设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(3),837-846
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.123086
[
‡
©
Ž
f
3
Besov
˜
m
þ
k
.
5
ééé
¬¬¬
kkk
ú
ô
“
‰
Œ
Æ
ê
Æ
X
,
ú
ô
7
u
Â
v
F
Ï
µ
2023
c
2
8
F
¶
¹
^
F
Ï
µ
2023
c
3
4
F
¶
u
Ù
F
Ï
µ
2023
c
3
13
F
Á
‡
3
©·
‚
•
Ä
Ì
a
á
u
H¨ormander
a
S
m
ρ,
1
ž
[
‡
©
Ž
f
T
a
3
Besov
˜
m
þ
k
.
5
.
é
u
0
≤
ρ
≤
1
,p
≥
1
,
-
m
0
=
m
0
(
ρ,p
)=
(
n
(
ρ
−
1)
/p,
1
≤
p
≤
2;
n
(
ρ
−
1)
/
2
,p
≥
2
.
X
J
a
∈
S
m
ρ,
1
…
s>m
−
m
0
,
·
‚
y
²
[
‡
©
Ž
f
T
a
´
Besov
˜
m
B
s
p,q
B
s
−
m
+
m
0
p,q
k
.
Ž
f
.
ù
‡
(
J
í
2
Stein
˜
‡
(
J
.
'
…
c
[
‡
©
Ž
f
§
H¨ormander
a
§
Besov
˜
m
OntheBoundednessof
Pseudo-DifferentialOperators
onBesovSpaces
ShiyingCai
DepartmentofMathematics,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Feb.8
th
,2023;accepted:Mar.4
th
,2023;published:Mar.13
th
,2023
©
Ù
Ú
^
:
é
¬
k
.
[
‡
©
Ž
f
3
Besov
˜
m
þ
k
.
5
[J].
A^
ê
Æ
?
Ð
,2023,12(3):837-846.
DOI:10.12677/aam.2023.123086
é
¬
k
Abstract
In this note, we consider the boundedness of the pseudo-differential operator
T
a
whose
symbol
a
belongstoH¨ormanderclass
S
m
ρ,
1
onBesovspaces.Let
0
≤
ρ
≤
1
,p
≥
1
m
0
=
m
0
(
ρ,p
)=
(
n
(
ρ
−
1)
/p,
1
≤
p
≤
2;
n
(
ρ
−
1)
/
2
,p
≥
2
.
If
a
∈
S
m
ρ,
1
and
s>m
−
m
0
,thenthepseudo-differentialoperator
T
a
isboundedfrom
B
s
p,q
to
B
s
−
m
+
m
0
p,q
.AndourworkistogeneralizearesultofStein.
Keywords
Pseudo-DifferentialOperator,H¨ormanderClass,BesovSpace
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
ï
Ä
µ
Ú
y
G
[
‡
©
Ž
f
3
‡
©•
§
¥
k
2
•
A^
.Kohn-Nirenberg
Ú
H¨ormander
©
O
3
[1,2]
m
©
X
Ú
ï
Ä
ù
a
Ž
f
.
˜
„
ó
,
˜
‡
[
‡
©
Ž
f
/
ª
þX
e
½
Â
T
φ,a
f
(
x
) =
Z
R
n
e
iφ
(
x,ξ
)
a
(
x,ξ
)
ˆ
f
(
ξ
)
dξ,
Ù
¥
b
f
L
«
f
Fourier
C
†
,
a
¡
•
Ì
.
φ
¡
•
ƒ
¼
ê
.
φ
(
x,ξ
)=
x
·
ξ
ž
,
´
[
‡
©
Ž
f
.
é
u
Ì
a
,
•
-
‡
˜
a
˜
m
´
H¨ormander
3
[3]
Ú
?
H¨ormander
a
S
m
ρ,δ
.
·
‚
`
a
á
u
S
m
ρ,δ
(
m
∈
R
,
0
≤
ρ,δ
≤
1)
´
•
é
¤
k
õ
-•
I
α,β
,
a
÷
v
sup
ξ
∈
R
n
(1+
|
ξ
|
)
−
m
+
ρ
|
α
|−
δ
|
β
|
|
∂
β
x
∂
α
ξ
a
(
x,ξ
)
|
=
A
α,β
<
+
∞
.
3
[
‡
©
Ž
f
n
Ø
¥
,
§
3
Lebesgue
˜
m
L
p
Ú
Hardy
˜
m
H
1
þ
k
.
5
´
•
-
‡
¯
K
ƒ
˜
.
y
3ù
‡
¯
K
®
²
k
¿
©
ï
Ä
.
{
ó
ƒ
,
X
J
a
∈
S
m
ρ,δ
,δ<
1,
@
o
m
≤
min
{
0
,n
(
ρ
−
δ
)
/
2
}
ž
,
@
o
T
a
3
L
2
þ
k
.
,
ä
N
Œ
±
ë
w
H¨ormander[4],Hounie[5]
.
?
˜
Ú
,
é
u
a
∈
S
m
ρ,
1
,
DOI:10.12677/aam.2023.123086838
A^
ê
Æ
?
Ð
é
¬
k
Rodino
3
[6]
¥y
²
m<n
(
ρ
−
1)
/
2
ž
T
a
3
L
2
þ
k
.
.
Ó
ž
¦
E
˜
‡
~
f
a
∈
S
n
(
ρ
−
1)
/
2
ρ,
1
¦
T
a
3
L
2
þ
Ø
´
k
.
.
a
q
‡
~
a
∈
S
0
1
,
1
Œ
±
ë
w
Ching[7]
Ú
Stein[8]P.272.
é
u
à:
œ
/
,
3
™
Ñ
‡
ù
Â
¥
,Stein
y
²
a
∈
S
n
(
ρ
−
1)
/
2
ρ,δ
…
0
≤
δ<ρ
=1
½
ö
0
<δ
=
ρ<
1
ž
,
T
a
´
f
(1
,
1)
k
.
…
l
H
1
L
1
k
.
.
´
Alvarez
Ú
Hounie[9]
í
2
ù
˜
(
J
,
¦
‚
y
²
X
J
a
∈
S
m
ρ,δ
,
0
<ρ
≤
1,0
≤
δ<
1
…
m
=
n
2
(
ρ
−
1+min
{
0
,ρ
−
δ
}
),
@
o
T
a
´
f
(1
,
1)
k
.
…
l
H
1
L
1
k
.
.
L
p
þ
k
.
5
Œ
±
Ï
L
Fefferman-Stein
)
Û
Š
•{
‰
Ñ
.
?
˜
Ú
,
é
u
Ì
a
á
u
S
m
ρ,
1
½
ö
•
Œ
o
÷
H¨ormander
a
L
∞
S
m
ρ
ž
,Guo-Zhu
3
[10]
¥y
²
ˆ
«
.
œ
/
k
.
5
½
ö
‰
Ñ
Ã
.
‡
~
.
X
c
¤
ã
,
a
∈
S
n
(
ρ
−
1)
/
2
ρ,
1
ž
T
a
3
L
2
þ
™
7
´
k
.
,
é
u
ù
«
œ
/
,
A
~
, Stein
3
[8]
¥
k
˜
‡
k
(
J
.
2.
©
Ì
‡
(
J
½
n
A
([8]P.253,Proposition6)
X
J
a
∈
S
m
1
,
1
…
γ>m
,
@
o
[
‡
©
Ž
f
T
a
´
l
Lipschitz
˜
m
Λ
γ
Λ
γ
−
m
k
.
N
.
·
‚
3
©
¥
Ì
‡
8
´
l
A
‡
•
¡
í
2
Stein
ù
‡
(
J
.
Ä
k
·
‚
0
e
Littlewood-
Paley
©
)
Ú
Besov
˜
m
.
ù
p
B
r
L
«
R
n
¥
±
:
•
¥
%
Œ
»
•
r
¥
.
š
K
¼
ê
η
∈
C
∞
c
(
B
2
)
¦
é
ξ
∈
B
1
ð
k
η
(
ξ
) = 1
¿
½
Â
b
ϕ
(
ξ
) =
η
(
ξ
)
,
c
ϕ
j
(
ξ
) =
η
(2
−
j
ξ
)
−
η
(2
1
−
j
ξ
)
,j
∈
Z
.
N
´
w
Ñ
c
ϕ
j
|
8
á
3
‚
{
ξ
: 2
j
−
1
<
|
ξ
|
<
2
j
+1
}
S
…
Ø
J
y
±
e
ª
b
ϕ
(
ξ
)+
∞
X
j
=1
c
ϕ
j
(
ξ
) =
η
(
ξ
)+
∞
X
j
=1
[
η
(2
−
j
ξ
)
−
η
(2
1
−
j
ξ
)] = 1
,
∀
ξ
∈
R
n
;
ϕ
j
(
x
) = 2
jn
ϕ
0
(2
j
x
)
,
∀
x
∈
R
n
,j
∈
Z
.
S
0
(
R
n
)
L
«
…
O
2
Â
¼
ê
˜
m
.
é
u
s
∈
R
,
0
<p
≤∞
,
0
<q<
∞
,
·
‚
½
Â
š
à
g
Besov
˜
m
Ú
à
g
Besov
˜
m
,
B
s
p,q
=
{
f
∈
S
0
:
k
f
k
B
s
p,q
=
k
ϕ
∗
f
k
p
+(
∞
X
j
=1
(2
js
k
ϕ
j
∗
f
k
p
)
q
)
1
q
<
∞}
;
˙
B
s
p,q
=
{
f
∈
S
0
:
k
f
k
˙
B
s
p,q
= (
∞
X
j
=
−∞
(2
js
k
ϕ
j
∗
f
k
p
)
q
)
1
q
<
∞}
.
é
u
s
∈
R
,
0
<p
≤∞
,q
=
∞
,
ü
‡
˜
m
½
Â
?
•
B
s
p,
∞
=
{
f
∈
S
0
:
k
f
k
B
s
p,
∞
=
k
ϕ
∗
f
k
p
+sup
1
≤
j<
∞
2
js
k
ϕ
j
∗
f
k
p
<
∞}
;
˙
B
s
p,
∞
=
{
f
∈
S
0
:
k
f
k
˙
B
s
p,
∞
= sup
j
∈
Z
2
js
k
ϕ
j
∗
f
k
p
<
∞}
.
DOI:10.12677/aam.2023.123086839
A^
ê
Æ
?
Ð
é
¬
k
3
©
¥
,
•
•
B
,
q
=
∞
ž
·
‚
•
æ
^
q<
∞
ž
L
ˆ
ª
,
Ø
2
ƒ
±
«
©
.
,
,
•
•
{
B
å
„
,
±
·
‚
P
∆
j
f
=
ϕ
j
∗
f,S
0
f
=
ϕ
∗
f.
é
u
à
g
Besov
˜
m
,
du
õ
‘
ª
•
"
,
e
ü
‡
2
Â
¼
ê
A
??
u
˜
‡
õ
‘
ª
,
K
ü
‡
2
Â
¼
ê
@
•
´
ƒ
Ó
.
¯
¤
±•
,Lipschitz
˜
m
Ú
L
2
Ñ
´
š
à
g
Besov
˜
m
A
~
,
ä
N
/
`
,
B
s
∞
,
∞
= Λ
s
,B
0
2
,
2
=
L
2
.
é
u
0
≤
ρ
≤
1
,
1
≤
ρ
≤∞
,
½
Â
m
0
=
m
0
(
ρ,p
)=
n
(
ρ
−
1)
/p,
1
≤
p
≤
2;
n
(
ρ
−
1)
/
2
,p
≥
2
.
e
¡
´
·
‚
Ì
‡
½
n
½
n
1
X
J
a
∈
S
m
ρ,
1
…
s>m
−
m
0
,
@
o
é
u
[
‡
©
Ž
f
T
a
·
‚
k
k
T
a
f
k
B
s
−
m
+
m
0
p,q
≤
C
k
f
k
B
s
p,q
(2.1)
Ù
¥
~
ê
C
=
•
6
u
n,ρ,p,m,s
Ú
a
3
S
m
ρ,
1
¥
,
Œ
‰
ê
.
5
1.
X
J
ρ
=1
K
á
=
k
m
0
=0,
d
ž
2
-
p
=
q
=
∞
,s
=
γ
,
|
^
B
s
∞
,
∞
=Λ
s
·
‚
Ò
½
n
A.
5
2.
ù
p
X
J
K
s>m
−
m
0
b
(
Ø
™
7
¤
á
.
~
X
-
p
=
q
=2
,m
=
m
0
=
n
(
ρ
−
1)
/
2
,s
=
m
−
m
0
=0,
K
d
ž
B
0
2
,
2
=
L
2
,
·
‚
®
²
•
ù
«
œ
/
e
T
a
3
L
2
þ
™
7
´
k
.
,
Ï
d
½
n
¥
(
Ø
Ø
2
¤
á
.
3
©
¥
,
·
‚
^
i
1
C
L
«
˜
‡
~
ê
,
§
=
•
6
u
n,ρ,p,m,s
Ú
a
3
S
m
ρ,
1
¥
,
Œ
‰
ê
,
…
3
Ø
Ó
/
•
§
L
«
ä
N
ê
Š
Œ
U
Ø
˜
,
·
‚
˜
„
Ø
2
•[
`
²
.
,
,
·
‚
b
O
Ž
¥
Ñ
y
f
Ñ
á
u
Schwartz
˜
m
,
Ï
d
9
È
©
Ñ
´
ý
é
Œ
È
,
2
|
^
È
—
5
*
Ð
˜
„
œ
/
.
3.
Ì
‡
½
n
y
²
Ä
k
·
‚
‰
Ñ
˜
‡
š
~
Ä
:
Ú
n
,
ù
‡
(
J
3
ƒ
'
©
z
¥
Ä
Ñ
k
,
•
å
„
,
·
‚
ù
p
•
‰
Ñ
y
²
.
Ú
n
1
a
∈
S
m
ρ,
1
,
0
≤
ρ
≤
1
,
@
o
é
?
¿
m
∈
R
,p
∈
[1
,
∞
]
,
[
‡
©
Ž
f
T
a
Ú
S
0
E
Ü
÷
v
k
T
a
S
0
f
k
p
≤
C
k
f
k
p
.
(3.1)
y
²
w
,
T
a
S
0
f
Œ
L
«
•
T
a
S
0
f
(
x
) =
Z
R
n
e
ix
·
ξ
a
(
x,ξ
)
η
(
ξ
)
b
f
(
ξ
)
dξ
=
Z
R
n
e
k
(
x,x
−
y
)
f
(
y
)
dy
DOI:10.12677/aam.2023.123086840
A^
ê
Æ
?
Ð
é
¬
k
Ù
¥
e
k
(
x,z
) =
R
R
n
e
iz
·
ξ
a
(
x,ξ
)
η
(
ξ
)
dξ
.
|
^
Fourier
C
†
Ä
5
Ÿ
N
´
(1+
|
z
|
)
2
n
|
e
k
(
x,z
)
|
=
C
X
|
α
|≤
2
n
|
z
α
Z
R
n
e
iz
·
ξ
a
(
x,ξ
)
η
(
ξ
)
dξ
|
=
C
X
|
α
|≤
2
n
|
Z
R
n
e
iz
·
ξ
∂
α
ξ
[
a
(
x,ξ
)
η
(
ξ
)]
dξ
|
≤
C
X
|
α
|≤
2
n
|
Z
R
n
|
∂
α
ξ
[
a
(
x,ξ
)
η
(
ξ
)]
|
dξ
≤
C.
d
Young
Ø
ª
á
=
Œ
k
T
a
S
0
f
k
p
≤
Z
R
n
(
Z
R
n
e
k
(
x,x
−
y
)
f
(
y
)
dy
)
p
dx
1
p
≤
C
Z
R
n
(
Z
R
n
(1+
|
x
−
y
|
)
−
2
n
|
f
(
y
)
|
dy
)
p
dx
1
p
≤
C
k
f
k
p
.
ù
‡
Ú
n
y
.
.
2
·
‚
‡
?
U
e
[11]
¥
·
K
2.3
e
¡
ù
‡
Ú
n
.
Ú
n
2
a
∈
S
m
ρ,
1
,
0
≤
ρ
≤
1
,
@
o
j
≥
1
,
1
≤
p
≤∞
ž
,
[
‡
©
Ž
f
T
a
Ú
∆
j
E
Ü
÷
v
k
T
a
∆
j
f
k
p
≤
C
2
j
(
m
−
m
0
)
k
f
k
p
.
(3.2)
y
²
P
a
j
(
x,ξ
)=(
η
(2
−
j
ξ
)
−
η
(2
1
−
j
ξ
))
a
(
x,ξ
),
K
{
ξ
:
a
j
(
x,ξ
)
6
=0
}⊂{
ξ
:2
j
−
1
<
|
ξ
|
<
2
j
+1
}
.
j
≥
1
ž
,
é
?
¿
õ
-•
I
α
w
,
k
|
∂
α
ξ
a
j
(
x,ξ
)
|≤
C
2
j
(
m
−
ρ
|
α
|
)
.
Š
â
½
Â
T
a
∆
j
Œ
L
«
•
T
a
∆
j
f
(
x
)=
Z
R
n
e
ix
·
ξ
a
(
x,ξ
)
d
∆
j
f
(
ξ
)
dξ
=
Z
R
n
e
ix
·
ξ
(
η
(2
−
j
ξ
)
−
η
(2
1
−
j
ξ
))
a
(
x,ξ
)
b
f
(
ξ
)
dξ
=
Z
R
n
k
j
(
x,x
−
y
)
f
(
y
)
dy
Ù
¥
k
j
(
x,z
) =
R
R
n
e
iz
·
ξ
a
j
(
x,ξ
)
dξ
.
σ
j
(
z
) = 2
jnρ
(1+2
jρ
|
z
|
)
−
3
n
,
K
w
,
k
k
σ
j
k
1
=
C
.
1
≤
p
≤
2
ž
,
p
Ý
ê
p
0
=
p
p
−
1
≥
2.
d
ž
é
?
¿
x
∈
R
n
,
|
^
Fourier
C
†
Ä
5
Ÿ
Ú
Hausdorff-Young
Ø
ª
,
·
‚
Œ
±
DOI:10.12677/aam.2023.123086841
A^
ê
Æ
?
Ð
é
¬
k
Z
R
n
|
k
j
(
x,x
−
y
)
σ
1
p
j
(
x
−
y
)
|
p
0
dy
1
p
0
=2
−
jnρ
p
Z
R
n
|
k
j
(
x,z
)(1+2
jρ
|
z
|
)
3
n
p
|
p
0
dz
1
p
0
≤
2
−
jnρ
p
Z
R
n
|
k
j
(
x,z
)(1+2
jρ
|
z
|
)
3
n
|
p
0
dz
1
p
0
≤
C
2
−
jnρ
p
X
|
α
|≤
3
n
Z
R
n
|
2
jρ
|
α
|
z
α
k
j
(
x,z
)
|
p
0
dz
1
p
0
=
C
2
−
jnρ
p
X
|
α
|≤
3
n
Z
R
n
2
jρ
|
α
|
z
α
Z
R
n
e
iz
·
ξ
a
j
(
x,ξ
)
dξ
p
0
dz
!
1
p
0
=
C
2
−
jnρ
p
X
|
α
|≤
3
n
Z
R
n
Z
R
n
e
iz
·
ξ
2
jρ
|
α
|
∂
α
ξ
a
j
(
x,ξ
)
dξ
p
0
dz
!
1
p
0
≤
C
2
−
jnρ
p
X
|
α
|≤
3
n
Z
R
n
|
2
jρ
|
α
|
∂
α
ξ
a
j
(
x,ξ
)
|
p
dξ
1
p
≤
C
2
−
jnρ
p
X
|
α
|≤
3
n
Z
|
ξ
|
<
2
1+
j
2
jmp
dξ
1
p
≤
C
2
−
jnρ
p
2
j
(
m
+
n
p
)
=
C
2
j
(
m
−
m
0
)
.
(3.3)
ù
‡
Ø
ª
é
p>
2
™
7
¤
á
,
Ï
•·
‚
I
‡
^
Hausdorff-Young
Ø
ª
.
,
5
¿
ù
p
m
0
‹
p
k
'
,
~
ê
C
‹
x
Ã
'
.
Ï
d
,
Š
â
(3.3),
·
‚
Œ
±
|
T
a
∆
j
f
(
x
)
|
=
Z
R
n
k
j
(
x,x
−
y
)
f
(
y
)
dy
≤
Z
R
n
|
k
j
(
x,x
−
y
)
σ
1
p
j
(
x
−
y
)
|
σ
1
p
j
(
x
−
y
)
|
f
(
y
)
|
dy
≤
Z
R
n
|
k
j
(
x,x
−
y
)
σ
1
p
j
(
x
−
y
)
|
p
0
dy
1
p
0
Z
R
n
σ
j
(
x
−
y
)
|
f
(
y
)
|
p
dy
1
p
≤
C
2
j
(
m
−
m
0
)
(
σ
j
∗|
f
|
p
)
1
p
.
(3.4)
y
3
,
|
^
(3.4)
Ú
Young
Ø
ª
Œ
k
T
a
∆
j
f
k
p
≤
C
2
j
(
m
−
m
0
)
k
σ
j
∗|
f
|
p
k
1
p
1
≤
C
2
j
(
m
−
m
0
)
k
σ
j
k
1
p
1
k
f
k
p
=
C
2
j
(
m
−
m
0
)
k
f
k
p
.
(3.5)
5
¿
p
≥
2
ž
m
0
‹
ä
N
p
Ã
'
,
é
?
¿
p>
2
d
(3.4)
·
‚
k
|
T
a
∆
j
f
(
x
)
|≤
C
2
j
(
m
−
m
0
)
(
σ
j
∗|
f
|
2
)
1
2
.
DOI:10.12677/aam.2023.123086842
A^
ê
Æ
?
Ð
é
¬
k
|
^
a
q
(3.5)
O
Ž
,
p>
2
ž
,
·
‚
Œ
±
y
²
k
T
a
∆
j
f
k
p
≤
C
2
j
(
m
−
m
0
)
k
(
σ
j
∗|
f
|
2
)
1
2
k
p
=
C
2
j
(
m
−
m
0
)
k
σ
j
∗|
f
|
2
k
1
2
p
2
≤
C
2
j
(
m
−
m
0
)
k
σ
j
k
1
2
1
k
f
2
k
1
2
p
2
=
C
2
j
(
m
−
m
0
)
k
f
k
p
.
Ï
d
é
¤
k
1
≤
p
≤∞
·
‚
y
²
ù
‡
Ú
n
.
2
Ú
n
3
j
Ú
L
´
ü
‡
š
K
ê
,
b
•
3
λ
j
¦
é
?
¿
õ
-•
I
α,
|
α
|≤
L
Ñ
k
k
∂
α
x
F
j
k
p
≤
C
2
j
|
α
|
λ
j
,
K
é
?
¿
ê
k
·
‚
k
k
∆
k
F
j
k
p
≤
C
2
(
j
−
k
)
L
λ
j
.
(3.6)
y
²
η
X
c
½
Â
,
é
l
= 1
,
2
,...,n
½
Â
b
0
(
ξ
) =
η
(
ξ
)
,b
l
(
ξ
) = (1
−
η
(
ξ
))
ξ
l
|
ξ
|
2
,
K
w
,
b
0
,b
1
,...,b
n
∈
S
−
1
1
,
0
…
b
0
(
ξ
)+
n
X
l
=1
b
l
(
ξ
)
ξ
l
= 1
,
∀
ξ
∈
R
n
.
Ï
d
é
?
¿
š
K
ê
L
k
∆
k
F
j
(
x
)=
Z
R
n
e
ix
·
ξ
c
ϕ
k
(
ξ
)(
b
0
(
ξ
)+
n
X
l
=1
b
l
(
ξ
)
ξ
l
)
L
c
F
j
(
ξ
)
dξ
=
X
|
α
|≤
L
Z
R
n
e
ix
·
ξ
b
α
(
ξ
)
c
ϕ
k
(
ξ
)
ξ
α
c
F
j
(
ξ
)
dξ
=
X
|
α
|≤
L
T
b
α
∆
k
(
∂
α
F
j
)(
x
)
Ù
¥
b
α
=
b
L
−|
α
|
0
n
Q
l
=1
b
α
l
l
∈
S
−
L
1
,
0
.
3
Ú
n
2
¥
m
=
−
L,ρ
= 1(
d
ž
m
0
(1
,p
) = 0)
·
‚
k
∆
k
F
j
k
p
≤
X
|
α
|≤
L
k
T
b
α
∆
k
(
∂
α
F
j
)
k
p
≤
C
2
−
kL
X
|
α
|≤
L
k
∂
α
F
j
k
p
≤
C
2
−
kL
X
|
α
|≤
L
2
j
|
α
|
λ
j
≤
C
2
(
j
−
k
)
L
λ
j
.
Ú
n
3
y
.
.
2
e
¡
·
‚
y
²
½
n
1.
é
f
∈
B
s
p,q
,j
≥
1,
P
f
0
j
= (∆
j
−
1
+∆
j
+∆
j
+1
)
f
,
K
w
,
k
∆
j
f
= ∆
j
f
0
j
.
DOI:10.12677/aam.2023.123086843
A^
ê
Æ
?
Ð
é
¬
k
Š
â
a
∈
S
m
ρ,
1
,
Ø
J
w
Ñ
∂
α
x
T
a
f
(
x
) =
∂
α
x
Z
R
n
e
ix
·
ξ
a
(
x,ξ
)
b
f
(
ξ
)
dξ
=
X
β
+
γ
=
α
Z
R
n
e
ix
·
ξ
ξ
β
∂
γ
x
a
(
x,ξ
)
b
f
(
ξ
)
dξ
=
T
a
α
f
(
x
)
Ù
¥
a
α
(
x,ξ
) =
ξ
β
∂
γ
x
a
(
x,ξ
)
∈
S
m
+
|
α
|
ρ,
1
.(
ù
‡
ª
f
é
o
÷
H¨ormander
a
L
∞
S
m
ρ
Ø
¤
á
.)
y
3
,
é
j
≥
1
Ú
?
¿
õ
-•
I
α
,
d
Ú
n
2
k
∂
α
x
T
a
∆
j
f
k
p
=
k
T
a
α
∆
j
f
0
j
k
p
≤
C
2
j
(
|
α
|
+
m
−
m
0
)
k
f
0
j
k
p
.
(3.7)
-
λ
j
= 2
js
k
f
0
j
k
p
,j
≥
1.
k
≤
j
ž
,
3
Ú
n
3
¥
L
= 0
2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
∆
j
f
k
p
≤
C
2
k
(
s
−
m
+
m
0
)
2
j
(
m
−
m
0
)
k
f
0
j
k
p
=
C
2
(
k
−
j
)(
s
−
m
+
m
0
)
λ
j
.
k>j
ž
,
P
L
0
•
Œ
u
s
−
m
+
m
0
•
ê
,
3
Ú
n
3
¥
L
=
L
0
2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
∆
j
f
k
p
≤
C
2
k
(
s
−
m
+
m
0
)
2
(
j
−
k
)
L
0
2
j
(
m
−
m
0
)
k
f
0
j
k
p
=
C
2
(
j
−
k
)(
L
0
−
s
+
m
−
m
0
)
λ
j
.
-
δ
= min
{
s
−
m
+
m
0
,L
0
−
s
+
m
−
m
0
}
,
K
d
s
b
Ú
L
0
½
Â
•
δ>
0.
n
Ü
þ
¡
ü
‡
ª
f
,
é
¤
k
j,k
≥
1
·
‚
k
2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
∆
j
f
k
p
≤
C
2
−|
j
−
k
|
δ
λ
j
.
(3.8)
|
^
Ó
O
Ž
Ú
Ú
n
1
k
2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
S
0
f
k
p
≤
C
2
−
kδ
k
S
0
f
k
p
.
(3.9)
•
•
B
å
„
,
j
≤
0
ž
Ø
”
-
λ
j
= 0,
Š
â
(3.8),(3.9)
Ú
Minkovsky
Ø
ª
·
‚
k
k
T
a
f
k
B
s
−
m
+
m
0
p,q
=
k
S
0
T
a
f
k
p
+
∞
X
k
=1
(2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
f
k
p
)
q
!
1
q
≤k
S
0
f
k
p
+
∞
X
k
=1
(2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
S
0
f
k
p
+
∞
X
j
=1
2
k
(
s
−
m
+
m
0
)
k
∆
k
T
a
∆
j
f
k
p
)
q
!
1
q
≤k
S
0
f
k
p
+
C
∞
X
k
=1
(2
−
kδ
k
S
0
f
k
p
+
∞
X
j
=1
2
−|
j
−
k
|
δ
λ
j
)
q
!
1
q
≤
C
k
S
0
f
k
p
+
∞
X
k
=1
(
∞
X
j
=
−∞
2
−|
j
|
δ
λ
k
−
j
)
q
!
1
q
≤
C
k
S
0
f
k
p
+
∞
X
j
=
−∞
2
−|
j
|
δ
(
∞
X
k
=1
λ
q
k
−
j
)
1
q
!
=
C
k
S
0
f
k
p
+
∞
X
j
=
−∞
2
−|
j
|
δ
(
∞
X
k
=1
λ
q
k
)
1
q
!
DOI:10.12677/aam.2023.123086844
A^
ê
Æ
?
Ð
é
¬
k
≤
C
k
S
0
f
k
p
+
∞
X
j
=
−∞
2
−|
j
|
δ
(
∞
X
k
=1
(2
ks
k
(∆
k
−
1
+∆
k
+∆
k
+1
)
f
k
p
)
q
)
1
q
!
≤
C
k
S
0
f
k
p
+(
∞
X
k
=1
(2
ks
k
∆
k
f
k
p
)
q
)
1
q
!
≤
C
k
f
k
B
s
p,q
.
ù
‡
½
n
y
.
.
2
4.
o
(
l
Stein[8]P.253,Proposition6
¥
¼
é
u
,
©
±
Littlewood-Paley
©
)
•
ó
ä
,
ï
Ä
[
‡
©
Ž
f
3
˜
½
^
‡
e
Besov
˜
m
þ
k
.
5
.
8
,
·
‚
ï
Ä
S
N
´
ò
©
(
J
í
2
F
p
“
È
©
Ž
f
3
Besov
˜
m
þ
k
.
5
.
ë
•
©
z
[1]H¨ormander,L.(1965)Pseudo-DifferentialOperators.
CommunicationsonPureandApplied
Mathematics
,
18
,501-517.https://doi.org/10.1002/cpa.3160180307
[2]Kohn, J.J.andNirenberg, L.(1965) AnAlgebraofPseudo-DifferentialOperators.
Communica-
tionsonPureand AppliedMathematics
,
18
, 269-305. https://doi.org/10.1002/cpa.3160180121
[3]H¨ormander,L.(1967)Pseudo-DifferentialOperatorsandHypoellipticEquations.In:Calder´on,
A.P.,Ed.,
SingularIntegrals.ProceedingsofSymposiainPureMathematics,Vol.10
,AMS,
Providence,RI,138-183.
[4]H¨ormander,L.(1971)Onthe
L
2
Continuity ofPseudo-DifferentialOperators.
Communications
onPureandAppliedMathematics
,
24
,529-535.https://doi.org/10.1002/cpa.3160240406
[5]Hounie,J.(1986)On the
L
2
-ContinuityofPseudo-Differential Operators.
Communicationsin
PartialDifferentialEquations
,
11
,765-778.https://doi.org/10.1080/03605308608820444
[6]Rodino,L.(1976)OntheBoundednessofPseudoDifferentialOperatorsintheClass
L
m
ρ,
1
.
ProceedingsoftheAMS
,
58
,211-215.https://doi.org/10.2307/2041387
[7]Ching,C.H.(1972)Pseudo-DifferentialOperatorswithNonregularSymbols.
JournalofDif-
ferentialEquations
,
11
,436-447.https://doi.org/10.1016/0022-0396(72)90057-5
[8]Stein, E.M. (1993) Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory
Integrals(PMS-43).PrincetonUniversityPress,Princeton,NJ.
[9]
´
Alvarez,J.andHounie,J.(1990)EstimatesfortheKernelandContinuityPropertiesof
Pseudo-DifferentialOperators.
ArkivMatematik
,
28
,1-22.
https://doi.org/10.1007/BF02387364
[10]Guo,J.andZhu,X.(2022)SomeNotesonEndpointEstimatesforPseudo-DifferentialOper-
ators.https://arxiv.org/abs/2201.10724
DOI:10.12677/aam.2023.123086845
A^
ê
Æ
?
Ð
é
¬
k
[11]Kenig,C.E. andStaubach,W. (2007)Ψ-Pseudodifferential OperatorsandEstimates forMax-
imalOscillatoryIntegrals.
StudiaMathematica
,
183
,249-258.
https://doi.org/10.4064/sm183-3-3
DOI:10.12677/aam.2023.123086846
A^
ê
Æ
?
Ð