设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(2),634-644
PublishedOnlineFebruary2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.122067
¦
)
Ø
ª
å
š
‚
5
`
z
¯
K
&
6
•
SQP
•{
444
©©©
###
§§§
‰‰‰
UUU
ÀÀÀ
H
ã
²
Œ
Æ
Ú
O
†
ê
ÆÆ
§
H
&
²
Â
v
F
Ï
µ
2023
c
1
21
F
¶
¹
^
F
Ï
µ
2023
c
2
20
F
¶
u
Ù
F
Ï
µ
2023
c
2
27
F
Á
‡
é
Ø
ª
å
š
‚
5
`
z
¯
K
¦
)
þ
®
²
k
é
õ
`
z
•{
§
~
X
S
g
5
y
(SQP)
•{
§
©
K
´
3
SQP
`
z
•{
Ä
:
þ
ï
Ä
¿
ï
á
˜
‡
ò
&
6
•
•{
†
Ù
(
Ü
•{
))
&
6
•
SQP
•{
§
,
‰
Ñ
ƒ
A
¢
~
é
T
Ž
{
?
1
ê
Š
¢
[
§
¿
ò
Ù
†
5
SQP
•{
?
1
'
"
•
Ñ
3
·
^
‡
e
§
&
6
•
SQP
•{
ƒ
u
k
SQP
•{
ä
k
•
Ð
ê
Š
J
§
ê
Š
(
J
•˜
½
§
Ý
þ
y
ù
‡
Ž
{
Œ
15
"
'
…
c
š
‚
5
`
z
¯
K
§
SQP
`
z
•{
§
&
6
•
SQP
`
z
•{
TrustRegionSQPMethodforSolving
InequalityConstrainedNonlinear
OptimizationProblems
WenjieLiu,XidongFan
Schoolof MathematicsandStatistics,Yunnan Universityof FinanceandEconomics,KunmingYun-
nan
©
Ù
Ú
^
:
4
©
#
,
‰
U
À
.
¦
)
Ø
ª
å
š
‚
5
`
z
¯
K
&
6
•
SQP
•{
[J].
A^
ê
Æ
?
Ð
,2023,12(2):
634-644.DOI:10.12677/aam.2023.122067
4
©
#
§
‰
U
À
Received:Jan.21
st
,2023;accepted:Feb.20
th
,2023;published:Feb.27
th
,2023
Abstract
Therehavebeen manyoptimizationmethodsforsolving inequalityconstrainednonlin-
earoptimizationproblems,suchassequential quadraticprogramming (SQP)method.
Inthispaper,amethodcombiningconfidenceregionmethodwithSQPmethodis
studiedandestablishedonthebasisofSQPoptimizationmethod-confidenceregion
SQPmethod.Thenthecorrespondingexamplesaregiventosimulatethealgorithm
andcompareitwiththeoriginalSQPmethod.Finally,underappropriateconditions,
the confidence region SQPmethod hasbetter numerical results than the original SQP
method,andthenumericalresultsalsoverifythefeasibilityofthisalgorithmtoa
certainextent.
Keywords
NonlinearOptimizationProblems,SQPOptimizationMethod,SQPOptimizationMethod
ofTrustRegion
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
‘
X
y
“
z
)
u
Ð
Ú
‰
Æ
E
â
Y
²
?
Ú
,
•
`
z
n
Ø
†
•{
F
Ã
É
<
‚
-
À
,
§
®
2
•
A^u
z
ó
!
Ê
˜
!
Å
!
ï
Ó
N
õ
ó
§
E
â
Ü
€
,
•
A^u
)
!
+
n
!
¯
!
û
ü
•
¡
.
•
`
z
•{
•®
²
¤
•
˜
«-
‡
û
ü
Ã
ã
.
@3
17
-
V
,
Ú
î
Ú
4
Ù
Z
]
u
²
‡
È
©
ž
“
,
®
²
J
Ñ
¼
ê
4
Š
¯
K
,
5
q
Ñ
y
.
‚
K
F
¦
f
{
!
…
Ü
•
„
e
ü
{
.
´
†
20
-
V
30
c
“
•
`
z
n
Ø
†
•{
â
×
„
u
Ð
,
¿Ø
ä
õ
Å
Ú
¤
•
˜
€
X
Ú
Æ
‰
.
1939
c
Hitchcock
<
Ä
k
ï
Ä
Ú
A^
‚
5
5
y
,1947
c
Dantzig
J
Ñ
üX
/
{
5
¦
)
‚
5
5
y
¯
K
,
•
‚
5
5
y
n
Ø
Ú
Ž
{
C½
Ä
:
.1951
c
Kunh
<
¤
š
‚
5
5
y
Ä
:
5
ó
Š
.
20
-
V
70
c
“
•
`
z
n
Ø
Ú
•{
3
A^
Ý
þ
?
˜
Ú
u
Ð
.
•
`
z
O
Ž
•{
˜
„
©
•
üa
:
˜
a
´
Ã
å
`
z
¯
K
,
˜
a
´
å
`
z
¯
K
.
Ã
å
•
`
z
DOI:10.12677/aam.2023.122067635
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
O
Ž
•{
Ø
=
·
Au
Œ
õ
ê
¢
S
A ^
,
…
†
Ã
å
`
z
¯
K
k
X
;
—
é
X
.
˜
•
¡
,
å
`
z
O
Ž
•{
U
í
2
A^†
Ã
å
`
z
¯
K
,
˜
•
¡
,
å
`
z
¯
K
U
=
z
¤
Ã
å
`
z
¯
K
5
?
n
.
Ï
d
Ã
å
`
z
O
Ž
•{
•
Œ
·
Au
å
`
z
¯
K
,
ù
•
´
•
`
z
¯
K
?
n
Ã
ã
ƒ
˜
.
å
`
z
¯
K
~~
•
©
•
üa
,
=
ª
å
Ú
Ø
ª
å
¯
K
.
©
K
Ì
‡
é
Ø
ª
å
`
z
¯
K
Ð
m
ï
Ä
.
•
Ä
X
e
Ø
ª
å
`
z
¯
K
min
f
(
x
)(1a)
subjectto
c
(
x
)
≤
0(1b)
Ù
¥
f
(
x
):
R
n
→
R
Ú
c
(
x
):
R
n
→
R
m
´
ë
Y
Œ
‡
¼
ê
.
S
g
5
y
•{
K
´
¦
)
¯
K
(1)
'
k
˜
a
Ž
{
.
T
•{
@
Ï
´
d
Powell
<
J
Ñ
,
du
§
ä
k
‡
‚
5
Â
ñ
˜
û
Ð
5
Ÿ
,
á
Ú
N
õ
Æ
ö
é
Ù
?
1ï
Ä
Ú
&?
,
¦
SQP
Ž
{
¤
•
¦
)
š
‚
5
å
`
z
¯
K
•
k
Ž
{
ƒ
˜
.
‘
X
SQP
Ž
{
F
Ã
õ
,Levenberg
†
Marguart
Ä
g
J
Ñ
&
6
•
SQP
Ž
{
.
T
Ž
{
Ì
‡
´
^
5
¦
)
Ã
å
`
z
¯
K
,
T
Ž
{
ä
k
éÐ
Â
ñ
5
Ÿ
Ú
°
•
5
.
T
Ž
{
Ø
I
‡
Hessian
Ý
∇
2
xx
L
k
p
½
;
Œ
±
3
Hessian
Ú
Jacobi
Û
É
œ
/
e
›
›
S
“
Ú
Ÿ
þ
;
J
ø
˜
«
r
›
Û
Â
ñ
Å
›
;
§
‚
Ù
¥
˜
i
@
IQP
Ž
{
,
,
˜
K
†
EQP
Ž
{
(
Ü
.
C
c
5
,
k
N
õ
Æ
ö
•
Å
Ú
3
ï
Ä
&
6
•
SQP
Ž
{
,2003
c
Yamashite
<
[1]
J
Ñ
˜
«
#
Ã
¨
v
¼
ê
&
6
•
SQP
•{
5
)û
š
‚
5
å
`
z
¯
K
,
¿
y
²
T
•{
Û
Â
ñ
5
.2011
c
Ridzal[2]
<
ï
Ä
˜
«
‘
‡
©
ª
å
^
‡
•
§
Œ
±
¦
^
&
6
•
SQP
•{
5
¦
)
,
¿
^
ê
Š
(
J
`
²
ù
˜
•{
Œ
15
.
2013
c
Heinkenschloss[3]
<
m
u
¿
©
Û
˜
«
^u
¦
)
1
w
ª
å
`
z
¯
K
&
6
•
SQP
•
{
,
T
•{
#
N
‚
5
X
Ú
Ø
°
(
Ú
S
“
)
.2014
c
š
¥
Å
<
[4]
?
Ø
&
6
•
SQP
•{
)û
Ø
ª
å
`
z
¯
K
,
¿æ
^
p
•{
5
Ž
Ñ
Ž
{
)
Maratos
A
y–
.
3
·
^
‡
e
,
y
²
Ž
{
Û
Â
ñ
5
Ú
‡
‚
5
Â
ñ
5
.2018
c
ç
—
a
<
[5]
J
Ñ
˜
«
Ä
u
SQP
&
6
•
Ž
{
1
Ï
ü
¸
MPPT
•{
,
J
p
1
Ïu
>
Ç
.2019
c
zhang
<
[6]
ï
Ä
&
6
•
SQP
•{
3
š
‚
5
I
5
y
¥
A^
±
9
3
ê
Æ
+
•
A^
.
Ó
c
Fletcher
<
[7]
y
²
˜
„
š
‚
5
5
y
¥
&
6
•
SQP
Ž
{
Û
Â
ñ
5
.2020
c
š
L
<
[8]
Ä
g
ï
Ä
J
Ñ
˜
«
ä
k
‡
‚
5
Â
ñ
5
Ÿ
&
6
•
SQP
•{
,
¿
3
V
v
Å
ì
<þ
¢
y
,
3
·
^
‡
e
,
©
Û
¿
y
&
6
•
SQP
•{
‡
‚
5
Â
ñ
5
Ÿ
.
©
Ï
L
‰
Ñ
ƒ
A
ê
Š
~
f
é
SQP
`
z
Ž
{
Ú
&
6
•
SQP
`
z
Ž
{
?
1
ê
Š
¢
'
,
¿
©
Û
ü
«
`
z
•{
é
ê
Š
¢
(
J
K
•
,
•
o
(
8
B
Ñ
ä
k
•p
`
z
•{
.
©
(
S
ü
X
e
:
1
!
é
•
`
z
•{
?
1
0
;
1
n
!
Ï
L
‰
Ñ
ê
Š
~
f
é
T
¯
K
?
1
ê
Š
[
¿
?
1
©
Û
;
1
o
!
é
©
ó
Љ
˜
‡
{
ü
o
(
Ú
Ð
"
.
2.
•
`
z
•{
V
ã
!
ò
é
S
g
5
y
{
9
&
6
•
SQP
•{
n
Ø
•
£
!
Ä
g
Ž
9
Ž
{
µ
e
?
1
˜
‡
{
ü
£
.
DOI:10.12677/aam.2023.122067636
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
2.1.SQP
•{
S
g
5
y
{
(SQP,SequentialQuadraticProgramming)
Ž
{
[9]
´
ò
E
,
š
‚
5
`
z
¯
K
=
†
•
{
ü
g
5
y
¯
K
5
¦
)
Ž
{
.
g
5
y
¯
K
K
´
•
8
I
¼
ê
•
g
¼
ê
,
å
¼
ê
•
‚
5
¼
ê
•
`
z
¯
K
.
g
5
y
¯
K
´
•
{
ü
š
‚
5
`
z
¯
K
,
k
é
õ
¤
Ù
¯
„
¦
)
•{
.
é
SQP
Ž
{
ƒ
'
Ž
~
©
Û
9
Â
ñ
5
©
Û
Œ
•
„
©
z
[10].
2.1.1.
Ä
g
Ž
š
‚
5
å
`
z
:
minf
(
x
)
s.t.C
j
(
x
)
≥
0
forj
= 0
,
1
,
2
,
3
···
m
·
‚
•
ù
‡
¯
K
.
‚
K
F
¼
ê
L
(
x,µ
)=
f
(
x
)
−
m
P
j
=1
µ
j
C
j
(
x
),
y
3
I
‡
‰
Ò
´
3
1
k
Ú
x
k
Ú
µ
k
Ä
:
þ
,
é
˜
‡
•
•
,
¦
x
k
+1
Ú
µ
k
+1
÷
v
e
¡
KKT
^
‡
µ
∇
x
L
(
x,µ
) = 0
C
j
(
x
)
≥
0
forj
= 0
,
1
,
2
,
3
···
m
µ
≥
0
µ
j
C
j
(
x
) = 0
forj
= 0
,
1
,
2
,
3
···
m
l
Ñ
{
•
:
∇
x
L
(
x
k
+1
,µ
k
+1
)
≈∇
x
L
(
x
k
,µ
k
)+
∇
2
x
L
(
x
k
,µ
k
)
δ
x
+
∇
2
xµ
L
(
x
k
,µ
k
)
δ
µ
= 0(2)
C
j
(
x
k
+
δ
x
)
≈
C
j
(
x
k
)+
δ
T
x
∇
x
C
j
(
x
k
≥
0
forj
= 0
,
1
,
2
,
3
···
m
(3)
µ
k
+1
≥
0(4)
[
C
j
(
x
k
+
δ
T
x
∇
x
C
j
(
x
k
](
µ
k
+1
)
j
= 0
forj
= 0
,
1
,
2
,
3
···
m
(5)
Ù
¥
é
K
‚
K
F
¼
ê
˜
ê
Ú
ê
•
:
∇
x
L
(
x
k
,µ
k
) =
∇
x
f
(
x
k
)
−
m
X
j
=1
(
µ
k
)
j
∇
x
C
j
(
x
k
) =
g
k
−
A
T
k
µ
k
(6)
∇
2
x
L
(
x
k
,µ
k
) =
∇
2
x
f
(
x
k
)
−
m
X
j
=1
(
µ
k
)
j
∇
2
x
C
j
(
x
k
) =
Y
k
(7)
Ï
d
þ
ã
KKT
^
‡
Œ
±
U
•
:
Y
k
δ
x
+
g
k
−
A
T
k
µ
k
+1
= 0(8)
A
k
δ
x
≥−
C
k
(9)
µ
k
+1
≥
0(10)
(
µ
k
+1
)
j
(
A
k
δ
x
+
C
k
)
j
= 0
forj
= 0
,
1
,
2
,
3
···
m
(11)
DOI:10.12677/aam.2023.122067637
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
Ù
¥
C
k
[
C
1
(
x
k
)
,C
2
(
x
k
)
,
···
C
m
(
x
k
)]
T
.
2.1.2.SQP
µ
e
b
3
S
“
(
x
k
,µ
k
)
?
½
Â
g
5
y
:
min
1
2
δ
T
Y
k
δ
+
δ
T
g
k
p
s.t.A
k
δ
≥−
C
k
(12)
·
‚
Œ
±
Ï
L
¦
)
ù
‡
g
5
y
¯
K
,
δ
,
2
Š
â
:
b
µ
k
+1
= (
A
k
A
T
k
)
−
1
A
k
(
Y
k
δ
x
+
g
k
)(13)
¦
µ
,
ù
Ò
x
Ú
µ
,
,
U
Y
S
“
¦
)
,
†
÷
v
ªŽ
^
‡=
Œ
.
2.1.3.SQP
Ž
{
Ú
½
ä
N
S
“
Ž
{
Ú
½
X
e
:
[1]
‰
½
Ð
©
:
(
x
0
,µ
0
),
Â
ñ
°
Ý
ε
,
˜
k
= 0;
[2]
O
Ž
Y
k
,A
k
,g
k
,C
k
Š
;
[3]
¦
)
ª
(12)
¥
g
5
y
¯
K
,
^
ª
(13)
O
Ž
K
‚
K
F
¦
f
µ
k
+1
Š
;
[4]
S
“
x
k
+1
=
x
k
+
δ
,
X
J
Â
ñ
5
÷
v
,
K
Ê
Ž
O
Ž
,
C
q
)
(
x
k
+1
,µ
k
+1
);
[5]
Ä
K
-
k
=
k
+1,
=
[2].
2.2.
&
6
•
SQP
•{
2.2.1.
Ä
g
Ž
•
Ä
X
e
Ø
ª
å
`
z
¯
K
min
p
f
k
+
∇
f
T
k
p
+
1
2
p
T
∇
2
xx
L
k
p
(14a)
subjectto
∇
c
i
(
x
k
)
T
p
+
c
i
(
x
k
) = 0
,i
∈
ε,
(14b)
∇
c
i
(
x
k
)
T
p
+
c
i
(
x
k
)
>
0
,i
∈I
(14c)
k
p
k≤
∆
k
(14d)
Ù
¥
∇
f
k
´
8
I
¼
ê
f
(
x
)
F
Ý
¶
∇
2
xx
L
k
p
´
.
‚
K
F
¼
ê
Hessian
Ý
¶
∇
c
i
(
x
k
)
´
å
¼
ê
F
Ý
.
´
ù
«
•{
Œ
U
¬
)
&
6
•
‰
Œ
3
å
^
‡
ƒ
œ
¹
u
)
§
¬
»
€
·
‚
¦
^
&
6
•
å
•
Ð
8
,
?
˜
Ú
,
ù
•{
¬
K
•
Ž
{
Â
ñ
5
Ÿ
.
DOI:10.12677/aam.2023.122067638
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
,
˜
«
•
\
Ü
n
w
{
´
,
·
‚v
k
n
d
‡
z
˜
Ú
Ñ
°
(
÷
v
÷
v
‚
5
å
,
A
´
3
z
˜
Ú
U
õ
Œ
15
,
¿
=
3
&
6
•
å
÷
v
c
J
e
‡
¦
°
(
5
.
u
´
·
‚
Œ
±
|
^
t
µ
{
?
1
5
÷
v
±
þ
ß
Ž
.
3
S
“
:
x
k
,
·
‚
Ï
L
¦
)
±
e
f
¯
K
O
Ž
SQP
Ž
{
S
“
Ú
:
min
p
f
k
+
∇
f
T
k
p
+
1
2
p
T
∇
2
xx
L
k
p
(15a)
subjectto
A
k
p
+
c
k
=
r
k
(15b)
k
p
k
2
≤
∆
k
(15c)
·
‚
8
I
´
À
•
¦
å
ƒ
N
r
k
§
=
¦
)
±
e
f
¯
K
min
p
k
A
k
p
+
c
k
k
2
2
(16a)
subjectto
k
v
k
2
≤
0
.
8∆
k
(16b)
P
d
f
¯
K
)
•
v
k
·
‚
½
Â
r
k
=
A
k
v
k
+
c
k
(17)
ƒ
¦
)
&
6
•
f
¯
K
½
Â
#
S
“
:
x
k
+1
=
x
k
+
p
k
,
2
^
•
¦
ú
ª
#
¦
f
O
λ
k
+1
,
2
|
^
±
e
ª
p
B
=
−
A
T
k
[
A
k
A
T
k
]
−
1
c
k
(18)
Ú
î
Ú
p
B
,
=
8
I
¼
ê
Ã
å
4
:
.
·
^u
d
•{
˜
‡
d
Š
¼
ê
•
š
1
w
L
2
¼
ê
§
=
φ
2
(
x
;
µ
) =
f
(
x
)+
µ
k
c
(
x
)
k
2
·
‚
ò
Ù
C
q
•
(
¢
S
þ
•
´
l
&
6
•
f
¯
K
)
q
µ
(
p
) =
f
k
+
∇
f
T
k
p
+
1
2
p
T
∇
2
xx
L
k
p
+
µm
(
p
)(19)
Ù
¥
m
(
p
) =
k
c
k
+
A
k
p
k
2
(20)
Ù
¥
¨
v
Ï
f
À
÷
v
µ
>
∇
f
T
k
p
k
+(
σ
2
)
p
T
k
∇
2
xx
L
k
p
k
(1
−
ρ
)
k
c
k
k
1
(21)
•
µ
p
k
Œ
É
§
Ý
,
·
‚
òO
Ž
'
Š
ρ
=
ared
k
pred
k
=
φ
2
(
x
k
,µ
)
−
φ
2
(
x
k
+
p
k
,µ
)
q
µ
(0)
−
q
µ
(
p
k
)
(22)
DOI:10.12677/aam.2023.122067639
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
2.2.2.
&
6
•
SQP
Ž
{
Ú
½
ä
N
S
“
Ž
{
Ú
½
X
e
:
[1]
Ð
©
z
.
?
À
°
Ý
Ú
η
,
γ
∈
(0,1);
Ð
©
Š
x
0
,
&
6
•
Ž
f
δ
0
>
0;
[2]fork=0,1,2...
©
O
O
Ž
Ñ
f
k
,c
k
,
∇
f
k
,A
k
;
[3]
|
^
ˆ
λ
k
= (
A
k
A
T
k
)
−
1
A
k
∇
f
k
ˆ
λ
k
¶
X
J
k∇
f
k
−
A
T
k
ˆ
λ
k
k
∞
<
¿
…
k
c
k
k
∞
<
;
Ê
Ž
$
1
¿
Ñ
Ñ
d
ž
x
k
;
Ä
K
=
Ú
½
o
;
[4]
|
^
(16-22)
ª
©
O
O
Ž
Ñ
v
k
;
r
k
;
∇
2
xx
L
k
;
µ
k
;
ρ
k
[5]
|
^
þ
©
J
•
¦
{
ú
ª
(18)
Ž
Ñ
p
k
e
ρ
k
>η
,
K
x
k
+1
=
x
k
+
p
k
;∆
k
+1
= 2∆
k
;
Ä
K
-
x
k
+1
=
x
k
;
é
÷
v
∆
k
+1
≤
γ
k
p
k
k
;
2
‘
\
±
þ
Ì
‚
¥†
÷
v
^
‡
.
3.
ê
Š
¢
3
c
¡
Ù
!
¥
·
‚
®
²0
•
`
z
n
Ø
¥
ü
«
`
z
O
Ž
•{
,
!
·
‚
ò
‰
Ñ
A
‡
¢
~
f
5
y
S
g
5
y
{
Ú
&
6
•
SQP
`
z
•{
`
5
.
3.1.
ê
Š
~
f
9
(
J
3
e
¡
¢
¥
¤
¦
^
Î
Ò
¹
Â
:
x:
š
‚
5
å
`
z
¯
K
g
C
þ
;
f:
š
‚
5
å
`
z
¯
K
¼
ê
Š
;
cpu:
š
‚
5
å
`
z
¯
K
S
“
ž
m
,
ü
•
t/s
;
T:
š
‚
5
å
`
z
¯
K
S
“g
ê
k
;
y
3
·
‚
•
Ä
X
e
A
‡
š
‚
5
`
z
¯
K
:
Table1.
NumericalresultsoftrustregionSQPalgorithm
L
1.
&
6
•
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
5.23963.7460
−
79.80780.521611
Table2.
NumericalresultsofSQPalgorithm
L
2.
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
5.23933.7455
−
79.80630.859229
DOI:10.12677/aam.2023.122067640
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
~
f
1:
min
f
(
x
) =
x
2
1
+
x
2
2
−
16
x
1
−
10
x
2
subjectto
−
x
2
1
+6
x
1
−
4
x
2
+11
>
0
x
2
1
−
3
x
2
−
e
x
1
−
3
+1
>
0
x
1
>
0
x
2
>
0
·
‚
é
þ
ª
Ø
ª
å
`
z
¯
K
¦
^
9
Ï
O
Ž
ó
ä
MATLAB
?
1
ê
Š
¢
,
·
‚
Ð
©
Š
x
=(4
,
4)
T
,
“
è
´
3
MATLAB7.1
‚
¸
e
$
1
.CPU
´
C
(R)2.19GHZ
S
•
.
¢
(
J
X
e
L
1
Ú
L
2
¤
«
.
~
f
2:
min
f
(
x
) =(
x
1
−
3)
2
+(
x
2
−
1)
2
subjectto
−
x
2
1
+
x
2
>
0
2
x
1
+
x
2
−
3 = 0
·
‚
é
þ
ª
Ø
ª
å
`
z
~
f
2
¯
K
¦
^
9
Ï
O
Ž
ó
ä
MATLAB
?
1
ê
Š
¢
,
þ
ª
¯
K
Œ
•
°
(
)
•
x
=(1
,
1)
,f
=4,
ù
p
Ð
©
Š
·
‚
x
=(0
,
0)
T
,
“
è
´
3
MATLAB7.1
‚
¸
e
$
1
.CPU
´
C
(R)2.19GHZ
S
•
.
¢
(
J
X
e
L
3
Ú
L
4
¤
«
.
Table3.
NumericalresultsoftrustregionSQPalgorithm
L
3.
&
6
•
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
5.23963.7460
−
79.80780.521611
Table4.
NumericalresultsofSQPalgorithm
L
4.
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
5.23933.7455
−
79.80630.859229
~
f
3:
min
f
(
x
) =1000(
x
2
−
x
2
1
)
2
+(1
−
x
1
)
2
subjectto3
x
2
1
−
5
x
2
≤
0
3
x
1
−
x
2
−
2
≤
0
DOI:10.12677/aam.2023.122067641
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
·
‚
é
þ
ª
Ø
ª
å
`
z
~
f
3
¯
K
¦
^
9
Ï
O
Ž
ó
ä
MATLAB
?
1
ê
Š
¢
,
þ
ª
¯
K
Œ
•
°
(
)
•
x
=(1
,
1)
,f
=0,
ù
p
Ð
©
Š
·
‚
x
=(0
,
0)
T
,
“
è
´
3
MATLAB7.1
‚
¸
e
$
1
.CPU
´
C
(R)2.19GHZ
S
•
.
¢
(
J
X
e
L
5
Ú
L
6
¤
«
.
Table5.
NumericalresultsoftrustregionSQPalgorithm
L
5.
&
6
•
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
115.8129e
−
210.12005844
Table6.
NumericalresultsofSQPalgorithm
L
6.
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
111.9737e
−
90.71916548
~
f
4:
min
f
(
x
) =
x
2
1
+
x
2
2
−
4
x
1
+4
subjectto
−
x
2
1
+
x
2
−
1
>
0
x
1
−
x
2
+2
>
0
x
1
>
0
x
2
>
0
·
‚
é
þ
ª
Ø
ª
å
`
z
~
f
4
¯
K
¦
^
9
Ï
O
Ž
ó
ä
MATLAB
?
1
ê
Š
¢
,
·
‚
Ð
©
Š
x
=(0
,
1)
T
,
“
è
´
3
MATLAB7.1
‚
¸
e
$
1
.CPU
´
C
(R)2.19GHZ
S
•
.
¢
(
J
X
e
L
7
Ú
L
8
¤
«
.
Table7.
NumericalresultsoftrustregionSQPalgorithm
L
7.
&
6
•
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
0.55361.30643.79890.075097
3.2.
Ù
"
(
é
Ø
ª
š
‚
5
`
z
¯
K
¦
)
·
‚
Ï
L
±
þ
o
‡
~
f
ê
Š
(
J
?
1
©
Û
,
~
f
1
ê
Š
(
J
¥
&
6
•
SQP
•{
¦
)
Ú
©
SQP
•{
¦
)
Ø
4
ž
,
©
•{
¤
¦
)
¤
s
O
Ž
ž
m
'
&
6
•
SQP
•{
ž
m
•
.
~
f
2
Ú
~
f
3
¥
ê
Š
(
J
L
²
,
3
®
²
•
°
(
)
œ
¹
e
,
·
‚
¤
¦
^
©
SQP
•{
Ú
&
6
•
SQP
•{
Ñ
U
¦
¤
I
‡
)
,
3
(
)
(
œ
¹
e
·
‚
©
Û
ü
«
•{
¤
s
O
Ž
ž
m
u
y
,
&
6
•
SQP
•{
3
ˆ
Ó
O
Ž
(
J
œ
¹
e
O
Ž
ž
DOI:10.12677/aam.2023.122067642
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
Table8.
NumericalresultsofSQPalgorithm
L
8.
SQP
Ž
{
ê
Š
(
J
x
1
x
2
f(x)cpuT
0.55361.30643.79890.517327
m
á
u
©
SQP
•{
.
~
f
1
!
~
f
2
9
~
f
3
ê
Š
(
J
¥
·
‚
„
Œ
±
u
y
&
6
•
SQP
•{
u
SQP
•{
S
“g
ê
.
•
3
~
f
4
ê
Š
¢
(
J
¥
,
&
6
•
SQP
•{
Ú
SQP
•{
¤
¦
)
ƒ
Ó
,
¼
ê
Š
ƒ
Ó
,
¿
…
S
“g
ê
•
ƒ
Ó
œ
¹
e
,
·
‚
é
'
&
6
•
SQP
•{
Ú
©
SQP
•{
O
ޤ
I
ž
m
,
Œ
±
u
y
&
6
•
SQP
•{
u
©
SQP
•{
•
¯
.
n
þ
A
‡
~
f
ê
Š
¢
(
J
©
Û
•
,
&
6
•
SQP
•{
3
˜
½
^
‡
e
,
´
k
¿
…
p
Ç
Ž
{
.
4.
o
(
†
Ð
"
3
Ø
©
¥
·
‚
{
ü
0
•
`
z
{
¤
±
9
u
Ð
µ
,
,
V
ã
¦
)
š
‚
5
Ø
ª
å
`
z
¯
K
•
~
^
˜
«
SQP
•{
,
¿
ï
á
ï
Ä
©
Ì
‡
g
Ž
:
¦
^
&
6
•
•{
†
SQP
•{
ƒ
(
Ü
Ž
{
5
¦
)
š
‚
5
Ø
ª
å
`
z
¯
K
.
•
3
1
n
Ù
¥
Ï
L
o
‡
š
‚
5
Ø
ª
å
`
z
¯
K
ê
Š
~
f
é
ü
«
•{
?
1
Á
,
¿
¥
y
‹
·
‚
ý
Ž
˜
—
ê
Š
(
J
.
Ï
L
ù
g
¢
(
J
©
Û
•
,
3
Œ
±
ˆ
ƒ
Ó
ê
Š
)
œ
¹
e
,
&
6
•
SQP
•{
©
SQP
`
z
•{
•
k`
³
,
ä
k
°
Ý
p
,
O
Ž
Ç
¯
A
:
,
Ï
d
3
,
E
,
š
‚
5
Ø
ª
å
`
z
¯
K
þ
·
‚
Œ
±
æ
^
&
6
•
SQP
`
z
•{
5
¦
)
,
¬
ŒŒ
/
!
Ž
$
Ž
ž
m
.
©
3
¦
^
&
6
•
SQP
`
z
•{
¦
)
š
‚
5
Ø
ª
å
`
z
¯
K
þ
•
Ä
˜
¯
K
,
X
J
3
˜
•
E
,
A
Ï
•
§
¥
¦
^
&
6
•
SQP
`
z
•{
5
¦
)
,
§
´
Ä
„
U
k
Ó
`
³
.
Ï
d
,
e
5
ó
Š
·
‚
¬
U
Y
é
&
6
•
SQP
`
z
•{
?
1
ƒ
'
•
¡
ï
Ä
.
ë
•
©
z
[1]Yamashita, H. andYabe, H.(2007) AGlobally Convergent Trust-Region SQPMethod without
aPenaltyFunctionforNonlinearlyConstrainedOptimization.CooperativeResearchReport
168“OPTIMIZATION:ModelingandAlgorithms17”, TheInstitute ofStatisticalMathemat-
ics,Tokyo.
[2]Ridzal, D., Aguilo, M. and Heinkenschloss, M. (2011) Numerical Studyof a Matrix-Free Trust-
Region SQPMethodforEquality ConstrainedOptimization.OfficeofScientific andTechnical
InformationTechnicalReports.
[3]Heinkenschloss, M. and Ridzal, D. (2013) A Matrix-Free Trust-Region SQP Method for Equal-
ityConstrainedOptimization.
SIAMJournalonOptimization
,
24
,1507-1541.
https://doi.org/10.1137/130921738
DOI:10.12677/aam.2023.122067643
A^
ê
Æ
?
Ð
4
©
#
§
‰
U
À
[4]
š
¥
Å
,
ã
E
ï
,
N
S
,
.
Ø
ª
å
`
z
‡
‚
5
Â
ñ
&
6
•
-SQP
Ž
{
[J].2014,37(5):
878-890.
[5]
ç
—
a
,
o
˜
,
Q
ñ
z
,
.
˜
«
Ä
u
SQP
&
6
•
Ž
{
1
Ï
ü
¸
MPPT
•{
[P].
¥
I
;
|
,
CN107272815B.2017-10-20.
[6]Zhang, X., Liu,Z.andLiu, S.(2012) ATrustRegion SQP-FilterMethodfor NonlinearSecond-
OrderConeProgramming.
ComputersandMathematicswithApplications:AnInternational
Journal
,
63
,1569-1576.
[7]Fletcher,R.,Gould,N.,Leyffer,S.,
etal.
(2002)GlobalConvergenceofaTrust-RegionSQP-
FilterAlgorithmforGeneralNonlinearProgramming.
SIAMJournalonOptimization
,
13
,
635-659.
[8]Sun,Z.,Zhang,B.,Sun,Y.,
etal.
(2020)ANovelSuperlinearlyConvergentTrustRegion-
Sequential QuadraticProgramming Approach for OptimalGaitofBipedalRobotsviaNonlin-
earModelPredictiveControl.
JournalofIntelligentandRoboticSystems
,
100
,401-416.
[9]Nocedal,J.,Wright,S.J.,Mikosch,T.V.,
etal.
(1999)NumericalOptimization.Springer,
Berlin.https://doi.org/10.1007/b98874
[10]Zhang,H.P. andYe,L.-Q.(2009) AFeasible SQPDescentMethodforInequalityConstrained
OptimizationProblemsandItsConvergence.
ChineseQuarterlyJournalofMathematics
,No.
3,469-474.
DOI:10.12677/aam.2023.122067644
A^
ê
Æ
?
Ð