设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(3),405-415
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133044
‘
·
Ü
š
‚
5
‘
š
‚
5Å
½
™
•
§
7
Å
)
r
Ø
-
½
5
ëëë
|||
•••
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
1
31
F
¶
¹
^
F
Ï
µ
2023
c
3
1
F
¶
u
Ù
F
Ï
µ
2023
c
3
8
F
Á
‡
©
Ì
‡
ï
Ä
X
e
‘
k
·
Ü
˜
/
ª
Ú
ò
È
/
ª
š
‚
5
‘
š
‚
5Å
½
™
•
§
7
Å
)
r
Ø
-
½
5
i∂
t
ψ
+∆
ψ
+
a
|
ψ
|
q
ψ
+
1
|
x
|
α
Z
R
N
|
ψ
|
p
|
x
−
y
|
µ
|
y
|
α
dy
|
ψ
|
p
−
2
ψ
= 0
,
(
t,x
)
∈
[0
,T
∗
)
×
R
N
.
Ù
¥
N
≥
3
,
0
<µ<N
,
a
≥
0
,
2
α
+
µ
≤
N
,
0
<q<
4
N
,
2
−
2
α
+
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,
0
<T
∗
≤∞
,
¿
…
ψ
(
t,x
): [0
,T
∗
)
×
R
N
→
C
´
E
Š
¼
ê
.
a
= 0
,
2+2
N
−
2
α
−
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
ž
,
Ï
L
ï
á
»
O
K
,
y
²
7
Å
)
r
Ø
-
½
5
"
'
…
c
š
‚
5Å
½
™
•
§
§
7
Å
)
§
»
O
K
§
r
Ø
-
½
5
StrongInstabilityofStandingWave
SolutionsfortheNonlinearSchr¨odinger
EquationwithMixedNonlinearities
LifangZhao
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©
Ù
Ú
^
:
ë
|
•
.
‘
·
Ü
š
‚
5
‘
š
‚
5Å
½
™
•
§
7
Å
)
r
Ø
-
½
5
[J].
n
Ø
ê
Æ
,2023,13(3):405-415.
DOI:10.12677/pm.2023.133044
ë
|
•
Received:Jan.31
st
,2023;accepted:Mar.1
st
,2023;published:Mar.8
th
,2023
Abstract
Inthispaper,weconsiderthestronginstabil ityofstandingwavesolutionsforthenon-
linearSchr¨odingerequationwithmixedpower-typeandChoquard-typenonlinearities
i∂
t
ψ
+∆
ψ
+
a
|
ψ
|
q
ψ
+
1
|
x
|
α
Z
R
N
|
ψ
|
p
|
x
−
y
|
µ
|
y
|
α
dy
|
ψ
|
p
−
2
ψ
= 0
,
(
t,x
)
∈
[0
,T
∗
)
×
R
N
.
Where
N
≥
3
,
0
<µ<N
,
a
≥
0
,
2
α
+
µ
≤
N
,
0
<q<
4
N
,
2
−
2
α
+
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,and
ψ
(
t,x
):[0
,T
∗
)
×
R
N
→
C
isthecomplexfunctionwith
0
<T
∗
≤∞
.When
a
=0
and
2+2
N
−
2
α
−
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,weprovethestronginstabilityofstandingwavesolutionsby
usingblow-upcriterion.
Keywords
NonlinearSchr¨odingerEquation,StandingWaveSolutions,Blow-UpCriterion,Strong
Instability
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
©
Ì
‡
ï
Ä
X
e
‘
k
·
Ü
˜
/
ª
Ú
ò
È
/
ª
š
‚
5
‘
š
‚
5Å
½
™
•
§
(
i∂
t
ψ
+∆
ψ
+
a
|
ψ
|
q
ψ
+
1
|
x
|
α
(
R
R
N
|
ψ
|
p
|
x
−
y
|
µ
|
y
|
α
dy
)
|
ψ
|
p
−
2
ψ
= 0
,
(
t,x
)
∈
[0
,T
∗
)
×
R
N
,
ψ
(0) =
ψ
0
∈
H
1
(
R
N
)
,
(1
.
1)
Ù
¥
N
≥
3,0
<µ<N
,
a
≥
0,2
α
+
µ
≤
N
,0
<q<
4
N
,2
−
2
α
+
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,0
<T
∗
≤∞
,
¿
…
ψ
(
t,x
) : [0
,T
∗
)
×
R
N
→
C
´
E
Š
¼
ê
.
•
§
(1.1)
ä
k
é
õ
Ô
n
µ
.
a
=0,
α
=0
…
p
=2
ž
,
T
•
§
¡
•
Hartree
•
§
,
T
•
§
ƒ
A
…
ܯ
K
®
²
3
©
z
[1–3]
¥
ï
Ä
.
N
=3,
a
=0,
α
=0,
p
=2
…
µ
=2
ž
,
Pekar
3
©
z
[4]
¥
Ú
\
T
•
§
^
5
£
ã
3
ê
Æ
Ô
n
¥
'
u
·
Ž
4
z
f
þ
f
n
Ø
.
†
d
Ó
ž
,P.
DOI:10.12677/pm.2023.133044406
n
Ø
ê
Æ
ë
|
•
Lions
3
©
z
[5]
¥
A ^
T
•
§
£
ã
˜
‡
(
3
g
C
^
4
¥
>
f
,
3
,
«
§
Ý
e
,
ù
«
y–
C
q
u
'
u
ü
|
©
l
f
N
Hartee-Fock
n
Ø
.
d
,R.Penrose
3
©
z
[6]
¥
J
Ñ
ù
‡
•
§
^
5
£
ã
g
Ú
å
Ô
Ÿ
.
,
3ù
«
œ
/
e
þ
f
~
@
•
´
˜
«
Ú
å
y–
.
Ï
d
,
T
•
§
Ï
~
q
¡
•
Schr¨odinger-Newton
•
§
.
•
C
,
ù
a
•
§
®
²
3
©
z
[7–15]
¥
2
•
ï
Ä
.
©
Ì
‡
ï
Ä
•
§
(1.1)
7
Å
)
,
=
/
X
ψ
(
t,x
)=
e
iωt
u
(
x
)
)
§
Ù
¥
ω
∈
R
´
ª
Ç
,
u
∈
H
1
(
R
n
)
´
X
e
ý
•
§
š
²
…
)
−
∆
u
+
ωu
=
a
|
u
|
q
u
+
|
x
|
−
µ
∗
1
|
x
|
α
|
u
|
p
1
|
x
|
α
|
u
|
p
−
2
u.
(1
.
2)
ý
•
§
(1.2)
ƒ
é
A
Š
^
•
¼
†
U
þ
•
¼
•
:
S
ω
(
u
) :=
E
(
u
)+
ω
2
Z
R
N
|
u
|
2
dx,
(1
.
3)
E
(
u
) :=
1
2
Z
R
N
|∇
u
|
2
dx
−
a
q
+2
Z
R
N
|
u
|
q
+2
dx
−
1
2
p
Z
R
N
Z
R
N
|
u
|
p
|
u
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy.
·
‚
Ó
ž
½
Â
e
•
¼
K
ω
(
u
) : =
∂
λ
S
ω
(
λu
)
|
λ
=1
=
||∇
u
||
2
L
2
+
ω
||
u
||
2
L
2
−
a
||
u
||
q
+2
L
q
+2
−
Z
R
N
Z
R
N
|
u
|
p
|
u
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy,
(1
.
4)
Ú
Q
(
u
) : =
∂
λ
S
ω
(
u
λ
)
|
λ
=1
=
||∇
u
||
2
L
2
−
aα
1
q
+2
||
u
||
q
+2
L
q
+2
−
α
2
2
p
Z
R
N
Z
R
N
|
u
|
p
|
u
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy,
(1
.
5)
Ù
¥
u
λ
(
x
) :=
λ
N
2
u
(
λx
)
,α
1
:=
Np
1
2
,α
2
:=
Np
−
2
N
+2
α
+
µ.
(1
.
6)
e
¡
,
·
‚
½
Â
(1.2)
š
²
…
)
8
Ü
•
A
ω
:=
{
u
ω
∈
H
1
\{
0
}
,S
0
ω
(
u
ω
) = 0
}
.
½½½
ÂÂÂ
1.1
(
Ä
)
[1] )
e
u
ω
∈A
ω
´
S
ω
3
8
Ü
A
ω
þ
4
z
U
þ
)
,
K
G
ω
:=
{
u
ω
∈A
ω
,S
ω
(
u
ω
)
≤
S
ω
(
v
ω
)
,
∀
v
ω
∈A
ω
}
.
½½½
ÂÂÂ
1.2
(
r
Ø
-
½
5
[1] ).
e
é
u
?
¿
ε>
0,
•
3
ψ
0
∈
H
1
¦
||
ψ
0
−
u
||
H
1
<ε
,
¿
…
±
ψ
0
•
Ð
Š
)
ψ
(
t
)
3
k
•
ž
m
S
»
,
K
7
Å
)
e
iωt
u
ω
(
x
)
r
Ø
-
½
.
DOI:10.12677/pm.2023.133044407
n
Ø
ê
Æ
ë
|
•
Š
â
r
Ø
-
½
5
½
Â
1.2,
·
‚
Ä
k
£
˜
š
‚
5Å
½
™
•
§
²
;
(
Ø
.
é
u
²
;
š
‚
5Å
½
™
•
§
,
X
J
·
‚
b
Ð
Š
ψ
0
∈
Σ :=
{
ψ
0
∈
H
1
,xψ
0
∈
L
2
}
,
K
•
-
‘
p
½
Æ
¤
á
,
=
:
1
2
d
dt
Z
R
N
|
x
|
2
|
ψ
(
t,x
)
|
2
dx
= 2
Im
Z
R
N
ψ
(
t,x
)
x
·∇
ψ
(
t,x
)
dx.
(1
.
7)
Ï
L
¦
^
‘
p
ð
ª
Ú
(1.7)
ª
,
Œ
•
U
þ
•
¼
E
(
ψ
0
)
<
0,
ù
¿
›
X
š
‚
5Å
½
™
•
3
»
)
,
Œ
„
©
z
[1].
d
,
·
‚
2
£
˜
r
Ø
-
½
5
ƒ
'
(
Ø
.
7
Å
)
r
Ø
-
½
5
´
Berestycki
Ú
Cazenave
3
©
z
[16]
¥
Ä
g
J
Ñ
.
‘
, Le Coz
3
©
z
[17]
¥
‰
Ñ
,
˜
«
{
´
y
²
.
¯¢
þ
,
‡
y
²
7
Å
)
r
Ø
-
½
5
'
…
3
u
ï
á
»
O
K
,
Ì
‡
•{
´
$
^
Pohozaev
6
/
N
:=
{
v
∈
H
1
,Q
(
v
) = 0
}
þ
Ä
)
C
©
•
x
,
·
‚
Œ
±
¼
'
…
O
,
=
:
Q
(
ψ
(
t
))
≤
2(
S
ω
(
ψ
0
)
−
S
ω
(
u
ω
))
.
‘
,
Ä
u
‘
p
ð
ª
Ú
Ð
Š
ψ
0
Œ
d
2
dt
2
||
xψ
(
t
)
||
2
L
2
= 8
Q
(
ψ
(
t
))
≤
16(
S
ω
(
ψ
0
)
−
S
ω
(
u
ω
))
<
0
,
Ù
¥
,
Q
(
ψ
(
t
))
d
(1.5)
ª
½
Â
.
d
d
Œ
•
§
(1.1)
)
ψ
(
t
)
3
k
•
ž
m
S
»
,
ë
•
©
z
[18–20].
•
C
, Chen
Ú
Guo
3
©
z
[21]
¥
ï
Ä
a
= 0,
α
= 0,
N
= 3,
p
= 2
œ
/
e
)
•
3
5
Ú
7
Å
)
r
Ø
-
½
5
.Shi
3
©
z
[22]
¥
X
Ú
$
^
8
¥
;
5
Ú
n
y
²
•
§
(1.1)
7
Å
)
3
L
2
-
g
.
,
L
2
-
.
Ú
L
2
-
‡
.
œ
/
e
7
Å
)
•
3
5
Ú;
-
½
5
.
Ï
d
,
3
L
2
-
‡
.
œ
/
e
,
•
§
(1.1)
7
Å
)
´
Ä
3
k
•
ž
m
S
»
,
´
Ä
•
3
r
Ø
-
½
7
Å
)Ò
´
˜
‡
Š
ï
Ä
¯
K
.
©
Ì
‡
ï
Ä
•
§
(1.1)
Ä
7
Å
)
r
Ø
-
½
5
,
·
‚
•
Ä
a
=0
œ
/
,
Ï
L
Ä
)
C
©
•
x
,
ï
á
»
O
K
,
l
y
²
7
Å
)
r
Ø
-
½
5
,
Ì
‡
(
J
X
e
:
a
= 0,
u
ω
(
x
) =
ω
1
p
−
2
e
u
(
ω
1
2
x
),
K
e
u
÷
v
•
§
∆
e
u
−
e
u
=
|
x
|
−
µ
∗
(
1
|
x
|
α
|
e
u
|
p
)
1
|
x
|
α
|
e
u
|
p
−
2
e
u.
(1
.
8)
A
Ï
,
Ï
L
O
Ž
·
‚
Œ
•
E
(
u
ω
)
s
c
||
u
ω
||
2(1
−
s
c
)
L
2
=
E
(
e
u
)
s
c
||
e
u
||
2(1
−
s
c
)
L
2
,
(1
.
9)
||∇
u
ω
||
s
c
L
2
||
u
ω
||
1
−
s
c
L
2
=
||∇
e
u
||
s
c
L
2
||
e
u
||
1
−
s
c
L
2
,
(1
.
10)
Ù
¥
,
s
c
=
N
2
−
2+
N
−
2
α
−
µ
2(
p
−
1)
.
½½½
nnn
1.1
N
≥
3,
2+2
N
−
2
α
−
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
.
ψ
∈
C
([0
,T
∗
)
,H
1
)
´
•
§
(1.1)
3
a
=0
DOI:10.12677/pm.2023.133044408
n
Ø
ê
Æ
ë
|
•
ž
)
,
e
E
(
ψ
0
)
>
0
…
(
E
(
ψ
0
)
s
c
||
ψ
0
||
2(1
−
s
c
)
L
2
<E
(
u
)
s
c
||
u
||
2(1
−
s
c
)
L
2
,
||∇
ψ
0
||
s
c
L
2
||
ψ
0
||
1
−
s
c
L
2
>
||∇
u
||
s
c
L
2
||
u
||
1
−
s
c
L
2
,
(1
.
11)
Ù
¥
,
u
´
(1.8)
Ä
)
,
K
•
§
(1.1)
7
Å
)
ψ
(
t
)
3
k
•
ž
m
S
»
.
½½½
nnn
1.2
-
a
=0,
N
≥
3,0
<µ<N
,
α
≥
0,2
α
+
µ
≤
N
,
2+2
N
−
2
α
−
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,
…
u
ω
´
(1.2)
Ä
)
,
K
Ä
7
Å
)
ψ
(
t,x
) =
e
iωt
u
ω
(
x
)
´
r
Ø
-
½
.
©
|
„
(
X
e
:
3
1
!
¥
,
·
‚
‰
Ñ
˜
ý
•
£
.
3
1
n
!
¥
,
·
‚
ò
y
²
½
n
1.1.
3
1
o
!
¥
,
·
‚
ò
y
²
½
n
1.2.
2.
ý
•
£
!
·
‚
Ì
‡
£
˜
®
•
(
J
.
ÚÚÚ
nnn
2.1
(
Û
Ü
·
½
5
[2])
N
≥
3,0
<µ<N
,
α
≥
0,2
α
+
µ
≤
N
,0
<q<
4
N
−
2
,
2
−
2
α
+
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
.
e
ψ
0
∈
H
1
(
R
N
),
K
•
3
T
=
T
(
k
ψ
0
k
H
1
)
¦
•
§
(1.1)
•
3
•
˜
)
ψ
∈
C
([0
,T
)
,H
1
).
2
-
[0
,T
∗
)
´
)
ψ
(
t
)
4
Υ
3
«
m
,
e
T
∗
<
∞
,
K
lim
t
→
T
∗
k
ψ
(
t
)
k
H
1
=
∞
.
,
,
ψ
(
t
)
÷
v
Ÿ
þ
†
U
þ
Å
ð
,
=
é
u
?
¿
0
≤
t<T
∗
,
k
k
ψ
(
t
)
k
2
L
2
=
k
ψ
0
k
2
L
2
, E
(
ψ
(
t
)) =
E
(
ψ
0
)
.
ÚÚÚ
nnn
2.2
( Br´ezis-Lieb
Ú
n
[23] )
0
<p<
∞
.
X
J
{
f
n
}
´
˜
‡
L
p
(
R
N
)
˜
m
þ
k
.
S
,
…
÷
v
{
f
n
}
3
L
p
(
R
N
)
˜
m
þ
A
??
Â
ñ
u
f
,
K
k
lim
n
→
+
∞
(
||
f
n
||
p
L
p
−||
f
n
−
f
||
p
L
p
−||
f
||
p
L
p
) = 0
.
ƒ
q
,
k
lim
n
→
+
∞
Z
R
N
|
x
|
−
µ
∗
1
|
x
|
α
|
f
n
|
p
1
|
x
|
α
|
f
n
|
p
−
2
f
n
=
Z
R
N
|
x
|
−
µ
∗
|
f
n
−
f
|
p
|
x
|
α
|
f
n
−
f
|
p
−
2
|
x
|
α
|
f
n
−
f
|
+
Z
R
N
|
x
|
−
µ
∗
1
|
x
|
α
|
f
|
p
1
|
x
|
α
|
f
|
p
−
2
f.
ÚÚÚ
nnn
2.3
(Hardy-Littlewood-Sobolev
Ø
ª
[24])
N
≥
3,
p>
1,
r>
1,0
<µ<N
,
α
≥
0,2
α
+
µ
≤
N
,
u
∈
L
p
(
R
N
),
v
∈
L
r
(
R
N
),
K
,
•
3
˜
‡
~
ê
C
(
α,µ,N,p,r
)
÷
v
Z
R
N
Z
R
N
u
(
x
)
v
(
y
)
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
≤
C
(
α,µ,N,p,r
)
k
u
k
L
p
(
R
N
)
k
v
k
L
r
(
R
N
)
,
Ù
¥
1
p
+
1
r
+
2
α
+
µ
N
= 2.
ÚÚÚ
nnn
2.4
( Gagliardo-Nirenberg
Ø
ª
[22] )
N
≥
3,0
<µ<N
,
α
≥
0,2
α
+
µ
≤
N
,
DOI:10.12677/pm.2023.133044409
n
Ø
ê
Æ
ë
|
•
2
−
2
α
+
µ
N
<p<
2
N
−
2
α
−
µ
N
−
2
,
K
Z
R
N
Z
R
N
|
u
|
p
|
u
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
≤
C
α,µ,p
||
u
||
2
p
−
Np
+2
N
−
2
α
−
µ
L
2
||∇
u
||
Np
−
2
N
+2
α
+
µ
L
2
,
Ù
¥
,
•
Z
~
ê
•
C
α,µ,p
=
2
p
2
p
−
Np
+2
N
−
2
α
−
µ
2
p
−
Np
+2
N
−
2
α
−
µ
Np
−
2
N
+2
α
+
µ
Np
−
2
N
+2
α
+
µ
2
k
Q
p
k
2
−
2
p
L
2
,
Ù
¥
,
Q
p
´
X
e
ý
•
§
Ä
)
−
∆
Q
p
+
Q
p
=
1
|
x
|
α
|
x
|
−
µ
∗
(
1
|
x
|
α
|
Q
p
|
p
)
|
Q
p
|
p
−
2
Q
p
.
A
Ï
,
3
L
2
-
.
œ
/
e
,
=
:
p
=
2+2
N
−
2
α
−
µ
N
ž
,
•
Z
~
ê
•
C
α,µ,p
=
p
k
Q
k
2
−
2
p
L
2
.
d
,
±
e
Pohoˇzaev
ð
ª
¤
á
:
||∇
Q
p
||
2
L
2
=
2
p
−
Np
+2
N
−
2
α
−
µ
Np
−
2
N
+2
α
+
µ
||
Q
p
||
2
L
2
=
Np
−
2
N
+2
α
+
µ
2
p
Z
R
N
Z
R
N
|
Q
p
|
p
|
Q
p
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy.
3.
»
O
K
!
·
‚
y
²
½
n
1.1.
Ä
k
,
·
‚
b
ψ
0
∈
H
1
,
ψ
∈
C
([0
,T
∗
])
,H
1
)
´
•
§
(1.1)
)
,
…
•
3
δ>
0
¦
sup
t
∈
[0
,T
∗
)
K
(
ψ
(
t
))
≤−
δ<
0
,
(3
.
1)
K
,
7
Å
)
ψ
(
t
)
3
k
•
ž
m
S
»
,
=
:
T
∗
<
+
∞
.
3
L
2
-
‡
.
œ
/
e
,
=
:
s
c
>
0,
·
‚
•
Ä
E
(
ψ
0
)
≥
0
œ
/
,
d
(1.11)
ª
Œ
•
E
(
ψ
0
)
s
c
||
ψ
0
||
2
σ
L
2
<E
(
u
)
s
c
||
u
||
2
σ
L
2
,
||∇
ψ
0
||
L
2
||
ψ
0
||
σ
L
2
>
||∇
u
||
L
2
||
u
||
σ
L
2
,
(3
.
2)
Ù
¥
,
σ
:=
1
−
s
c
s
c
=
2
p
−
α
2
α
2
−
2
.
¢
S
þ
,
d
Ú
n
2.4
Œ
•
C
α,µ,p
=
R
R
N
R
R
N
|
u
|
p
|
u
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
||∇
u
||
α
2
L
2
||
u
||
2
p
−
α
2
L
2
.
(3
.
3)
DOI:10.12677/pm.2023.133044410
n
Ø
ê
Æ
ë
|
•
2
(
Ü
þ
ã
Pohoˇzaev
ð
ª
,
Œ
C
α,µ,p
=
2
p
α
2
1
(
||∇
u
||
L
2
||
u
||
σ
L
2
)
α
2
−
2
.
(3
.
4)
Ï
L
O
Ž
k
E
(
u
)
||
u
||
2
σ
L
2
=
α
2
−
2
2
α
2
(
||∇
u
||
L
2
||
u
||
σ
L
2
)
2
.
(3
.
5)
e
¡
ò
E
(
ψ
(
t
))
ü
>
Ó
ž
¦
±
||
ψ
(
t
)
||
2
σ
L
2
,
(
Ü
Ú
n
2.4,
·
‚
k
E
(
ψ
(
t
))
||
ψ
(
t
)
||
2
σ
L
2
=
1
2
||∇
ψ
(
t
)
||
2
L
2
||
ψ
(
t
)
||
2
σ
L
2
−
1
2
p
Z
R
N
Z
R
N
|
ψ
(
t
)
|
p
|
ψ
(
t
)
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
||
ψ
(
t
)
||
2
σ
L
2
≥
1
2
(
||∇
ψ
(
t
)
||
L
2
||
ψ
(
t
)
||
σ
L
2
)
2
−
C
α,µ,p
2
p
(
||
ψ
(
t
)
||
σ
L
2
)
Np
−
2
N
+2
α
+
µ
=
f
(
||∇
ψ
(
t
)
||
L
2
||
ψ
(
t
)
||
σ
L
2
)
.
Ù
¥
,
f
(
x
) :=
1
2
x
2
−
C
α,µ,p
2
p
x
α
2
.
d
(3.4)
ª
Œ
•
,
¼
ê
f
3
«
m
(0
,x
0
)
þ
4
~
,
3
«
m
(
x
0
,
∞
)
þ
4
O
,
Ù
¥
x
0
=
2
p
C
α,µ,p
α
2
1
α
2
−
2
=
||∇
u
||
L
2
||
u
||
σ
L
2
.
a
q
,
d
(3.4)
ª
Ú
(3.5)
ª
Œ
•
,
f
(
||∇
u
||
L
2
||
u
||
σ
L
2
) =
E
(
u
)
||
u
||
2
σ
L
2
.
Ï
d
,
(
Ü
Ú
n
2.1
Ú
(1.11)
ª
,
é
u
?
¿
t
∈
[0
,T
∗
],
·
‚
k
f
(
||∇
ψ
(
t
)
||
L
2
||
ψ
(
t
)
||
σ
L
2
)
≤
E
(
ψ
(
t
))
||
ψ
(
t
)
||
2
σ
L
2
=
E
(
ψ
0
)
||
ψ
0
||
2
σ
L
2
<E
(
u
)
||
u
||
2
σ
L
2
=
f
(
||∇
u
||
L
2
||
u
||
σ
L
2
)
,
ƒ
q
,
Š
â
ë
Y5
Ú
(1.11)
ª
,
é
u
?
¿
t
∈
[0
,T
∗
),
·
‚
k
||∇
ψ
(
t
)
||
L
2
||
ψ
(
t
)
||
σ
L
2
>
||∇
u
||
L
2
||
u
||
σ
L
2
.
(3
.
6)
qdu
E
(
ψ
0
)
||
ψ
0
||
2
σ
L
2
<E
(
u
)
||
u
||
2
σ
L
2
,
…
•
3
η>
0
v
,
¦
E
(
ψ
0
)
||
ψ
0
||
2
σ
L
2
≤
(1
−
η
)
E
(
u
)
||
u
||
2
σ
L
2
,
DOI:10.12677/pm.2023.133044411
n
Ø
ê
Æ
ë
|
•
Ï
d
,
·
‚
Œ
K
(
ψ
(
t
))
||
ψ
(
t
)
||
2
σ
L
2
=
α
2
E
(
ψ
(
t
))
||
ψ
(
t
)
||
2
σ
L
2
−
α
2
−
2
2
||∇
ψ
(
t
)
||
2
L
2
||
ψ
(
t
)
||
2
σ
L
2
=
α
2
E
(
ψ
0
)
||
ψ
0
||
2
σ
L
2
−
α
2
−
2
2
(
||∇
ψ
(
t
)
||
L
2
||
ψ
(
t
)
||
σ
L
2
)
2
≤
α
2
(1
−
η
)
E
(
u
)
||
u
||
2
σ
L
2
−
α
2
−
2
2
(
||∇
u
||
L
2
||
u
||
σ
L
2
)
2
=
−
ηα
2
E
(
u
)
||
u
||
2
σ
L
2
,
(3
.
7)
ù
L
²
δ
=
ηα
2
E
(
u
)
||
u
||
2
σ
L
2
ž
(3.1)
ª
¤
á
,
•
§
(1.1)
)
ψ
(
t
)
3
k
•
ž
m
S
»
.
y
.
.
4.
r
Ø
-
½
5
!
·
‚
y
²
½
n
1.2.
u
ω
∈G
ω
,
K
S
ω
(
u
λ
ω
) =
λ
2
2
||∇
u
ω
||
2
L
2
+
ω
2
||
u
ω
||
2
L
2
−
λ
α
2
2
p
Z
R
N
Z
R
N
|
u
ω
|
p
|
u
ω
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy,
∂
λ
S
ω
(
u
λ
ω
) =
λ
||∇
u
ω
||
2
L
2
−
α
2
2
p
λ
α
2
−
1
Z
R
N
Z
R
N
|
u
ω
|
p
|
u
ω
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
=
Q
(
u
λ
ω
)
λ
.
d
þ
ã
(
J
Œ
•
,
∂
λ
S
ω
(
u
λ
ω
) = 0
k
š
"
)
2
p
||∇
u
ω
||
2
L
2
α
2
R
R
N
R
R
N
|
u
ω
|
p
|
u
ω
|
p
|
x
|
α
|
x
−
y
|
µ
|
y
|
α
dxdy
!
1
α
2
−
2
= 1
.
A
O
/
,
d
Pohoˇzaev
ð
ª
Œ
•
,
Q
(
u
ω
) = 0
ž
þ
ã
ª
¤
á
,
Ï
d
,
·
‚
k
∂
λ
S
ω
(
u
λ
ω
)
>
0
,λ
∈
(0
,
1)
,
∂
λ
S
ω
(
u
λ
ω
)
<
0
,λ
∈
(1
,
∞
)
.
d
þ
ã
(
J
Œ
•
,
é
u
?
¿
λ>
0
…
λ
6
= 1,
·
‚
k
S
ω
(
u
λ
ω
)
<S
ω
(
u
ω
).
qdu
||
u
λ
ω
||
L
2
=
||
u
ω
||
L
2
,
K
é
u
?
¿
λ>
1,
k
E
(
u
λ
ω
)
<E
(
u
ω
)
.
(4
.
1)
e
¡
,
é
u
?
¿
λ
n
>
1,
·
‚
-
Ð
Š
ψ
0
,n
(
x
)=
u
λ
n
ω
(
x
)=
λ
N
2
n
u
ω
(
λ
n
x
),
…
lim
n
→∞
λ
n
=1.
Š
â
Ú
n
2.2,
·
‚
Œ
•
,
3
H
1
(
R
N
)
˜
m
¥
,
ψ
0
,n
→
u
ω
.
Ï
d
,
d
(4.1)
ª
·
‚
Œ
±
í
Ñ
E
(
ψ
0
,n
)
<E
(
u
ω
)
,
||∇
ψ
0
,n
||
L
2
=
λ
n
||∇
u
ω
||
L
2
>
||∇
u
ω
||
L
2
.
DOI:10.12677/pm.2023.133044412
n
Ø
ê
Æ
ë
|
•
(
Ü
(1.9)
ª
Ú
(1.10)
ª
,
·
‚
Œ
±
E
(
ψ
0
,n
)
s
c
||
ψ
0
,n
||
2(1
−
s
c
)
L
2
<
||∇
u
ω
||
s
c
L
2
||
u
ω
||
2(1
−
s
c
)
L
2
=
E
(
u
)
s
c
||
u
||
2(1
−
s
c
)
L
2
,
||∇
ψ
0
,n
||
s
c
L
2
||
ψ
0
,n
||
1
−
s
c
L
2
>
||∇
u
ω
||
s
c
L
2
||
u
ω
||
1
−
s
c
L
2
=
||∇
u
||
s
c
L
2
||
u
||
1
−
s
c
L
2
,
Ù
¥
u
´
(1.8)
Ä
)
,
…
s
c
=
N
2
−
2+
N
−
2
α
−
µ
2(
p
−
1)
.
Š
â
½
n
1.1
Œ
•
,
±
ψ
0
,n
•
Ð
Š
)
ψ
n
3
k
•
ž
m
S
»
.
Ï
d
,
7
Å
)
´
r
Ø
-
½
.
y
.
.
ë
•
©
z
[1]Cazenave,T.(2003)SemilinearSchr¨odingerEquations(CourantLectureNotesinMathe-
matics,Vol.10).NewYorkUniversity,CourantInstituteofMathematicalSciences/American
MathematicalSociety,NewYork/Providence,RI.
[2]Feng,B.andYuan,X.(2015)OntheCauchyProblemfortheSchr¨odinger-HartreeEquation.
EvolutionEquationsandControlTheory
,
4
,431-445.https://doi.org/10.3934/eect.2015.4.431
[3]Feng,B.andZhang,H.(2018)StabilityofStandingWavesfortheFractionalSchr¨odinger-
HartreeEquation.
JournalofMathematicalAnalysisandApplications
,
460
,352-364.
https://doi.org/10.1016/j.jmaa.2017.11.060
[4]Pekar,S.I.(1954)Untersuchung¨uberdieElektronentheoriederKristalle.AkademieVerlag,
Berlin.
[5]Lieb,E.H.(1977)ExistenceandUniquenessoftheMinimizingSolutionofChoquard’sNon-
linearEquation.
StudiesinAppliedMathematics
,
57
,93-105.
https://doi.org/10.1002/sapm197757293
[6]Penrose,R.(1996)OnGravity’sRoleinQuantumStateReduction.
GeneralRelativityand
Gravitation
,
28
,581-600.https://doi.org/10.1007/BF02105068
[7]Chen,Z.,Shen,Z.andYang,M.(2017)InstabilityofStandingWavesforaGeneralized
ChoquardEquationwithPotential.
JournalofMathematicalPhysics
,
58
,ArticleID:011504.
https://doi.org/10.1063/1.4974251
[8]Du, L., Gao, F. and Yang, M. (2022) Existence andQualitative Analysis for NonlinearWeight-
edChoquardEquations.https://arxiv.org/abs/1810.11759
[9]Feng,B.(2018) OntheBlow-UpSolutionsfortheFractionalNonlinearSchr¨odingerEquation
withCombinedPower-TypeNonlinearities.
CommunicationsonPureandAppliedAnalysis
,
17
,1785-1804.https://doi.org/10.3934/cpaa.2018085
[10]Feng,B.,Liu,J.,Niu,H.andZhang,B.(2020)StrongInstabilityofStandingWavesfora
Fourth-OrderNonlinearSchr¨odingerEquationwiththeMixedDispersions.
Nonlinear Analysis
,
196
,ArticleID:111791.https://doi.org/10.1016/j.na.2020.111791
DOI:10.12677/pm.2023.133044413
n
Ø
ê
Æ
ë
|
•
[11]Feng,B.andWang,Q.(2021)StrongInstabilityofStandingWavesfortheNonlinear
Schr¨odingerEquationinTrappedDipolarQuantumGases.
JournalofDynamicsDifferential
Equations
,
33
,1989-2008.https://doi.org/10.1007/s10884-020-09881-0
[12]Feng, B., Chen,R. and Liu, J. (2021)Blow-Up Criteriaand Instability of NormalizedStanding
WavesfortheFractionalSchr¨odinger-Choquard Equation.
Advancesin Nonlinear Analysis
,
10
,
311-330.https://doi.org/10.1515/anona-2020-0127
[13]Feng,B.andZhu,S.(2021)StabilityandInstabilityofStandingWavesfortheFractional
NonlinearSchr¨odingerEquations.
JournalofDifferentialEquations
,
292
,287-324.
https://doi.org/10.1016/j.jde.2021.05.007
[14]Wang,Y.andFeng,B.(2019)SharpThresholdsofBlow-UpandGlobalExistenceforthe
Schr¨odinger EquationwithCombined Power-Type and Choquard-Type Nonlinearities.
Bound-
aryValueProblems
,
2019
,ArticleNo.195.https://doi.org/10.1186/s13661-019-01310-6
[15]Zhang,J.andZhu,S.(2017)StabilityofStandingWavesfortheNonlinearFractional
Schr¨odingerEquation.
JournalofDynamicsandDifferentialEquations
,
29
,1017-1030.
https://doi.org/10.1007/s10884-015-9477-3
[16]Berestycki,H.andCazenave,T.(1981)Instabilit´edes´etatsstationairesdansles´euationsde
Schr¨odingeretdeKlein-Gordonnonlin´eires.
ComptesRendusdel’Acad´emiedesSciences—
SeriesI
,
293
,489-492.https://zbmath.org/0492.35010
[17]LeCoz,S.(2008)AnoteonBerestycki-Cazenave’sClassicalInstabilityResultforNonlinear
Schr¨odingerEquations.
AdvancedNonlinearStudies
,
8
,455-463.
https://doi.org/10.1515/ans-2008-0302
[18]Feng,B.,Chen,R.andWang,Q.(2020)InstabilityofStandingWavesfortheNonlinear
Schr¨odinger-PoissonEquationinthe
L
2
-CriticalCase.
JournalofDynamicsandDifferential
Equations
,
32
,1357-1370.https://doi.org/10.1007/s10884-019-09779-6
[19]Weinstein,M.I.(1983)NonlinearSchr¨odingerEquationsandSharpInterpolationEstimates.
CommunicationsinMathematicalPhysics
,
87
,567-576.https://doi.org/10.1007/BF01208265
[20]Ohta,M. (1995) Blow-Up SolutionsandStrongInstability of StandingWavesfortheGeneral-
izedDavey-StewartsonSystemin
R
2
.
Annales de l’Institut Henri Poincar´e-Physique Th´eorique
,
63
,111-117.https://eudml.org/doc/76684
[21]Chen,J.andGuo,B.(2007)StrongInstabilityofStandingWavesforaNonlocalSchr¨odinger
Equation.
PhysicaD:NonlinearPhenomena
,
227
,142-148.
https://doi.org/10.1016/j.physd.2007.01.004
[22]Shi, C.(2022)Existence ofStableStandingWavesfor theNonlinearSchr¨odingerEquationwith
MixedPower-TypeandChoquard-TypeNonlinearities.
AIMSMathematics
,
7
,3802-3825.
https://doi.org/10.3934/math.2022211
DOI:10.12677/pm.2023.133044414
n
Ø
ê
Æ
ë
|
•
[23]Br´ezis,H. andLieb,E.H.(1983)ARelationbetweenPointwiseConvergenceofFunctionsand
ConvergenceofFunctionals.
ProceedingsoftheAmericanMathematicalSociety
,
88
,486-493.
https://doi.org/10.2307/2044999
[24]Lieb,E.H.(1983) SharpConstants intheHardy-Littlewood-SobolevandRelated Inequalities.
AnnalsofMathematics
,
118
,349-374.https://doi.org/10.2307/2007032
DOI:10.12677/pm.2023.133044415
n
Ø
ê
Æ