äk•ÐêŠJ§ê
Š(J•˜½§Ýþyù‡Ž{Œ15"
'…c
š‚5`z¯K§SQP`z•{§&6•SQP`z•{
TrustRegionSQPMethodforSolving
InequalityConstrainedNonlinear
OptimizationProblems
WenjieLiu,XidongFan
Schoolof MathematicsandStatistics,Yunnan Universityof FinanceandEconomics,KunmingYun-
nan
©ÙÚ^:4©#,‰UÀ.¦)Øªåš‚5`z¯K&6•SQP•{[J].A^êÆ?Ð,2023,12(2):
634-644.DOI:10.12677/aam.2023.122067
4©#§‰UÀ
Received:Jan.21
st
,2023;accepted:Feb.20
th
,2023;published:Feb.27
th
,2023
Abstract
Therehavebeen manyoptimizationmethodsforsolving inequalityconstrainednonlin-
earoptimizationproblems,suchassequential quadraticprogramming (SQP)method.
Inthispaper,amethodcombiningconfidenceregionmethodwithSQPmethodis
studiedandestablishedonthebasisofSQPoptimizationmethod-confidenceregion
SQPmethod.Thenthecorrespondingexamplesaregiventosimulatethealgorithm
andcompareitwiththeoriginalSQPmethod.Finally,underappropriateconditions,
the confidence region SQPmethod hasbetter numerical results than the original SQP
method,andthenumericalresultsalsoverifythefeasibilityofthisalgorithmtoa
certainextent.
Keywords
NonlinearOptimizationProblems,SQPOptimizationMethod,SQPOptimizationMethod
ofTrustRegion
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‘Xy“z)uÐÚ‰ÆEâY²?Ú,•`zn؆•{FÃÉ<‚-À,§
®2•A^uzó!ʘ!Å!ïÓNõó§EâÜ€,•A^u)!+n!¯!ûü
•¡.•`z•{•®²¤•˜«-‡ûüÃã.@317-V,ÚîÚ4ÙZ]u²‡È©
ž“,®²JÑ¼ê4НK,5qÑy.‚KF¦f{!…Ü•„eü{.´
†20-V30c“•`zn؆•{âׄuÐ,¿ØäõÅÚ¤•˜€XÚƉ.
1939cHitchcock<ÄkïÄÚA^‚55y,1947cDantzigJÑüX/{5¦)‚55y
¯K,•‚55ynØÚŽ{C½Ä:.1951cKunh<¤š‚55yÄ:5óŠ.
20-V70c“•`znØÚ•{3A^Ýþ?˜ÚuÐ.
• `zOŽ•{˜„©•üa:˜a´Ãå`z¯K,˜a´å`z¯K.Ãå•`z
DOI:10.12677/aam.2023.122067635A^êÆ?Ð
4©#§‰UÀ
OŽ•{Ø=·AuŒõê¢SA ^ ,…† Ãå`z¯KkX;—éX.˜•¡,å
`zOŽ•{Uí2A^†Ãå`z¯K,˜•¡,å`z¯KU=z¤Ãå`z¯K
5?n.ÏdÃå`zOŽ•{•Œ·Auå`z¯K,ù•´•`z¯K?nÃヘ.
å`z¯K~~•©•üa,=ªåÚØªå¯K.©K̇éØªå`
z¯KÐmïÄ.
•ÄXeØªå`z¯K
minf(x)(1a)
subjecttoc(x) ≤0(1b)
Ù¥f(x):R
n
→RÚc(x):R
n
→R
m
´ëYŒ‡¼ê.Sg5y•{K´¦)¯K(1)'
k˜aŽ{.T•{@Ï´dPowell<JÑ,du§äk‡‚5Âñ˜ûÐ5Ÿ,áÚ
NõÆöéÙ?1ïÄÚ&?,¦SQPŽ{¤•¦)š‚5å`z¯K•kŽ{ƒ˜.‘
XSQPŽ{FÃõ,Levenberg†MarguartÄgJÑ&6 •SQPŽ{.TŽ{̇´^5 ¦
)Ãå`z¯K,TŽ{äkéÐÂñ5ŸÚ°• 5.TŽ{ØI‡HessianÝ∇
2
xx
L
k
p
½;Œ±3HessianÚJacobiÛÉœ/e››S“ÚŸþ;Jø˜«r›ÛÂñÅ›;
§‚Ù¥˜i@IQPŽ{,,˜K†EQPŽ{(Ü.Cc5,kNõÆö•ÅÚ3ïÄ
&6•SQPŽ{,2003cYamashite<[1]Jј«#èv¼ê&6•SQP•{5)û
š‚ 5å`z¯K,¿y²T•{ÛÂñ5.2011cRidzal[2]<ïÄ˜«‘ ‡©
ªå^‡•§Œ±¦^&6•SQP•{5¦),¿^êŠ(J` ²ù˜•{Œ15.
2013cHeinkenschloss[3]<mu¿©Û˜«^u¦)1wªå`z¯K&6•SQP•
{,T•{#N‚5XÚذ(ÚS“).2014cš ¥Å<[4]?Ø&6•SQP•{)ûØ
ªå`z¯K,¿æ^p•{5ŽÑŽ{)MaratosAy–.3·^‡e,y
²Ž{ÛÂñ5Ú‡‚5Âñ5.2018cç—a<[5]JÑ˜«ÄuSQP&6•Ž{
1Ïü¸MPPT•{,Jp1Ïu>Ç.2019czhang<[6]ïÄ&6•SQP•{3š‚
5I5y¥A^±93êÆ+•A^.ÓcFletcher<[7]y²˜„š‚55y¥&
6•SQPŽ{ÛÂñ5.2020cšL<[8]ÄgïÄJÑ˜«äk‡‚5Âñ5Ÿ&6
•SQP•{,¿3VvÅì<þ¢y,3·^‡e,©Û¿y&6•SQP•{‡‚5Â
ñ5Ÿ.©ÏL‰ÑƒAêŠ~féSQP`zŽ{Ú&6•SQP`zŽ{?1ꊢ',
¿©Ûü«`z•{éꊢ(JK•,•o(8BÑäk•p`z•{.
©(SüXe:1!é•`z•{?10;1n!ÏL‰ÑêŠ~féT¯K?
1êŠ[¿?1©Û;1o!é©󊉘‡{üo(ÚÐ".
2.•`z•{Vã
!òéSg5y{9&6•SQP•{nØ•£!ÄgŽ9Ž{µe?1˜‡{
ü£.
DOI:10.12677/aam.2023.122067636A^êÆ?Ð
4©#§‰UÀ
2.1.SQP•{
Sg5y{(SQP,SequentialQuadraticProgramming)Ž{[9]´òE,š‚5`z¯
K=†•{üg5y¯K5¦)Ž{.g5y¯KK´•8I¼ê•g¼ê,å
¼ê•‚5¼ê•`z¯K.g5y¯K´•{üš‚5`z¯K,kéõ¤Ù¯„¦)
•{.éSQPŽ{ƒ'Ž~©Û9Âñ5©ÛŒ•„©z[10].
2.1.1.ÄgŽ
š‚5å`z:
minf(x)
s.t.C
j
(x) ≥0forj= 0,1,2,3···m
·‚•ù‡¯K.‚KF¼êL(x,µ)=f(x)−
m
P
j=1
µ
j
C
j
(x),y3I‡‰Ò´31kÚ
x
k
Úµ
k
Ä:þ,é˜‡••,¦x
k+1
Úµ
k+1
÷ve¡KKT^‡µ
∇
x
L(x,µ) = 0
C
j
(x) ≥0forj= 0,1,2,3···m
µ≥0
µ
j
C
j
(x) = 0forj= 0,1,2,3···m
lÑ{•:
∇
x
L(x
k+1
,µ
k+1
) ≈∇
x
L(x
k
,µ
k
)+∇
2
x
L(x
k
,µ
k
)δ
x
+∇
2
xµ
L(x
k
,µ
k
)δ
µ
= 0(2)
C
j
(x
k
+δ
x
) ≈C
j
(x
k
)+δ
T
x
∇
x
C
j
(x
k
≥0forj= 0,1,2,3···m(3)
µ
k+1
≥0(4)
[C
j
(x
k
+δ
T
x
∇
x
C
j
(x
k
](µ
k+1
)
j
= 0forj= 0,1,2,3···m(5)
Ù¥éK‚KF¼ê˜êÚê•:
∇
x
L(x
k
,µ
k
) = ∇
x
f(x
k
)−
m
X
j=1
(µ
k
)
j
∇
x
C
j
(x
k
) = g
k
−A
T
k
µ
k
(6)
∇
2
x
L(x
k
,µ
k
) = ∇
2
x
f(x
k
)−
m
X
j=1
(µ
k
)
j
∇
2
x
C
j
(x
k
) = Y
k
(7)
ÏdþãKKT^‡Œ±U•:
Y
k
δ
x
+g
k
−A
T
k
µ
k+1
= 0(8)
A
k
δ
x
≥−C
k
(9)
µ
k+1
≥0(10)
(µ
k+1
)
j
(A
k
δ
x
+C
k
)
j
= 0forj= 0,1,2,3···m(11)
DOI:10.12677/aam.2023.122067637A^êÆ?Ð
4©#§‰UÀ
Ù¥C
k
[C
1
(x
k
),C
2
(x
k
),···C
m
(x
k
)]
T
.
2.1.2.SQPµe
b3S“(x
k
,µ
k
)?½Âg5y:
min
1
2
δ
T
Y
k
δ+δ
T
g
k
p
s.t.A
k
δ≥−C
k
(12)
·‚Œ±ÏL¦)ù‡g5y¯K,δ,2Šâ:
bµ
k+1
= (A
k
A
T
k
)
−1
A
k
(Y
k
δ
x
+g
k
)(13)
¦µ,ùÒxÚµ,,UYS“¦),†÷vªŽ^‡=Œ.
2.1.3.SQPŽ{Ú½
äNS“Ž{Ú½Xe:
[1]‰½Ð©:(x
0
,µ
0
),Âñ°Ýε,˜k= 0;
[2]OŽY
k
,A
k
,g
k
,C
k
Š;
[3]¦)ª(12)¥g5y¯K,^ª(13)OŽK‚KF¦fµ
k+1
Š;
[4]S“x
k+1
= x
k
+δ,XJÂñ5÷v,KÊŽOŽ,
Cq)(x
k+1
,µ
k+1
);
[5]ÄK-k= k+1,=[2].
2.2.&6•SQP•{
2.2.1.ÄgŽ
•ÄXeØªå`z¯K
min
p
f
k
+∇f
T
k
p+
1
2
p
T
∇
2
xx
L
k
p(14a)
subjectto∇c
i
(x
k
)
T
p+c
i
(x
k
) = 0,i∈ε,(14b)
∇c
i
(x
k
)
T
p+c
i
(x
k
) >0,i∈I(14c)
kpk≤∆
k
(14d)
Ù¥∇f
k
´8I¼êf(x)Fݶ∇
2
xx
L
k
p´.‚KF¼êHessianÝ¶∇c
i
(x
k
)´å¼ê
FÝ.
´ù«•{ŒU¬)&6•‰Œ3å^‡ƒœ¹u)§¬»€·‚¦^&6•
å•Ð8,?˜Ú,ù•{¬K•Ž{Âñ5Ÿ.
DOI:10.12677/aam.2023.122067638A^êÆ?Ð
4©#§‰UÀ
,˜«•\Ünw{´,·‚vknd‡z˜ÚѰ(÷v÷v‚5å,A ´3z˜
ÚUõŒ15,¿=3&6•å÷vcJe‡¦°(5.u´·‚Œ±|^tµ{?15÷v±
þߎ.
3S“:x
k
,·‚ÏL¦)±ef¯KOŽSQPŽ{S“Ú:
min
p
f
k
+∇f
T
k
p+
1
2
p
T
∇
2
xx
L
k
p(15a)
subjecttoA
k
p+c
k
= r
k
(15b)
kpk
2
≤∆
k
(15c)
·‚8I´À•¦åƒNr
k
§=¦)±ef¯K
min
p
kA
k
p+c
k
k
2
2
(16a)
subjecttokvk
2
≤0.8∆
k
(16b)
Pdf¯K)•v
k
·‚½Â
r
k
= A
k
v
k
+c
k
(17)
ƒ¦)&6•f¯K½Â#S“:x
k+1
=x
k
+p
k
,2^•¦úª#¦fOλ
k+1
,
2|^±eª
p
B
= −A
T
k
[A
k
A
T
k
]
−1
c
k
(18)
ÚîÚp
B
,=8I¼êÃå4:.
·^ud•{˜‡dŠ¼ê•š1wL
2
¼ê§=φ
2
(x;µ) = f(x)+µkc(x)k
2
·‚òÙCq
•(¢Sþ•´l&6•f¯K)
q
µ
(p) = f
k
+∇f
T
k
p+
1
2
p
T
∇
2
xx
L
k
p+µm(p)(19)
Ù¥
m(p) = kc
k
+A
k
pk
2
(20)
Ù¥¨vÏfÀ÷v
µ>
∇f
T
k
p
k
+(
σ
2
)p
T
k
∇
2
xx
L
k
p
k
(1−ρ)kc
k
k
1
(21)
•µp
k
ŒɧÝ,·‚òOŽ'Š
ρ=
ared
k
pred
k
=
φ
2
(x
k
,µ)−φ
2
(x
k
+p
k
,µ)
q
µ
(0)−q
µ
(p
k
)
(22)
DOI:10.12677/aam.2023.122067639A^êÆ?Ð
4©#§‰UÀ
2.2.2.&6•SQPŽ{Ú½
äNS“Ž{Ú½Xe:
[1]Щz.?À°ÝÚη,γ∈(0,1);ЩŠx
0
,&6•Žfδ
0
>0;
[2]fork=0,1,2...©OOŽÑf
k
,c
k
,∇f
k
,A
k
;
[3]|^
ˆ
λ
k
= (A
k
A
T
k
)
−1
A
k
∇f
k

ˆ
λ
k
¶XJk∇f
k
−A
T
k
ˆ
λ
k
k
∞
<
¿…kc
k
k
∞
<;ÊŽ$1¿ÑÑdžx
k
;ÄK=Ú½o;
[4]|^(16-22)ª©OOŽÑv
k
;r
k
;∇
2
xx
L
k
;µ
k
;ρ
k
[5]|^þ©J•¦{úª(18)ŽÑp
k
eρ
k
>η,Kx
k+1
= x
k
+p
k
;∆
k+1
= 2∆
k
;
ÄK-x
k+1
= x
k
;é÷v∆
k+1
≤γkp
k
k;2‘\±þÌ‚¥†÷v^‡.
3.ꊢ
3c¡Ù!¥·‚®²0•`znØ¥ü«`zOŽ•{,!·‚ò‰ÑA‡¢
~f5ySg5y{Ú&6•SQP`z•{`5.
3.1.êŠ~f9(J
3e¡¢¥¤¦^ÎÒ¹Â:
x:š‚5å`z¯KgCþ;
f:š‚5å`z¯K¼êŠ;
cpu:š‚5å`z¯KS“žm,ü •t/s;
T:š‚5å`z¯KS“gêk;
y3·‚•ÄXeA‡š‚5`z¯K:
Table1.NumericalresultsoftrustregionSQPalgorithm
L1.&6•SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
5.23963.7460−79.80780.521611
Table2.NumericalresultsofSQPalgorithm
L2.SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
5.23933.7455−79.80630.859229
DOI:10.12677/aam.2023.122067640A^êÆ?Ð
4©#§‰UÀ
~f1:
minf(x) =x
2
1
+x
2
2
−16x
1
−10x
2
subjectto−x
2
1
+6x
1
−4x
2
+11 >0
x
2
1
−3x
2
−e
x
1
−3
+1 >0
x
1
>0
x
2
>0
·‚éþªØªå`z¯K¦^9ÏOŽóäMATLAB?1ꊢ,·‚Щ
Šx=(4,4)
T
,“è´3MATLAB7.1‚¸e$1.CPU´C(R)2.19GHZS•.¢(JXe
L1ÚL2¤«.
~f2:
minf(x) =(x
1
−3)
2
+(x
2
−1)
2
subjectto−x
2
1
+x
2
>0
2x
1
+x
2
−3 = 0
·‚ éþªØªå`z~f2¯K¦^9ÏOŽóäMATLAB?1ꊢ,þª¯K
Œ•°()•x=(1,1),f=4,ùpÐ©Š·‚x=(0,0)
T
,“ è´3MATLAB7.1‚¸e$1
.CPU´C(R)2.19GHZS•.¢(JXeL3ÚL4¤«.
Table3.NumericalresultsoftrustregionSQPalgorithm
L3.&6•SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
5.23963.7460−79.80780.521611
Table4.NumericalresultsofSQPalgorithm
L4.SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
5.23933.7455−79.80630.859229
~f3:
minf(x) =1000(x
2
−x
2
1
)
2
+(1−x
1
)
2
subjectto3x
2
1
−5x
2
≤0
3x
1
−x
2
−2 ≤0
DOI:10.12677/aam.2023.122067641A^êÆ?Ð
4©#§‰UÀ
·‚ éþªØªå`z~f3¯K¦^9ÏOŽóäMATLAB?1ꊢ,þª¯K
Œ•°()•x=(1,1),f=0,ùpÐ©Š·‚x=(0,0)
T
,“ è´3MATLAB7.1‚¸e$1
.CPU´C(R)2.19GHZS•.¢(JXeL5ÚL6¤«.
Table5.NumericalresultsoftrustregionSQPalgorithm
L5.&6•SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
115.8129e−210.12005844
Table6.NumericalresultsofSQPalgorithm
L6.SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
111.9737e−90.71916548
~f4:
minf(x) =x
2
1
+x
2
2
−4x
1
+4
subjectto−x
2
1
+x
2
−1 >0
x
1
−x
2
+2 >0
x
1
>0
x
2
>0
·‚ éþªØªå`z~f4¯K¦^9ÏOŽóäMATLAB?1ꊢ,·‚Ð
©Šx=(0,1)
T
,“è´3MATLAB7.1‚¸e$1.CPU´C(R)2.19GHZS•.¢(JX
eL7ÚL8¤«.
Table7.NumericalresultsoftrustregionSQPalgorithm
L7.&6•SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
0.55361.30643.79890.075097
3.2.Ù"(
éØªš‚5`z¯K¦)·‚ÏL±þo ‡~f êŠ(J?1©Û,~f1êŠ
(J¥&6•SQP•{¦)Ú©SQP•{¦)Ø4ž,©•{¤¦)¤s
OŽžm'&6•SQP•{žm•.~f2Ú~f3¥êŠ(JL²,3®²•°()
œ¹e,·‚¤¦^©SQP•{Ú&6•SQP•{ÑU¦¤I‡),3()(œ
¹e·‚©Ûü«•{¤sOŽžm uy,&6•SQP•{3ˆÓOŽ(Jœ¹eOŽž
DOI:10.12677/aam.2023.122067642A^êÆ?Ð
4©#§‰UÀ
Table8.NumericalresultsofSQPalgorithm
L8.SQPŽ{êŠ(J
x
1
x
2
f(x)cpuT
0.55361.30643.79890.517327
máu©SQP•{.~f1!~f29~f3êŠ(J¥·‚„Œ±uy &6•SQP•{
uSQP•{S“gê.•3~f4ꊢ(J¥,&6•SQP•{ÚSQP•{¤¦
)ƒÓ,¼êŠƒÓ,¿…S“gꕃÓœ¹e,·‚é'&6•SQP•{Ú©SQP•{O
ޤIžm,Œ±uy&6•SQP•{u©SQP•{•¯.nþA‡~fꊢ(J©Û
•,&6•SQP•{3˜½^‡e,´k¿…pÇŽ{.
4.o(†Ð"
3Ø©¥·‚{ü0•`z{¤±9uÐµ,,Vã¦)š‚5Øªå`z
¯K•~^˜«SQP•{,¿ïáïÄ©̇gŽ:¦^&6 ••{†SQP•{ƒ(Ü
Ž{5¦)š‚5Øªå`z¯K.•31nÙ¥ÏLo‡š‚5Øªå`z¯Kê
Š~féü«•{?1Á,¿¥y‹·‚ýŽ˜—êŠ(J.ÏLùg¢(J©Û•,3Œ
±ˆƒÓêŠ)œ¹e,&6•SQP•{©SQP`z•{•k`³,äk°Ýp,OŽ
ǯA:,Ïd3,E,š‚5Øªå`z¯Kþ·‚Œ±æ^&6•SQP`z•{
5¦),¬ŒŒ/!Ž$Žžm.
©3¦^&6•SQP`z•{¦)š‚5Øªå`z¯Kþ•Ä˜¯K,XJ3
˜•E,AÏ•§¥¦^&6•SQP`z•{5¦),§´Ä„UkÓ`³.Ïd,
e5óŠ·‚¬UYé&6•SQP`z•{?1ƒ'•¡ïÄ.
ë•©z
[1]Yamashita, H. andYabe, H.(2007) AGlobally Convergent Trust-Region SQPMethod without
aPenaltyFunctionforNonlinearlyConstrainedOptimization.CooperativeResearchReport
168“OPTIMIZATION:ModelingandAlgorithms17”, TheInstitute ofStatisticalMathemat-
ics,Tokyo.
[2]Ridzal, D., Aguilo, M. and Heinkenschloss, M. (2011) Numerical Studyof a Matrix-Free Trust-
Region SQPMethodforEquality ConstrainedOptimization.OfficeofScientific andTechnical
InformationTechnicalReports.
[3]Heinkenschloss, M. and Ridzal, D. (2013) A Matrix-Free Trust-Region SQP Method for Equal-
ityConstrainedOptimization.SIAMJournalonOptimization,24,1507-1541.
https://doi.org/10.1137/130921738
DOI:10.12677/aam.2023.122067643A^êÆ?Ð
4©#§‰UÀ
[4]š¥Å,ãEï,NS ,.Øªå`z‡‚5Âñ&6•-SQPŽ{[J].2014,37(5):
878-890.
[5]ç—a,o˜,Qñz,.˜«ÄuSQP&6•Ž{1Ïü¸MPPT•{[P].¥I;|,
CN107272815B.2017-10-20.
[6]Zhang, X., Liu,Z.andLiu, S.(2012) ATrustRegion SQP-FilterMethodfor NonlinearSecond-
OrderConeProgramming.ComputersandMathematicswithApplications:AnInternational
Journal,63,1569-1576.
[7]Fletcher,R.,Gould,N.,Leyffer,S.,etal.(2002)GlobalConvergenceofaTrust-RegionSQP-
FilterAlgorithmforGeneralNonlinearProgramming.SIAMJournalonOptimization,13,
635-659.
[8]Sun,Z.,Zhang,B.,Sun,Y.,etal.(2020)ANovelSuperlinearlyConvergentTrustRegion-
Sequential QuadraticProgramming Approach for OptimalGaitofBipedalRobotsviaNonlin-
earModelPredictiveControl.JournalofIntelligentandRoboticSystems,100,401-416.
[9]Nocedal,J.,Wright,S.J.,Mikosch,T.V.,etal.(1999)NumericalOptimization.Springer,
Berlin.https://doi.org/10.1007/b98874
[10]Zhang,H.P. andYe,L.-Q.(2009) AFeasible SQPDescentMethodforInequalityConstrained
OptimizationProblemsandItsConvergence.ChineseQuarterlyJournalofMathematics,No.
3,469-474.
DOI:10.12677/aam.2023.122067644A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.