设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(3),375-380
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133041
{ü4à-‚-ÇÈ©Øª
4í'X
oooæææƒƒƒ
∗
§§§ÜÜÜ[[[“““
H“‰ŒÆ§H&²
ÂvFϵ2023c124F¶¹^Fϵ2023c223F¶uÙFϵ2023c32F
Á‡
©Ì‡ïIJ¡þ{ü4à-‚-ÇÈ©Øª"|^ü „Ç{•6éGreen-Osher
(J?1{zy²§uy-ÇÈ©Øª pÚ$œ¹˜‡4í'X§é±c(J?
1í2§¿…uy˜‡AÏ¼ê"
'…c
ü „Ç{•6§-ÇÈ©Øª§{ü4à-‚
RecurrenceRelationofCurvature
IntegralInequalitiesforSimple
ClosedConvexCurves
YazunLi
∗
,YongzhiZhang
YunnanNormalUniversity,KunmingYunnan
Received:Jan.24
th
,2023;accepted:Feb.23
rd
,2023;published:Mar.2
nd
,2023
∗ÏÕŠö"
©ÙÚ^:oæƒ,Ü[“.{ü4à-‚-ÇÈ©Øª4í'X[J].nØêÆ,2023,13(3):375-380.
DOI:10.12677/pm.2023.133041
o惧Ü[“
Abstract
Inthispaper, wemainlystudythecurvatureintegralinequalityofsimpleclosedconvex
curves ontheplane.We usetheunit-speedoutwardnormalflow tosimplifytheproof
ofGreen-Osher’sresults,findarecurrencerelationshipbetweenthehigh-orderand
low-ordercasesofthecurvatureintegralinequality,generalizethepreviousresults,
andfindaspecialfunction.
Keywords
TheUnit-SpeedOutwardNormalFlow,TheCurvatureIntegralInequality,Simple
ClosedConvexCurves
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
·K1.1(Gage±Øª[1])î¼²¡R
2
þ4à-‚γ¤Œ¤«•K¡ÈA§±•L÷
vØª
Z
γ
k
2
ds≥
πL
A
,(1.1)
Ù¥k•γ-ǧÒ¤á…=γ•"
Gage±Øª†-Çkk'§káu •K%ØCþ§daAÛØª¡•3.AÛØ
ª"1999cGreenÚOsher|^Green-OsherØªéGage(J?1í2˜X#
3.AÛØª
Z
γ
k
3
ds≥
πL
2
−2π
2
A
A
2
,(1.2)
Z
γ
k
4
ds≥
πL
3
−3π
2
AL
A
3
.(1.3)
DOI:10.12677/pm.2023.133041376nØêÆ
o惧Ü[“
2014c ê[ÚQSA|^àAÛ©Û¥| ¼êÚü „Ç{•6•{é±þAÛØ
ª‰Ñ{zy²[2]"3dy²ƒ¥·‚uy˜«AÏ¼ê§±9uy-ÇpÈ©Ø
ªÚ$È©Øªƒm•34í'X"·‚ò4í'Xí2•ÊHœ¹"-Çkn
œ¹÷vBŒ±|^©9ϼêÏLü „Ç{•6y²'n$¤kêѤá"
½Â1.2C•î¼²¡þ{ü4à-‚§CŠ•ü „Ç{•6Щ-‚§¼
êG
n
(t)•
G
n
(t) =
Z
S
1
k
n
(t)dθ−
π
2
n
A
n
(t)
[(L(t)+u(t))
n
+(L(t)−u(t))
n
],n∈N
+
.(1.4)
½n1.3¼êG
n
(t)÷v±e'X
G
n
(t) =
(−1)
n
n!
G
(n)
1
(t),n∈N
+
.(1.5)
Ù¥G
(n)
1
(t)L«G
1
(t)nê"
½n1.4-ÇÈ©Øª¥ekê•n¤áž§Œkêunœ¹Ñ¤á"
©(Sü
©©•n‡Ü©§1˜Ü©•ÚóÚ̇½n§ùܩ̇0c<éAÛØªï
ħӞ‰Ñ©ïÄ8Ú(J¶1Ü©•ý•£§ ùÜ©½Â| ¼ê±|^|
¼êLˆ-‚-ǧ±•§¡ÈAÛþ"0ü {•6ˆ‡AÛþüzœ¹§±
9Green−OsherØª˜‡A^"1nÜ©•̇½Ây²§ùÜ©ÏLE¼ê•{y
²¼êG
n
(t)˜‡A:§¿ÏLT¼ê-ÇÈ©Øªƒm4í'X"
2.ý•£
C•²¡þ{ü4à-‚§ ?¿À‹IXxOy§p•l:O-‚Cþ˜:?ƒ‚½
•R†ål§θ•lx¶••ù^R†‚k•"w,§p´θüŠ¼ê…±2π•±Ï§
Ï~¡(θ§p(θ))•-‚Cƒ‚4‹I§p(θ)•CMinkowski| ¼ê"d§C±••L§
Œ¤¡È•A§K(ë„©z[3])
k=
1
p+p
00
,(2.1)
L=
I
ds=
Z
2π
0
1
k
dθ=
Z
2π
0
p+p
00
dθ,(2.2)
A=
1
2
Z
2π
0
(p
2
−p
0
2
)dθ=
1
2
Z
2π
0
p(p+p
00
)dθ,(2.3)
Ún2.1[4]•Äü „Ç{•6X(u,t) : S
1
×[0,∞) →R
2
(
∂X
∂t
(u,t) = N
out
,
X(u,0) = C,
DOI:10.12677/pm.2023.133041377nØêÆ
o惧Ü[“
Ù| ¼ê•p(θ,t) = p(θ)+t§±••L(t)§Œ¤¡È•A(t)§-Ç•k(t)§K
k(t) =
k
1+tk
,(2.4)
L(t) =
Z
2π
0
p+p
00
+tdθ= L+2πt,(2.5)
A(t) =
1
2
Z
2π
0
(p+t)(p+t+p
00
)dθ= A+tL+πt
2
,(2.6)
L
2
(t)−4πA(t) = L
2
−4πA,(2.7)
Ïd
dL(t)
dt
= 2π,
dA(t)
dt
= L(t),
dk(t)
dt
= −k
2
(t)(2.8)
rà¼êF(x) =
1
x
n
‘\Green-OsherØª§e¡Únµ
Ún2.2[5]C•²¡þ{ü4à-‚§±••L§Œ¤¡È•A§-Ç•k§XJn∈N
+
§
u=
√
L
2
−4πA§K
Z
S
1
k
n
dθ≥
π
2
n
A
n
[(L+u)
n
+(L−u)
n
],(2.9)
Ò¤áž…=C•"n= 1ž§(2.9)ҴͶGage±Øª§
Z
S
1
k
2
ds≥
πL
A
.
3.̇½ny²
½n1.3¼êG
n
(t)÷v±e'X
G
n
(t) =
(−1)
n
n!
G
(n)
1
(t),n∈N
+
.(3.1)
Ù¥G
(n)
1
(t)L«G
1
(t)nê"
yéG
n
(t)?1¦
d
dt
G
n
(t) =
d
dt
(
Z
S
1
k
n
(t)dθ−
π
2
n
A
n
(t)
[(L(t)+u(t))
n
+(L(t)−u(t))
n
]),
d
dt
G
n
(t) = n
Z
S
1
k
n−1
dk(t)
dt
dθ−
π
2
n
n[L(t)+u(t)]
n−1
d(L(t)+u(t))
dt
A
n
(t)
−
π
2
n
n[L(t)−u(t)]
n−1
d(L(t)−u(t))
dt
A
n
(t)
+
n
dA(t)
dt
[(L(t)+u(t))
n
+[L(t)−u(t)]
n
]
A
n+1
(t)
,
(2.7)‘\þªn
d
dt
G
n
(t) = −n
Z
S
1
k
n+1
dθ−
π
2
n
n[L(t)+u(t)]
n−1
(2π+
du(t)
dt
)
A
n
(t)
+
n[L(t)+2πt][(L(t)+u(t))
n
+[L(t)−u(t)]
n
]
A
n+1
(t)
,(3.2)
DOI:10.12677/pm.2023.133041378nØêÆ
o惧Ü[“
Ù¥
du(t)
dt
=
4πL(t)−4πL(t)
2
p
L
2
(t)−4πA(t)
= 0,
‘\(3.3)
dG
n
(t)
dt
= −n(
Z
S
1
k
n+1
(t)dθ−
π
2
n
L(t)[L(t)+u(t)]
n
+L(t)[L(t)−u(t)]
n
A
n+1
(t)
+
π
2
n
2πA(t)[L(t)+u(t)]
n−1
+2πA(t)[L(t)−u(t)]
n−1
A
n+1
(t)
),
= −n(
Z
S
1
k
n+1
(t)dθ−
π
2
n+1
[L(t)+u(t)]
n+1
+[L(t)−u(t)]
n+1
A
n+1
(t)
),
= −nG
n+1
(t).(3.3)
d(3.3)¿éG
1
(t)¦nnŒ
G
n
(t) =
(−1)
n
n!
G
(n)
1
(t),n∈N
+
.
½n1.4-ÇÈ©Øª¥ekê•n¤áž§ŒkêunžÑ¤á"
yd(3.4)ÚbŒ
dG
n
(t)
dt
= −nG
n+1
(t) ≤0.
ò(2.4)-(2.6)‘\(3.1)
G
n
(t) =
Z
S
1
(
k
1+tk
)
n
dθ−
π
2
n
[L+2πt+u
0
]
n
+[L+2πt−u
0
]
n
(A+tL+πt
2
)
n
,
d?u
0
=
p
L
2
(t)−4πA(t) =
√
L
2
−4πA≥0§•†Ð©-‚Àk'"
lim
t→∞
G
n
(t) = 0−0 = 0,
Ïd§é?¿t≥0§ÑkG
n
(t) ≥0"
AO§t=0ž§
G
n
(0) =
Z
S
1
k
n
dθ−
π
2
n
A
n
[(L+u)
n
+(L−u)
n
] ≥0,
=
Z
S
1
k
n
dθ≥
π
2
n
A
n
[(L+u)
n
+(L−u)
n
],
Ò¤á…=C•"
DOI:10.12677/pm.2023.133041379nØêÆ
o惧Ü[“
úªA^§Xn= 3ž-ÇÈ©Øª¤á§=
Z
S
1
k
3
dθ≥
πL(L
2
−3πA)
A
3
‡y²n= 2ž•¤áŒE¼ê
G
2
(t) =
Z
S
1
k
2
(t)dθ−
π[L
2
(t)−2πA(t)]
A
2
(t)
éG
2
(t)¦Œ
dG
2
(t)
dt
= −2G
3
(t) ≤0
q
lim
t→∞
G
2
(t) = 0
Œé?¿t≥0§ÑkG
2
(t) ≥0§AOt=0"k
Z
S
1
k
2
dθ≥
π[L
2
−2πA]
A
2
ÓnŒ±y²n= 1ž•¤á"
ë•©z
[1]Gage,M.E.(1983)AnIsoperimetricInequalitywithApplicationtoShortening.DukeMathe-
maticalJournal,50,1225-1229.https://doi.org/10.1215/S0012-7094-83-05052-4
[2]ê[,QSA.'u-ÇÈ©Øª5P[J].êÆ,“,2014,34(5):925-930.
[3]Gao,L.Y.,Pan,S.L.andTsai,D.-H.(2021)OnanArea-PreservingInverseCurvatureFlow
ofConvexClosedPlaneCurve.JournalofFunctionalAnalysis,280,ArticleID:108931.
https://doi.org/10.1016/j.jfa.2021.108931
[4]),/Æ,Œ.Gage±Øª\r/ª[J].êÆcr,2008,29A(3):301-306.
[5]Green,M.andOsher,S.(1999)SteinerPolnomials,WulffFlow,andSomeNewIsoperimetric
InequalitiesforConvexPlaneCurves.TheAsianJournalofMathematics,3,659-676.
https://doi.org/10.4310/AJM.1999.v3.n3.a5
DOI:10.12677/pm.2023.133041380nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.