设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(3),375-380
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133041
{
ü
4
à
-
‚
-
Ç
È
©
Ø
ª
4
í
'
X
ooo
æææ
ƒƒƒ
∗
§§§
ÜÜÜ
[[[
“““
H
“
‰
Œ
Æ
§
H
&
²
Â
v
F
Ï
µ
2023
c
1
24
F
¶
¹
^
F
Ï
µ
2023
c
2
23
F
¶
u
Ù
F
Ï
µ
2023
c
3
2
F
Á
‡
©
Ì
‡
ï
Ä
²
¡
þ
{
ü
4
à
-
‚
-
Ç
È
©
Ø
ª
"
|
^
ü
„
Ç
{
•
6
é
Green-Osher
(
J
?
1
{
z
y
²
§
u
y
-
Ç
È
©
Ø
ª
p
Ú
$
œ
¹
˜
‡
4
í
'
X
§
é
±
c
(
J
?
1
í
2
§
¿
…
u
y
˜
‡
A
Ï
¼
ê
"
'
…
c
ü
„
Ç
{
•
6
§
-
Ç
È
©
Ø
ª
§
{
ü
4
à
-
‚
RecurrenceRelationofCurvature
IntegralInequalitiesforSimple
ClosedConvexCurves
YazunLi
∗
,YongzhiZhang
YunnanNormalUniversity,KunmingYunnan
Received:Jan.24
th
,2023;accepted:Feb.23
rd
,2023;published:Mar.2
nd
,2023
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
o
æ
ƒ
,
Ü
[
“
.
{
ü
4
à
-
‚
-
Ç
È
©
Ø
ª
4
í
'
X
[J].
n
Ø
ê
Æ
,2023,13(3):375-380.
DOI:10.12677/pm.2023.133041
o
æ
ƒ
§
Ü
[
“
Abstract
Inthispaper, wemainlystudythecurvatureintegralinequalityofsimpleclosedconvex
curves ontheplane.We usetheunit-speedoutwardnormalflow tosimplifytheproof
ofGreen-Osher’sresults,findarecurrencerelationshipbetweenthehigh-orderand
low-ordercasesofthecurvatureintegralinequality,generalizethepreviousresults,
andfindaspecialfunction.
Keywords
TheUnit-SpeedOutwardNormalFlow,TheCurvatureIntegralInequality,Simple
ClosedConvexCurves
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
·
K
1.1(Gage
±
Ø
ª
[1])
î
¼
²
¡
R
2
þ
4
à
-
‚
γ
¤
Œ
¤
«
•
K
¡
È
A
§
±
•
L
÷
v
Ø
ª
Z
γ
k
2
ds
≥
πL
A
,
(1.1)
Ù
¥
k
•
γ
-
Ç
§
Ò
¤
á
…
=
γ
•
"
Gage
±
Ø
ª
†
-
Ç
k
k
'
§
k
á
u •
K
%
ØC
þ
§
d
a
A
Û
Ø
ª
¡
•
3
.
A
Û
Ø
ª
"
1999
c
Green
Ú
Osher
|
^
Green-Osher
Ø
ª
é
Gage
(
J
?
1
í
2
˜
X
#
3
.
A
Û
Ø
ª
Z
γ
k
3
ds
≥
πL
2
−
2
π
2
A
A
2
,
(1.2)
Z
γ
k
4
ds
≥
πL
3
−
3
π
2
AL
A
3
.
(1.3)
DOI:10.12677/pm.2023.133041376
n
Ø
ê
Æ
o
æ
ƒ
§
Ü
[
“
2014
c
ê
[
Ú
Q
S
A
|
^
à
A
Û
©
Û
¥|
¼
ê
Ú
ü
„
Ç
{
•
6
•{
é
±
þ
A
Û
Ø
ª
‰
Ñ
{
z
y
²
[2]
"
3
d
y
²
Ĵ
·
‚
u
y
˜
«
A
Ï
¼
ê
§
±
9
u
y
-
Ç
p
È
©
Ø
ª
Ú
$
È
©
Ø
ª
ƒ
m
•
3
4
í
'
X
"
·
‚
ò
4
í
'
X
í
2
•
Ê
H
œ
¹
"
-
Ç
k
n
œ
¹
÷
v
B
Œ
±
|
^
©
9
Ï
¼
ê
Ï
L
ü
„
Ç
{
•
6
y
²
'
n
$
¤
k
ê
Ñ
¤
á
"
½
Â
1.2
C
•
î
¼
²
¡
þ
{
ü
4
à
-
‚
§
C
Š
•
ü
„
Ç
{
•
6
Ð
©
-
‚
§
¼
ê
G
n
(
t
)
•
G
n
(
t
) =
Z
S
1
k
n
(
t
)
dθ
−
π
2
n
A
n
(
t
)
[(
L
(
t
)+
u
(
t
))
n
+(
L
(
t
)
−
u
(
t
))
n
]
,n
∈
N
+
.
(1.4)
½
n
1.3
¼
ê
G
n
(
t
)
÷
v
±
e
'
X
G
n
(
t
) =
(
−
1)
n
n
!
G
(
n
)
1
(
t
)
,n
∈
N
+
.
(1.5)
Ù
¥
G
(
n
)
1
(
t
)
L
«
G
1
(
t
)
n
ê
"
½
n
1.4
-
Ç
È
©
Ø
ª
¥
e
k
ê
•
n
¤
á
ž
§
Œ
k
ê
u
n
œ
¹
Ñ
¤
á
"
©
(
S
ü
©
©
•
n
‡
Ü
©
§
1
˜
Ü
©
•
Ú
ó
Ú
Ì
‡
½
n
§
ù
Ü
©
Ì
‡
0
c
<
é
A
Û
Ø
ª
ï
Ä
§
Ó
ž
‰
Ñ
©
ï
Ä
8
Ú
(
J
¶
1
Ü
©
•
ý
•
£
§
ù
Ü
©
½
Â
|
¼
ê
±
|
^
|
¼
ê
L
ˆ
-
‚
-
Ç
§
±
•
§
¡
È
A
Û
þ
"
0
ü
{
•
6
ˆ‡
A
Û
þ
ü
z
œ
¹
§
±
9
Green
−
Osher
Ø
ª
˜
‡
A^
"
1
n
Ü
©
•
Ì
‡
½
Â
y
²
§
ù
Ü
©
Ï
L
E
¼
ê
•{
y
²
¼
ê
G
n
(
t
)
˜
‡
A
:
§
¿
Ï
L
T
¼
ê
-
Ç
È
©
Ø
ª
ƒ
m
4
í
'
X
"
2.
ý
•
£
C
•
²
¡
þ
{
ü
4
à
-
‚
§
?
¿
À
‹
I
X
xOy
§
p
•
l
:
O
-
‚
C
þ
˜
:
?
ƒ
‚
½
•
R
†
å
l
§
θ
•
l
x
¶
•
•
ù
^
R
†
‚
k
•
"
w
,
§
p
´
θ
ü
Š
¼
ê
…
±
2
π
•
±
Ï
§
Ï
~¡
(
θ
§
p
(
θ
))
•
-
‚
C
ƒ
‚
4
‹
I
§
p
(
θ
)
•
C
Minkowski
|
¼
ê
"
d
§
C
±
•
•
L
§
Œ
¤
¡
È
•
A
§
K
(
ë
„
©
z
[3])
k
=
1
p
+
p
00
,
(2.1)
L
=
I
ds
=
Z
2
π
0
1
k
dθ
=
Z
2
π
0
p
+
p
00
dθ,
(2.2)
A
=
1
2
Z
2
π
0
(
p
2
−
p
0
2
)
dθ
=
1
2
Z
2
π
0
p
(
p
+
p
00
)
dθ,
(2.3)
Ú
n
2.1[4]
•
Ä
ü
„
Ç
{
•
6
X
(
u,t
) :
S
1
×
[0
,
∞
)
→
R
2
(
∂X
∂t
(
u,t
) =
N
out
,
X
(
u,
0) =
C,
DOI:10.12677/pm.2023.133041377
n
Ø
ê
Æ
o
æ
ƒ
§
Ü
[
“
Ù
|
¼
ê
•
p
(
θ,t
) =
p
(
θ
)+
t
§
±
•
•
L
(
t
)
§
Œ
¤
¡
È
•
A
(
t
)
§
-
Ç
•
k
(
t
)
§
K
k
(
t
) =
k
1+
tk
,
(2.4)
L
(
t
) =
Z
2
π
0
p
+
p
00
+
tdθ
=
L
+2
πt,
(2.5)
A
(
t
) =
1
2
Z
2
π
0
(
p
+
t
)(
p
+
t
+
p
00
)
dθ
=
A
+
tL
+
πt
2
,
(2.6)
L
2
(
t
)
−
4
πA
(
t
) =
L
2
−
4
πA,
(2.7)
Ï
d
dL
(
t
)
dt
= 2
π,
dA
(
t
)
dt
=
L
(
t
)
,
dk
(
t
)
dt
=
−
k
2
(
t
)(2.8)
r
à
¼
ê
F
(
x
) =
1
x
n
‘
\
Green-Osher
Ø
ª
§
e
¡
Ú
n
µ
Ú
n
2.2[5]
C
•
²
¡
þ
{
ü
4
à
-
‚
§
±
•
•
L
§
Œ
¤
¡
È
•
A
§
-
Ç
•
k
§
X
J
n
∈
N
+
§
u
=
√
L
2
−
4
πA
§
K
Z
S
1
k
n
dθ
≥
π
2
n
A
n
[(
L
+
u
)
n
+(
L
−
u
)
n
]
,
(2.9)
Ò
¤
á
ž
…
=
C
•
"
n
= 1
ž
§
(2.9)
Ò
´
Í
¶
Gage
±
Ø
ª
§
Z
S
1
k
2
ds
≥
πL
A
.
3.
Ì
‡
½
n
y
²
½
n
1.3
¼
ê
G
n
(
t
)
÷
v
±
e
'
X
G
n
(
t
) =
(
−
1)
n
n
!
G
(
n
)
1
(
t
)
,n
∈
N
+
.
(3.1)
Ù
¥
G
(
n
)
1
(
t
)
L
«
G
1
(
t
)
n
ê
"
y
é
G
n
(
t
)
?
1
¦
d
dt
G
n
(
t
) =
d
dt
(
Z
S
1
k
n
(
t
)
dθ
−
π
2
n
A
n
(
t
)
[(
L
(
t
)+
u
(
t
))
n
+(
L
(
t
)
−
u
(
t
))
n
])
,
d
dt
G
n
(
t
) =
n
Z
S
1
k
n
−
1
dk
(
t
)
dt
dθ
−
π
2
n
n
[
L
(
t
)+
u
(
t
)]
n
−
1
d
(
L
(
t
)+
u
(
t
))
dt
A
n
(
t
)
−
π
2
n
n
[
L
(
t
)
−
u
(
t
)]
n
−
1
d
(
L
(
t
)
−
u
(
t
))
dt
A
n
(
t
)
+
n
dA
(
t
)
dt
[(
L
(
t
)+
u
(
t
))
n
+[
L
(
t
)
−
u
(
t
)]
n
]
A
n
+1
(
t
)
,
(2.7)
‘
\þ
ª
n
d
dt
G
n
(
t
) =
−
n
Z
S
1
k
n
+1
dθ
−
π
2
n
n
[
L
(
t
)+
u
(
t
)]
n
−
1
(2
π
+
du
(
t
)
dt
)
A
n
(
t
)
+
n
[
L
(
t
)+2
πt
][(
L
(
t
)+
u
(
t
))
n
+[
L
(
t
)
−
u
(
t
)]
n
]
A
n
+1
(
t
)
,
(3.2)
DOI:10.12677/pm.2023.133041378
n
Ø
ê
Æ
o
æ
ƒ
§
Ü
[
“
Ù
¥
du
(
t
)
dt
=
4
πL
(
t
)
−
4
πL
(
t
)
2
p
L
2
(
t
)
−
4
πA
(
t
)
= 0
,
‘
\
(3.3)
dG
n
(
t
)
dt
=
−
n
(
Z
S
1
k
n
+1
(
t
)
dθ
−
π
2
n
L
(
t
)[
L
(
t
)+
u
(
t
)]
n
+
L
(
t
)[
L
(
t
)
−
u
(
t
)]
n
A
n
+1
(
t
)
+
π
2
n
2
πA
(
t
)[
L
(
t
)+
u
(
t
)]
n
−
1
+2
πA
(
t
)[
L
(
t
)
−
u
(
t
)]
n
−
1
A
n
+1
(
t
)
)
,
=
−
n
(
Z
S
1
k
n
+1
(
t
)
dθ
−
π
2
n
+1
[
L
(
t
)+
u
(
t
)]
n
+1
+[
L
(
t
)
−
u
(
t
)]
n
+1
A
n
+1
(
t
)
)
,
=
−
nG
n
+1
(
t
)
.
(3.3)
d
(3.3)
¿
é
G
1
(
t
)
¦
n
n
Œ
G
n
(
t
) =
(
−
1)
n
n
!
G
(
n
)
1
(
t
)
,n
∈
N
+
.
½
n
1.4
-
Ç
È
©
Ø
ª
¥
e
k
ê
•
n
¤
á
ž
§
Œ
k
ê
u
n
ž
Ñ
¤
á
"
y
d
(3.4)
Ú
b
Œ
dG
n
(
t
)
dt
=
−
nG
n
+1
(
t
)
≤
0
.
ò
(2.4)-(2.6)
‘
\
(3.1)
G
n
(
t
) =
Z
S
1
(
k
1+
tk
)
n
dθ
−
π
2
n
[
L
+2
πt
+
u
0
]
n
+[
L
+2
πt
−
u
0
]
n
(
A
+
tL
+
πt
2
)
n
,
d?
u
0
=
p
L
2
(
t
)
−
4
πA
(
t
) =
√
L
2
−
4
πA
≥
0
§
•
†
Ð
©
-
‚
À
k
'
"
lim
t
→∞
G
n
(
t
) = 0
−
0 = 0
,
Ï
d
§
é
?
¿
t
≥
0
§
Ñ
k
G
n
(
t
)
≥
0
"
A
O
§
t=0
ž
§
G
n
(0) =
Z
S
1
k
n
dθ
−
π
2
n
A
n
[(
L
+
u
)
n
+(
L
−
u
)
n
]
≥
0
,
=
Z
S
1
k
n
dθ
≥
π
2
n
A
n
[(
L
+
u
)
n
+(
L
−
u
)
n
]
,
Ò
¤
á
…
=
C
•
"
DOI:10.12677/pm.2023.133041379
n
Ø
ê
Æ
o
æ
ƒ
§
Ü
[
“
ú
ª
A^
§
X
n
= 3
ž
-
Ç
È
©
Ø
ª
¤
á
§
=
Z
S
1
k
3
dθ
≥
πL
(
L
2
−
3
πA
)
A
3
‡
y
²
n
= 2
ž
•
¤
á
Œ
E
¼
ê
G
2
(
t
) =
Z
S
1
k
2
(
t
)
dθ
−
π
[
L
2
(
t
)
−
2
πA
(
t
)]
A
2
(
t
)
é
G
2
(
t
)
¦
Œ
dG
2
(
t
)
dt
=
−
2
G
3
(
t
)
≤
0
q
lim
t
→∞
G
2
(
t
) = 0
Œ
é
?
¿
t
≥
0
§
Ñ
k
G
2
(
t
)
≥
0
§
A
O
t=0
"
k
Z
S
1
k
2
dθ
≥
π
[
L
2
−
2
πA
]
A
2
Ó
n
Œ
±
y
²
n
= 1
ž
•
¤
á
"
ë
•
©
z
[1]Gage,M.E.(1983)AnIsoperimetricInequalitywithApplicationtoShortening.
DukeMathe-
maticalJournal
,
50
,1225-1229.https://doi.org/10.1215/S0012-7094-83-05052-4
[2]
ê
[
,
Q
S
A
.
'
u
-
Ç
È
©
Ø
ª
5
P
[J].
ê
Æ
,
“
,2014,34(5):925-930.
[3]Gao,L.Y.,Pan,S.L.andTsai,D.-H.(2021)OnanArea-PreservingInverseCurvatureFlow
ofConvexClosedPlaneCurve.
JournalofFunctionalAnalysis
,
280
,ArticleID:108931.
https://doi.org/10.1016/j.jfa.2021.108931
[4]
)
,
/
Æ
,
Œ
.Gage
±
Ø
ª
\
r
/
ª
[J].
ê
Æ
c
r
,2008,29A(3):301-306.
[5]Green,M.andOsher,S.(1999)SteinerPolnomials,WulffFlow,andSomeNewIsoperimetric
InequalitiesforConvexPlaneCurves.
TheAsianJournalofMathematics
,
3
,659-676.
https://doi.org/10.4310/AJM.1999.v3.n3.a5
DOI:10.12677/pm.2023.133041380
n
Ø
ê
Æ