设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(3),1035-1044
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.123105
عƒ5
−
-²¡ãþ!/Ú
ÇÇÇuuu$$$
∗
§§§‘‘‘ûûû
úô“‰ŒÆ§êÆ‰ÆÆ§úô7u
ÂvFϵ2023c213F¶¹^Fϵ2023c39F¶uÙFϵ2023c316F
Á‡
ãG˜‡þ!k-/Ú´•G˜‡~k-:/Ú…÷v?¿ü‡Úaº:êƒýéŠ
–õ•1 "eG•3˜‡þ!k-/Ú§K¡G´þ!k-Œ/"©ò$^=£•{y²µ
عƒ5
−
-²¡ã´þ!k-Œ/§Ù¥k≥max{∆(G),5}…∆(G) ´ãG•ŒÝ"
'…c
þ!k-/Ú§²¡ã§
EquitableColoringofPlanarGraphs
withoutAdjacent5
−
-Cycles
XianxiWu
∗
,DanjunHuang
SchoolofMathematicalSciences,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Feb.13
th
,2023;accepted:Mar.9
th
,2023;published:Mar.16
th
,2023
Abstract
Anequitablek-coloringofa graphGisapropervertexcoloringsuchthatthedifference
∗ÏÕŠö"
©ÙÚ^:Çu$,‘û.عƒ5
−
-²¡ãþ!/Ú[J].A^êÆ?Ð,2023,12(3):1035-1044.
DOI:10.12677/aam.2023.123105
Çu$§‘û
in theorder of any twocolor classes isat most one.The graphGis saidto beequitably
k-colorableifGhasanequitablek-coloring.Inthispaper,wewillprovethatevery
planargraphwithoutadjacent5
−
-cyclesisequitablyk-colorablefork≥max{∆(G),5},
where∆(G)isthemaximumdegreeofG.
Keywords
Equitablek-Coloring,PlanarGraph,Cycle
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3©¥,·‚••ÄÕ!k•{üã.éu˜‡‰½ãG,·‚^V(G),E(G),|G|,
δ(G) Ú∆(G) ({•∆) 5©OL«ãG:8,>8,ê,•ÝÚ•ŒÝ.XJãGŒ±x
3îAp²¡þ¿…÷v?¿2^>•3à:?ƒ,K¡G•Œ²¡ã.ãGù«AÏ²
¡x{¡•²¡ã.·‚^F(G) 5L«²¡ãG¡8.x∈V(G) ∪F(G),^d(x) L«ãG
¥:(½¡) xÝ.XJ˜‡:v÷vd(v)=k(d(v)≥k½d(v)≤k),@ o¡:v•k-:(k
+
-:
½k
−
-:).aq/,·‚Œ±½Âk-¡, k
+
-¡½k
−
-¡.éuv∈V(G),^N(v) L«†:vƒ
¤kº:¤8Ü.w,,


N(v)


=d(v).éuf∈F(G),ev
1
,v
2
,···,v
k
´¡f>.þ
:(#Nº:k-E),KPf=[v
1
v
2
···v
k
].XJ˜‡k-¡f=[v
1
v
2
···v
k
] ÷vd(v
i
)=d
i
,Ù¥
i=1,2,···,k,Kf•(d
1
,d
2
,···,d
k
)-¡.·‚^n
i
(f),n
i
(v),f
i
(v)©OL«†¡f'éi-:
‡ê,†:vƒi-:‡ê,†:v'éi-¡‡ê.
ãG˜‡~k-:/Ú´•˜‡Nφ: V(G) →{1,2,···,k}, ¦é?¿2‡ƒ:x
ÚyÑkφ(x)6= φ(y).ãG:Úê´¦Gk˜‡~k-:/Ú•êk,PŠχ(G).é
uãG˜‡k-:/Úφ,^V
i
(1≤i≤k) L«ãG¥/ôÚiº:| ¤8Ü.Kz‡V
i
(1 ≤i≤k) Ñ´˜‡Õá8.eé?¿i,j∈{1,2,···,k}Ñk



|V
i
|−|V
j
|



≤1,K¡φ´ãG˜
‡þ!k-/Ú,½¡ãG´þ!k-Œ/.ãGþ!Úê´¦Gk˜‡þ!k-/Ú•
êk,PŠχ
e
(G).w,,χ
e
(G) ≥χ(G),…ØªŒ±î‚¤á.
þ!/ÚVg´dMeyer[1]31973 cJÑ,Óž,¦„JÑ±eߎ.
ߎ1[1]eG´˜‡ëÏã,…GQØ´Û•Ø´ã,Kχ
e
(G) ≤∆.
þ!/ÚïÄŒJˆ1964c.Erd˝os[2]JÑXeߎ.
DOI:10.12677/aam.2023.1231051036A^êÆ?Ð
Çu$§‘û
ߎ2[2]é?¿k≥∆,?¿˜‡•ŒÝ•∆ ãÑ´þ!(k+1)-Œ/.
ߎ231970cHajnalÚSzemer´edi[3]¤y¢.2010c,Kierstead ÚKostochka[4]A^Ž
{©Ûéߎ2‰Ñ˜‡#Û{áy².1994c,Chen,Lih ÚWu[5]?˜ÚJÑ±eߎ.
ߎ3[5]eG´˜‡ëÏã,…GQØ´K
m
,C
2m+1
, •Ø´K
2m+1,2m+1
(m≥1),KG
´þ!∆-Œ/.
Chen,Lih ÚWu[5]„y²ߎ3é∆≤3 ã¤á.Kierstead ÚKostochka[6]òd(
JU?∆≤4.Chen,Lih[7]ÚLih,Wu[8]©Oy²ߎ3éä!Üã¤á.Wang
ÚZhang[9]y²ߎ3 é‚ã¤á.Kostochka[10]y²ߎ3é²¡ã¤á,¿…„Ú
Nakprasit[11]˜åy²ߎ3 é∆ ≥14d+1d-òzã¤á.1998c,YapÚZhang[12]y²
ߎ3 é∆≥13 ²¡ã¤á.Nakprasit[13]ò©z[12](JU?∆ ≥9.Ïd,²¡ã
x••e5 ≤∆ ≤8œ¹„vk)û.
2008 c,Zhu ÚBu[14]y²∆≥7 …ع4-Ú5-²¡ã´þ!∆-Œ/.2014 c,
Wang ÚGui[15]?˜Úy²T(Øé5 ≤∆ ≤6 …ع4-Ú5-²¡ã•¤á.ddÑ
z˜‡Ø¹4-Ú5-²¡ãÑ´þ!∆-Œ/.2015 c,Zhu,Bu ÚMin[16]y²ع
5-Úu4-²¡ã´þ!k-Œ/,Ù¥k≥max{∆,8}.2019 c,Dong ÚWu[17]y²ع
u4-Úu6-²¡ã´þ!k-Œ/,Ù¥k≥max{∆,7}.
©$^=£•{y²عƒ5
−
-²¡ã´þ!k-Œ/,Ù¥k≥max{∆,5}.(
Ü©z[5]Ú©z[6](JŒ•,عƒ5
−
-²¡ã÷vߎ3.
2.(Ún
Ún1[14]-S={v
1
,v
2
,···,v
k
}⊆V(G), Ù¥v
1
,v
2
,···,v
k
´ãG¥k‡ØÓ:.e
G−S´þ!k-Œ/,…é?¿1 ≤i≤k,Ñk|N
G
(v
i
)−S|≤k−i,KG´þ!k-Œ/.
Ún2[18]3-Ú5-؃²¡ã´3-òz.
Ún3[3,4]ék≥∆+1,?¿˜‡•ŒÝ•∆ ãÑ´þ!k-Œ/.
Ún4eG´˜‡|G|≥5 …عƒ5
−
-ëϲ¡ã,KG•¹ã1¥fã/ƒ˜.
DOI:10.12677/aam.2023.1231051037A^êÆ?Ð
Çu$§‘û
Figure1.FigureH
1
∼H
19
inLemma4
ã1.Ún4¥fã/H
1
∼H
19
ã1z‡f ã/Ñ÷v:(1)¢%:ÝêX㤫;(2)˜%:ÝêØAO`²Œáu
«m[d,∆] ¥?Ûê,Ù¥d•㥘%:Ýê;(3)z˜‡fã/¥,IÒ•x
k
,x
k−1
,x
k−2
:جƒp-Ü;(4)㥆4-¡ƒ'é:^SŒ±p†;(5)H
10
¥†5-¡ƒ'é:^
SŒ±p†.
y²æ^‡y{,bÚn4 ؤá.-G´˜‡‡~ã.=G´˜‡|G|≥5 …عƒ
5
−
-ëϲ¡ã,§Ø¹fã/H
1
∼H
19
¥?Û˜‡.Ïd,Gk5ŸP1.
P1.f
3
(v)+f
4
(v)+f
5
(v) ≤b
d(v )
2
c.
·‚$^=£•{5íÑgñ.Äk,3V(G) ∪F(G)þ½Â˜‡Ð©¼êw:é
v∈V(G),-w(v) = 2d(v)−6;éf∈F(G),-w(f) = d(f)−6.Šâî.úª|V(G)|−|E(G)|+
|F(G)|= 2ںýn
P
v ∈V(G)
d(v) =
P
f∈F(G)
d(f) = 2|E(G)|,k
P
x∈V(G)∪F(G)
w(x) =
P
v ∈V(G)
(2d(v)−6)+
P
f∈F(G)
(d(f)−6) = −12.
X,·‚‰Ñ˜=£5K,¿…Uìù@5Kéã¥:Ú¡-#©.=£L§
(å,¬˜‡#¼êw
0
,¿…=£L§¥¤k:Ú¡Ú±ØC.
éux,y∈V(G)∪F(G),·‚^τ(x→y) L«x=‰y.½ÂXe=£5K:
R1.v∈V(G)…f´†:v'é3-¡.
R1.1 bd(v)=4.f´(3,4,4)-¡ž,-τ(v→f)=
3
2
;f´(4,5
+
,5
+
)-¡ž,-
τ(v→f) = 0;ÄK,-τ(v→f) = 1.
R1.2bd(v) = k≥5.f´(3
−
,3
−
,k)-¡ž,-τ(v→f)=3;f´(3
−
,4,k)-¡ž,-
τ(v→f) = 2;f´(4
−
,5
+
,k)-¡ž,-τ(v→f) =
3
2
;ÄK,-τ(v→f) = 1.
R2.v∈V(G)…f´†:v'é4-¡.
R2.1bd(v)=4.f´(3,4,4,4)-¡ž,-τ(v→f)=
2
3
;f´(2,4,4,5
+
)-¡ž,-
τ(v→f) =
1
4
;f´(2,4,5
+
,5
+
)-¡ž,-τ(v→f) = 0;ÄK,-τ(v→f) =
1
2
.
R2.2bd(v) = k≥5.f´(2,4,4,k)-¡ž,-τ(v→f) =
3
2
;ÄK,-τ(v→f) = 1.
DOI:10.12677/aam.2023.1231051038A^êÆ?Ð
Çu$§‘û
R3.v∈V(G)…f´†:v'é5-¡.
R3.1bd(v) = 4.f'é2-:ž,-τ(v→f) =
1
4
;ÄK,-τ(v→f) =
1
2
.
R3.2bd(v) ≥5,-τ(v→f) =
1
2
.
R4.z‡4
+
-:‰ƒ2-:=1.
dÚn2Œ•,δ(G) ≤3.Šâδ(G) Š,·‚©±eA«œ¹?ص
œ¹1δ(G) = 3.
dž‰1=£5K•R1 ∼R3.
Ï•Gعfã/H
1
∼H
3
,¤±ãGäkXe5Ÿ.
äó1.1G¥3-¡Ñ´(3,3,5
+
)-¡,(3,4
+
,4
+
)-¡,½(4
+
,4
+
,4
+
)-¡.
äó1.2G¥4-¡Ñ´(3,3,5
+
,5
+
)-¡,(3,4
+
,4
+
,4
+
)-¡,½(4
+
,4
+
,4
+
,4
+
)-¡.
äó1.3G¥5-¡Ñ´(3
+
,3
+
,3
+
,4
+
,4
+
)-¡.
e¡·‚ÏLü‡äó5y²é∀x∈V(G)∪F(G),kw
0
(x) ≥0.
äó1.4∀v∈V(G),kw
0
(v) ≥0.
y²bd(v) =k.-v
1
,···,v
k
´v:…3²¡þ•^ž••ü.-f
i
´±vv
i
Ú
vv
i+1
•>.>¡,Ù¥1 ≤i≤k…v
k+1
= v
1
.
bk= 3.Kw
0
(v) = w(v) = 0.
bk= 4.Kw(v) = 2.dP1•,f
3
(v)+f
4
(v)+f
5
(v) ≤2.ef
3
(v) = 2,Kf
4
(v) = f
5
(v) = 0.
dGعH
4
•v؆(3,4,4)-¡'é.dR1§w
0
(v)≥2−2×1=0.ef
3
(v)=1,K
f
4
(v)+f
5
(v)≤1.ev†(3,4,4)-¡'é,Ø”•f
1
.dGعH
5
•d(v
3
)≥5 …d(v
4
)≥5.
Ïdv؆(3,4,4,4)-¡'é.dR1∼R3,w
0
(v)≥2 −
3
2
−
1
2
=0.ev؆(3,4,4)-¡'
é,dR1∼R3,w
0
(v)≥2 −1−
2
3
=
1
3
.ef
3
(v)=0,Kf
4
(v)+f
5
(v)≤2.dR2∼R3,
w
0
(v) ≥2−2×
2
3
=
2
3
.
bk= 5, Kw(v) = 4.dP1•,f
3
(v)+f
4
(v)+f
5
(v) ≤2.ef
3
(v) = 2,Kf
4
(v) = f
5
(v) = 0.
ev†(3,3,5)-¡'é,Ø”•f
1
.dGعH
6
•d(v
i
)≥5(i∈{3,4,5}).K†v'é,
˜‡3-¡7•(5,5
+
,5
+
)-¡.dR1§w
0
(v)≥4 −3 −1=0.ev؆(3,3,5)-¡'é,dR1,
w
0
(v) ≥4−2×2=0.ef
3
(v) =1,Kf
4
(v)+f
5
(v) ≤1.dR1∼R3,w
0
(v) ≥4−3−1=0.e
f
3
(v) = 0,Kf
4
(v)+f
5
(v) ≤2.dR2 ∼R3,w
0
(v) ≥4−2×1 = 2.
bk≥6,Kw(v)=2k−6.dP1 •, f
3
(v)+ f
4
(v)+ f
5
(v)≤b
k
2
c.ev†(3,3,k)-¡'é,
Ø”•f
1
.dGعH
7
•d(v
i
) ≥4(i∈{3,4,···,k}).†v'éÙ¦3-¡7•(k,4
+
,4
+
)-¡.
dR1 ∼R3,w
0
(v) ≥2k−6−3−
3
2
(b
k
2
c−1)≥2k−
15
2
−
3
4
k=
5
4
k−
15
2
≥0.ev؆(3,3,k)-¡'
é,KdR1 ∼R3,w
0
(v) ≥2k−6−2b
k
2
c≥2k−6−2×
k
2
= k−6 ≥0.t
DOI:10.12677/aam.2023.1231051039A^êÆ?Ð
Çu$§‘û
äó1.5éz‡f∈F(G) Ñkw
0
(f) ≥0.
y²bd(f)=3.Kw(f)=−3.däó1.1•,f´(3,3,5
+
)-¡,(3,4
+
,4
+
)-¡,½
(4
+
,4
+
,4
+
)-¡.ef´(3,3,5
+
)-¡,dR1,w
0
(f)≥−3+3=0.ef´(3,4,4)-¡,dR1,
w
0
(f) ≥−3+2×
3
2
= 0.ef´(3,4,5
+
)- ¡,dR1,w
0
(f) ≥−3+1+2 = 0.ef´(3,5
+
,5
+
)-¡,
dR1,w
0
(f)≥−3 + 2 ×
3
2
=0.ef´(4,4,4
+
)-¡,dR1,w
0
(f)≥−3 + 3 ×1=0.ef´
(4,5
+
,5
+
)-¡, dR1, w
0
(f) ≥−3+2×
3
2
= 0.ef´(5
+
,5
+
,5
+
)-¡, dR1, w
0
(f) ≥−3+3×1 = 0.
bd(f)=4.Kw(f)=−2.däó1.2•,f´(3,3,5
+
,5
+
)-¡,(3,4
+
,4
+
,4
+
)-¡,½
(4
+
,4
+
,4
+
,4
+
)-¡.ef´(3,3,5
+
,5
+
)-¡,dR2,w
0
(f)≥−2+2×1=0.ef´(3,4,4,4)-¡,
dR2,w
0
(f) ≥−2+3×
2
3
= 0.ef´(3,4
+
,4
+
,5
+
)-¡,dR2,w
0
(f) ≥−2+2×
1
2
+1 = 0.ef
´(4
+
,4
+
,4
+
,4
+
)-¡,dR2,w
0
(f) ≥−2+4×
1
2
= 0.
bd(f)=5.Kw(f)=−1.däó1.3•,f´(3
+
,3
+
,3
+
,4
+
,4
+
)-¡.dR3,w
0
(f)≥
−1+2×
1
2
= 0.
bd(f) ≥6.Kw
0
(f) = w(f) ≥0.t
nþ?ØŒ•,∀x∈V(G)∪F(G),Ñkw
0
(x)≥0.Ïd,−12=
P
x∈V(G)∪F(G)
w(x)=
P
x∈V(G)∪F(G)
w
0
(x) ≥0,gñ.Ïd,‡~Ø•3,=Ún4 ¤á.
œ¹2δ(G) = 2,…G¥–õ•32‡2-:.
dž‰1=£5KÓœ¹1.
duãGعkfã/H
2
,H
8
∼H
10
,¤±ãGäkXe5Ÿ.
äó2.1G¥†2-:'é3-¡´(2,2
+
,5
+
)-¡.
äó2.2G¥†2-:'é4-¡´(2,3
−
,5
+
,5
+
)-¡,(2,4
+
,4
+
,5
+
)-¡.
äó2.3G¥†2-:'é5-¡´(2,3
−
,5
+
,5
+
,5
+
)-¡,(2,4
+
,4
+
,4
+
,4
+
)-¡.
Ø2-:9Ù'é¡,éz‡x∈V(G)∪F(G),Óœ ¹1aqŒyw
0
(x)≥0.éu2-:'
é¡,kXeäó.
äó2.4éz‡2-:'é¡f∈F(G) Ñkw
0
(f) ≥0.
bd(f)=3,Kw(f)=−3.däó2.1 •,f´(2,2
+
,5
+
)-¡.ef•(2,3
−
,5
+
)-¡,dR1,
w
0
(f) ≥−3+3 = 0.ef•(2,4,5
+
)-¡,dR1,w
0
(f) ≥−3+1+2 = 0.ef•(2,5
+
,5
+
)-¡,d
R1,w
0
(f) ≥−3+2×
3
2
= 0.
bd(f)=4,Kw(f)=−2.däó2.2•,f´(2,3
−
,5
+
,5
+
)-¡,(2,4
+
,4
+
,5
+
)-¡.e
f•(2,3
−
,5
+
,5
+
)-¡,dR2,w
0
(f)≥−2+2×1=0.ef•(2,4,4,5
+
)-¡,dR2,w
0
(f)≥
−2+2×
1
4
+
3
2
= 0.ef•(2,4
+
,5
+
,5
+
)-¡,dR2,w
0
(f) ≥−2+2×1 = 0.
DOI:10.12677/aam.2023.1231051040A^êÆ?Ð
Çu$§‘û
bd(f)= 5,Kw(f)=−1.däó2.3 •,f´(2,3
−
,5
+
,5
+
,5
+
)-¡,(2,4
+
,4
+
,4
+
,4
+
)-¡.
ef•(2,3
−
,5
+
,5
+
,5
+
)-¡,dR3,w
0
(f) ≥−1+3×
1
2
=
1
2
.ef•(2,4
+
,4
+
,4
+
,4
+
)-¡,dR3,
w
0
(f) ≥−1+4×
1
4
= 0.t
nþ?ØŒ•, Ø2-:,∀x∈V(G)∪F(G),Ñkw
0
(x) ≥0.Ïd, −12 =
P
x∈V(G)∪F(G)
w(x) =
P
x∈V(G)∪F(G)
w
0
(x) ≥2×(−2) = (−4),gñ.Ïd,‡~Ø•3,=Ún4 ¤á.
œ¹3δ(G) = 2,…G¥–•33‡2-:.
dž‰1=£5K•R1 ∼R4.
duGعkfã/H
2
,H
8
∼H
14
,KGäkXe5Ÿ.
äó3.1†2-:'é3-¡•(2,3
+
,5
+
)-¡.
äó3.2†2-:'é4-¡•(2,3,5
+
,5
+
)-¡½(2,4
+
,4
+
,5
+
)-¡.
äó3.3†2-:'é5-¡•(2,3,5
+
,5
+
,5
+
)-¡½(2,4
+
,4
+
,4
+
,4
+
)-¡.
äó3.4ü‡2-:؃.
äó3.5?Û3
+
-:v–õ†1 ‡2-:.
äó3.6v´†2-:k-:(k≥4),Kv؆(3
−
,4
−
,k)-¡'é.
v´2-:,e:v†3-:ƒ,K¡:v•AÏ2-:.ÄK,¡:v•ÊÏ2-:.dGعf
ã/H
15
,Keäó¤á.
äó3.7㥖õ•3˜‡AÏ2-:.
e¡·‚ÏLü‡äó5y²
P
x∈V(G)∪F(G)
w
0
(x) ≥−2.
äó3.8éuAÏ2-:v,w
0
(v) ≥−2;éuÊÏ2-:½3
+
-:v,w
0
(v) ≥0.
y²bd(v) =k.-v
1
,···,v
k
´vØ…3²¡þ•^ž••ü.-f
i
´±vv
i
Ú
vv
i+1
•>.>¡,Ù¥1 ≤i≤k…v
k+1
= v
1
.
bk=2,Kw(v)=−2.ev•ÊÏ2-:,Kn
4
+
(v)≥2.dR4 ,w
0
(v)≥−2+2×1=0.
ev•AÏ2-:,Kw
0
(v) ≥−2.bk= 3,Kw
0
(v) = w(v) = 0.¤±e¡•Äk≥4.däó3.5
•,n
2
(v) ≤1.en
2
(v) = 0,KÓœ¹1aqŒyw
0
(v) ≥0.e¡•Än
2
(v) = 1, Ø”d(v
1
) = 2.
bk=4,Kw(v)=2.dP1•, f
3
(v) +f
4
(v) +f
5
(v)≤2.däó3.1•,d(f
1
)≥4…
d(f
4
)≥4.Ïd, f
3
(v)≤1.ef
3
(v)=1,Kf
4
(v)+ f
5
(v)≤1.dGعH
16
•†v'é3-¡
7•(4,5
+
,5
+
)-¡.dR1∼R4, w
0
(v)≥2 −1 −
2
3
=
1
3
.ef
3
(v)=0,Kf
4
(v) +f
5
(v)≤2.
f
4
(v)+f
5
(v) = 2ž, Kf
1
½f
4
•4-¡½5-¡, Ø”•f
1
.däó3.2•,f
1
•(2,4,4
+
,5
+
)-¡½
5-¡.dR2 ∼R3•τ(v→f
1
) ≤
1
4
.dR2 ∼R4,w
0
(v) ≥2−1−
1
4
−
2
3
=
1
12
.f
4
(v)+f
5
(v) ≤1
ž,dR2 ∼R4, w
0
(v) ≥2−1−
2
3
=
1
3
.
DOI:10.12677/aam.2023.1231051041A^êÆ?Ð
Çu$§‘û
bk= 5, Kw(v) = 4.dP1•,f
3
(v)+f
4
(v)+f
5
(v) ≤2.däó3.6•,v؆(3
−
,4
−
,5)-¡
'é.Ïd,dR1•v–õ‰'é3-¡=
3
2
.ldR1∼R4 •,w
0
(v)≥4 −1 −
3
2
(f
3
(v)+
f
4
(v)+f
5
(v)) ≥4−1−
3
2
×2 = 0.
bk≥6,Kw(v)=2k−6.dP1 •, f
3
(v)+f
4
(v)+f
5
(v)≤b
k
2
c.däó3.6 •,v؆
(3
−
,4
−
,k)-¡'é.dR1•v–õ‰'é3-¡=
3
2
.dR1 ∼R4,w
0
(v) ≥2k−6−1−
3
2
×b
k
2
c≥
2k−7−
3
4
k=
5
4
k−7 >0.t
äó3.9éz‡f∈F(G) Ñkw
0
(f) ≥0.
y²bd(f) ≥6,Kw
0
(f) = w(f) ≥0.e¡•Ä3 ≤d(f) ≤5.e¡f†2-:'é,KÓœ
¹2aqŒy.e¡f؆2-:'é,KÓœ¹1aqŒy.t
nþ?ØŒ•,ØAÏ2-:,é∀x∈V(G)∪F(G),kw
0
(x) ≥0.däó3.7•㥖õ•3
˜‡AÏ2-:.Ïd,−12 =
P
x∈V(G)∪F(G)
w(x) =
P
x∈V(G)∪F(G)
w
0
(x) ≥−2,gñ.Ïd,‡~Ø•3,
=Ún4¤á.
œ¹4δ(G) = 1.
duGعfã/H
17
ÚH
18
,ÏdãGäkXe5Ÿ.
äó4.1G¥?Û3-¡Ñ´(3
−
,5
+
,5
+
)-¡½(4
+
,4
+
,4
+
)-¡.
äó4.2G¥†2-:'é4-¡•(2,5
+
,5
+
,5
+
)-¡.
du1-:ŒU¬'阇š~5-¡,·‚^w
0
s
5L«1-:9Ù'éš~5-¡#Ú.
fœ/4.1G¥•31 ‡1-:,–õ2 ‡2-:.
dž‰1=£5KÓœ¹2.w,,Ø1-:9Ù'éš~5-¡±92-:,
·‚Œ±yéz‡x∈V(G)∪F(G),kw
0
(x)≥0.w
0
s
≥−4+(−1)=−5.Ïd,
−12 =
P
x∈V(G)∪F(G)
w(x) =
P
x∈V(G)∪F(G)
w
0
(x) ≥w
0
s
+2×(−2) = −9,gñ.Ïd,‡~Ø•3,=Ú
n4¤á.
fœ/4.2G¥•31 ‡1-:,–3 ‡2-:.
dž‰1=£5KÓœ¹3.w,,Ø1-:9Ù'éš~5-¡±9AÏ2-:
,·‚Œ±yéz‡x∈V(G) ∪F(G),kw
0
(x)≥0.w
0
s
≥−4+(−1)=−5.Ïd,
−12 =
P
x∈V(G)∪F(G)
w(x) =
P
x∈V(G)∪F(G)
w
0
(x) ≥w
0
s
+(−2) = −7,gñ.Ïd,‡~Ø•3,=Ún4
¤á.
fœ/4.3G¥•32 ‡1-:.
dGعkfã/H
19
,KG¥Ø•3Ù¦2
−
-:,þ•3
+
-:.dž‰1=£5KÓ
œ¹1.w,,Ø1-:9Ù'éš~5-¡,·‚Œ±yéz‡x∈V(G) ∪F(G),k
w
0
(x)≥0.w
0
s
≥2 ×(−5)=−10.Ïd,−12=
P
x∈V(G)∪F(G)
w(x)=
P
x∈V(G)∪F(G)
w
0
(x)≥w
0
s
≥
DOI:10.12677/aam.2023.1231051042A^êÆ?Ð
Çu$§‘û
−10,gñ.Ïd,‡~Ø•3,=Ún4¤á.t
3.̇½ny²
½n1eG´˜‡Ø¹ƒ5
−
-²¡ã,Ké?¿k≥max{∆,5},ãG´þ!k-Œ/
.
y²æ^‡y{.bG´:ê•‡~ã.eGz‡ëÏ©|–õ4 ‡:,K∆≤3.
Ké?¿k≥max{∆,5}= 5 >∆+1, dÚn3•,ãG´þ!k-Œ/.eGk˜‡ëÏ©|–
5‡:,KdÚn4 •,ãG–•¹H
1
∼H
19
˜‡fã/.e¡Ïékk‡º:f8S.
eG•¹fã/H
i
,i∈{2,4,7,10,12,13,14,16,17,18},-S
0
= {x
k
,x
k−1
,x
k−2
,x
2
,x
1
}.
eG•¹fã/H
i
,i∈{3,5,6,9,15},-S
0
= {x
k
,x
k−1
,x
k−2
,x
k−3
,x
1
}.
eG•¹fã/H
i
,i∈{1,8,11,19},-S
0
= {x
k
,x
k−1
,x
k−2
,x
1
}.
e¡lS
0
ÑuE8ÜS.dÚn2•G´3-òz,¤±G−S
0
•´3-òz.3
G−S
0
¥•Ý:,,3¤fã¥2•Ý:,···,ù-E:,·‚Œ±8Ü
S= {x
k
,x
k−1
,x
k−2
,···x
2
,x
1
}.
N´y,é∀x
i
∈S,1 ≤i≤kk|N
G
(x
i
)−S|≤k−i.
-H=G−S⊆G,V(H)⊆V(G),K∆(H)≤∆.e∆(H)<∆,Kk≥max{∆,5}≥∆≥
∆(H)+1.KdÚn3 •,H´þ!k-Œ/.e∆(H)= ∆,KdG45•,H´þ!k-Œ
/.dÚn1 Œ•,G´þ!k-Œ/.t
íØ1z˜‡∆ ≥5 …عƒ5
−
-²¡ã´þ!∆-Œ/.
(ÜíØ1±9©z[5] Ú[6] (J,·‚Œ±±e(Ø.
½n2z˜‡Ø¹ƒ5
−
-²¡ã÷vߎ3.
ë•©z
[1]Meyer,W.(1973)EquitableColoring.TheAmericanMathematicalMonthly,80,920-922.
https://doi.org/10.1080/00029890.1973.11993408
[2]Erd˝os,P.(1964)Problem9.In:Fielder,M.,Ed.,TheoryofGraphsandItsApplications,
PublishingHouseoftheCzechoslovakAcademyofSciences,Prague,159.
[3]Hajnal,A.andSzemer´edi,E.(1970)ProofofaConjectureofP.Erd˝os.In:Erd˝os,P.,R´enyi,
A. andS´os,V., Eds.,CombinatorialTheoryandItsApplications,North-Holland,Amsterdam,
601-623.
[4]Kierstead, H.A., Kostochka, A.V., Mydlarz, M. and Szemer´edi,E. (2010) A FastAlgorithm for
EquitableColoring.Combinatorica,30,217-224.https://doi.org/10.1007/s00493-010-2483-5
DOI:10.12677/aam.2023.1231051043A^êÆ?Ð
Çu$§‘û
[5]Chen,B.L.,Lih,K.W.andWu,P.L.(1994)EquitableColoringandtheMaximumDegree.
EuropeanJournalofCombinatorics,15,443-447.https://doi.org/10.1006/eujc.1994.1047
[6]Kierstead,H.A. andKostochka,A.V.(2012) Every 4-ColorableGraphwithMaximumDegree
4HasanEquitable4-Coloring.JournalofGraphTheory,71,31-48.
https://doi.org/10.1002/jgt.20630
[7]Chen,B.L.andLih,K.W.(1994)EquitableColoringofTrees.JournalofCombinatorialThe-
ory,SeriesB,61,83-87.https://doi.org/10.1006/jctb.1994.1032
[8]Lih,K.W.andWu,P.L.(1996)OnEquitableColoringofBipartiteGraphs.DiscreteMathe-
matics,151,155-160.https://doi.org/10.1016/0012-365X(94)00092-W
[9]Wang,W.F.andZhang,K.M.(2000)EquitableColoringsofLineGraphsandCompleter-
PartiteGraphs.JournalofSystemsScienceandComplexity,13,190-194.
[10]Kostochka,A.V.(2002)EquitableColoringsofOuterplanarGraph.DiscreteMathematics,
258,373-377.https://doi.org/10.1016/S0012-365X(02)00538-1
[11]Kostochka, A.V.andNakprasit,K. (2003) EquitableColoringsofk-Degenerate Graphs.Com-
binatorics, ProbabilityandComputing, 12, 53-60.https://doi.org/10.1017/S0963548302005485
[12]Yap,H.P.andZhang,Y.(1998)EquitableColoringsofPlanarGraphs.JournalofCombina-
torialMathematicsandCombinatorialComputing,27,97-105.
[13]Nakprasit,K.(2012)EquitableColoringsofPlanarGraphswithMaximumDegreeatLeast
Nine.DiscreteMathematics,312,1019-1024.https://doi.org/10.1016/j.disc.2011.11.004
[14]Zhu,J.L.and Bu,Y.H. (2008)Equitable ListColoringsofPlanar GraphswithoutShortCycles.
TheoreticalComputerScience,407,21-28.https://doi.org/10.1016/j.tcs.2008.04.018
[15]‘…,?Ó.ع4-Ú5-²¡ãþ!/Ú[J].úô“‰ŒÆÆ(g,‰Æ‡),2014,
37(1):1-6.
[16]Zhu,J.L.,Bu,Y.H.andMin,X.(2015)EquitableList-ColoringforC
5
-FreePlaneGraphs
withoutAdjacentTriangles.GraphsandCombinatorics,31,795-804.
https://doi.org/10.1007/s00373-013-1396-7
[17]Dong,A.J.andWu,J.L.(2019)EquitableColoringandEquitableChoosabilityofPlanar
GraphswithoutChordal4-and 6-Cycles.DiscreteMathematicsTheoreticalComputerScience,
21,1-21.
[18]Sittitrai,P.andNakprasit,K.(2022)PlanarGraphswithoutMutuallyAdjacent3-,5-,and
6-CyclesAre3-Degenerate.DiscreteMathematics,345,ArticleID:112942.
https://doi.org/10.1016/j.disc.2022.112942
DOI:10.12677/aam.2023.1231051044A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.