设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(3),423-427
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133046
˜aªz.)ÛÜ•35
•••ÔÔÔxxx
2²ŒÆêƆ&E‰ÆÆ§2À2²
ÂvFϵ2023c26F¶¹^Fϵ2023c36F¶uÙFϵ2023c314F
Á‡
3©¥§·‚•ıeÔ-Ô-Ôªz.:





















∂
t
u= ∇·(D(u)∇u)−∇·(S(u)∇v)+∇·(R(u)∇w),x∈Ω,t>0,
∂
t
v= ∆v+f(u,v),x∈Ω,t>0,
∂
t
w= ∆w+g(u,w),x∈Ω,t>0,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x),v(x,0) = v
0
(x),w(x,0) = w
0
(x),x∈Ω,
(0.1)
ùpΩ•R
n
(n≥1)¥k.1wà«•"©ÏL©ÛT. ¿(Ü®k ©z§3˜½^‡
e‰Ñùaªz.)ÛÜ•35"
'…c
ªz5§Keller-Segel.§ÛÜ•35
LocalExistenceofSolutionsforaClass
ofChemotaxisModel
ShutingChen
SchoolofMathematicsandInformationScience,GuangzhouUniversity,GuangzhouGuangdong
©ÙÚ^:•Ôx.˜aªz.)ÛÜ•35[J].nØêÆ,2023,13(3):423-427.
DOI:10.12677/pm.2023.133046
•Ôx
Received:Feb.6
th
,2023;accepted:Mar.6
th
,2023;published:Mar.14
th
,2023
Abstract
Inthispaper,weconsiderthefollowingparabolic-parabolic-parabolicChemotaxis
Model:





















∂
t
u= ∇·(D(u)∇u)−∇·(S(u)∇v)+∇·(R(u)∇w),x∈Ω,t>0,
∂
t
v= ∆v+f(u,v),x∈Ω,t>0,
∂
t
w= ∆w+g(u,w),x∈Ω,t>0,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x),v(x,0) = v
0
(x),w(x,0) = w
0
(x),x∈Ω,
(0.2)
inaboundedconvexdomainΩ⊂R
n
,n≥1,withsmoothboundary.Basedonthe
knownresultsinthereferences,byanalyzingthemodel,weobtainthelocalexistence
ofsolutionsforthiskindofchemotaxismodelundercertainconditions.
Keywords
Chemotaxis,Keller-SegelModel,LocalExistence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
KellerÚSegel31970c0ªz²;êÆ.(ë„[1])§£ã[œÅÿ••pßÝ
zÆ&Òà8§Ù²;ªz.Xe
(
u
t
= ∆u−χ∇·(u∇v),x∈Ω,t>0
v
t
= ∆v−v+u,x∈Ω,t>0.
(1.1)
éu.(1.1)9ÙCN©Û̇8¥3)k.5Ú»¯Kþ§¿…®2•ïÄ"
DOI:10.12677/pm.2023.133046424nØêÆ
•Ôx
••Ð/)XÚ(1.4)uЧ·‚é®kóŠ?1{‡0"éu[‚5Keller-Segel
ªz.
(
u
t
= ∇·(D(u,v)∇u)−∇·(S(u,v)∇v),x∈Ω,t>0
v
t
= ∆v+G(u,v),x∈Ω,t>0
(1.2)
3L›cp®ÚåISÆö2•'5"
3XÚ(1.2)¥§XJG(u,v) = −v+u§@o·‚kXeXÚ
(
u
t
= ∇·(D(u,v)∇u)−∇·(S(u,v)∇v),x∈Ω,t>0
v
t
= ∆v−v+u,x∈Ω,t>0
(1.3)
TXÚ®²2•'5(ë„[2–5])"
©ïÄ˜a[‚5Ô-Ô-ÔªzXÚ





















∂
t
u= ∇·(D(u)∇u)−∇·(S(u)∇v)+∇·(R(u)∇w),x∈Ω,t>0,
∂
t
v= ∆v+f(u,v),x∈Ω,t>0,
∂
t
w= ∆w+g(u,w),x∈Ω,t>0,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x),v(x,0) = v
0
(x),w(x,0) = w
0
(x),x∈Ω,
(1.4)
ùpΩ•R
n
(n≥1)¥k.1wà«•,Ù¥D,SÚR´3[0,∞)þ5½¼ê,ÙŠ©O
3(0,∞),[0,∞)Ú(0,∞)þ,u(x,t)L«[œ—Ý,v(x,t)Úw(x,t)©OL«zÆáÚÚzÆü
½ßÝ.
2.^‡½
b½¼êD(s),S(s),R(s)÷vXe^‡µ
(A1)bD,SÚR÷v







D∈C
2
([0,∞))
S∈C
2
([0,∞))
R∈C
2
([0,∞)).
(2.1)
Ù¥D´,SÚR´šK…S(0) = 0,R(0) = 0.
(A2)Щ^‡u
0
,v
0
,w
0
÷v±eb







u
0
∈W
1,∞
(Ω)u
0
≥0
v
0
∈W
1,∞
(Ω)v
0
≥0
w
0
∈W
1,∞
(Ω)w
0
≥0.
(2.2)
Ù¥u
0
,v
0
,w
0
Ñ3ΩS.
DOI:10.12677/pm.2023.133046425nØêÆ
•Ôx
3.)ÛÜ•35
ÏL©ÛT.¿(Üë•©z[6–10].3D,S,R÷v(A1)§…u
0
,v
0
,w
0
÷v(2.2)^‡e,
·‚T.)ÛÜ•35,¿‰ÑŒ*Ð5Ä•ã.
ùp·‚¦^©z[11]•XÚ(1.2)JÑ•{5?nXÚ(1.4)§Ù¥f(u,v)=−v+u,
g(u,w) = −uw½g(u,w) = −u+w.
éuƒA¯Kf(u,v) = −v+uÚg(u,w) = −uw§·‚k





















∂
t
u= ∇·(D(u)∇u)−∇·(S(u)∇v)+∇·(R(u)∇w),x∈Ω,t>0,
∂
t
v= ∆v−v+u,x∈Ω,t>0,
∂
t
w= ∆w−uw,x∈Ω,t>0,
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0,x∈∂Ω,t>0,
u(x,0) = u
0
(x),v(x,0) = v
0
(x),w(x,0) = w
0
(x),x∈Ω.
(3.1)
½n3.1D,S,R÷v(A1)§…u
0
,v
0
,w
0
÷v(2.2)§-ϑ>n,K•3T
max
∈(0,∞]Ún-š
K¼ê







u∈C
0
(Ω×[0,T
max
))∩C
2,1

¯
Ω×(0,T
max
)

v∈C
0
(Ω×[0,T
max
))∩C
2,1
(Ω×(0,T
max
))∩L
∞
loc

[0,T
max
);W
1,ϑ
(Ω)

w∈C
0
(Ω×[0,T
max
))∩C
2,1
(Ω×(0,T
max
))∩L
∞
loc

[0,T
max
);W
1,ϑ
(Ω)

¦(u,v,w)3Ω×(0,T
max
)¥´(3.1);)§¿…¦·‚Œ±ÀJ
T
max
= ∞,½ölimsup
t→T
max

ku(·,t)k
L
x
(Ω)
+kv(·,t)k
W
1,ϑ
(Ω)
+kw(·,t)k
W
1,ϑ
(Ω)

= ∞.(3.2)
½n3.2

e
t∆

t≥0
•Ω¥Neumann9Œ +§λ
1
>0L«Neumann>.^‡eΩ¥−∆
1˜š"AŠ.K•3=•6uΩ~êM
1
,···,M
4
§§‚äk±e5Ÿ:
(1)XJ1 ≤q≤p≤∞,@oé¤kt>0k:


e
t∆
w


L
p
(Ω)
≤M
1

1+t
−
n
2
(
1
q
−
1
p
)

e
−λ
1
t
kwk
L
a
(Ω)
,
¤á§…é¤kw∈L
q
(Ω)÷v
R
Ω
w= 0.
(2)XJ1 ≤q≤p≤∞,@oé¤kt>0,éz‡w∈L
q
(Ω)k:


∇e
t∆
w


L
p
(Ω)
≤M
2

1+t
−
1
2
−
n
2
(
1
q
−
1
p
)

e
−λ
1
t
kwk
L
q
(Ω)
,
(3)XJ2 ≤p<∞,@oé¤kt>0,w∈W
1,p
(Ω)k:


∇e
t∆
w


L
p
(Ω)
≤M
3
e
−λ
1
t
k∇wk
L
p
(Ω)
,
DOI:10.12677/pm.2023.133046426nØêÆ
•Ôx
(4)-1 <p≤p<∞,@oé¤kw∈(C
∞
0
(Ω))
n
,t>0k:


e
t∆
∇·w


L
p
(Ω)
≤M
4

1+t
−
1
2
−
n
2
(
1
q
−
1
p
)

e
−λ
1
t
kwk
L
q
(Ω)
,(3.3)
¤á. Ïd éu¤kt>0§Žfe
t∆
∇P k˜‡•˜(½lL
q
(Ω)L
p
(Ω)Žf*Ч٥‰ê
U(3.3)››"
ë•©z
[1]Keller, E.F.and Segel,L.A.(1970) Initiationof SlimeMoldAggregationViewedasanInstabili-
ty. JournalofTheoreticalBiology, 26, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
[2]Winkler,M.(2013)Finite-TimeBlow-UpintheHigher-DimensionalParabolic-Parabolic
Keller-SegelSystem.JournaldeMath´ematiquesPuresetAppliqu´ees,100,748-767.
https://doi.org/10.1016/j.matpur.2013.01.020
[3]Osaki,K.andYagi, A.(2001)FiniteDimensionalAttractor forOne-DimensionalKeller-Segel
Equations.FunkcialajEkvacioj,44,441-469.
[4]Nagai,T.,Senba,T.and Yoshida, K.(1997) Application ofthe Trudinger-Moser Inequality to
aParabolicSystemofChemotaxis.FunkcialajEkvacioj,40,411-433.
[5]Cao, X.(2015) GlobalBoundedSolutionsoftheHigher-DimensionalKeller-SegelSystem under
SmallnessConditionsinOptimalSpaces.DiscreteandContinuousDynamicalSystems,35,
1891-1904.https://doi.org/10.3934/dcds.2015.35.1891
[6]Cie´slak, T. (2007)QuasilinearNonuniformly ParabolicSystem Modelling Chemotaxis.Journal
ofMathematicalAnalysisandApplications,326,1410-1426.
https://doi.org/10.1016/j.jmaa.2006.03.080
[7]Horstmann,D.andWinkler,M.(2005)Boundednessvs.Blow-UpinaChemotaxisSystem.
JournalofDifferentialEquations,215,52-107.https://doi.org/10.1016/j.jde.2004.10.022
[8]Tao,Y.andWinkler,M.(2011)AChemotaxis-HaptotaxisModel:TheRolesofNonlinear
DiffusionandLogisticSource.SIAMJournalonMathematicalAnalysis,43,685-704.
https://doi.org/10.1137/100802943
[9]Wrzosek,D.(2004)GlobalAttractorforaChemotaxisModelwithPreventionofOvercrowding.
NonlinearAnalysis,59,1293-1310.https://doi.org/10.1016/j.na.2004.08.015
[10]Winkler,M.(2010)Aggregationvs.GlobalDiffusiveBehaviorintheHigher-Dimensional
Keller-SegelModel.JournalofDifferentialEquations,248,2889-2905.
https://doi.org/10.1016/j.jde.2010.02.008
[11]Zhang, Q.and Li,Y.(2015) Stabilization andConvergence Rate in aChemotaxis System with
ConsumptionofChemoattractant.JournalofMathematicalPhysics,56,ArticleID:081506.
https://doi.org/10.1063/1.4929658
DOI:10.12677/pm.2023.133046427nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.