设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(3),1068-1076
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.123108
ŒÈ¼êH¨olderØªdØª
!!!˜˜˜………§§§ÜÜÜ•••qqq§§§ÜÜÜ©©©QQQ
~ÙnóÆ§êƆÚOÆ§ô€~Ù
ÂvFϵ2023c215F¶¹^Fϵ2023c311F¶uÙFϵ2023c320F
Á‡
H¨olderØª3©ÛÆÚÐØªnØ¥ˆüX4Ù-‡Ú"Š•ƒ'ïÄ˜‡-‡•
¡,§†Ù§Øªƒmd'XïÄ•5É-À"©y²ÿݘmþÈ©/ª
H¨olderØª†Žâ²þ-AÛ²þØª,±9§†˜²þØªƒmd'X"ù(J
4Œ/í2o]7•CïálÑØªd'X"
'…c
H¨olderØª§Žâ²þ-AÛ²þØª§˜²þØª§d5
EquivalentInequalitiesoftheH¨older
InequalityforIntegrableFunctions
ShiyuShen,ShengjieZhang,WenbinZhang
SchoolofMathematicsandStatistics,ChangshuInstituteofTechnology,ChangshuJiangsu
Received:Feb.15
th
,2023;accepted:Mar.11
th
,2023;published:Mar.20
th
,2023
Abstract
H¨olderinequalityplaysanextremelyimportantroleinanalysisandelementaryin-
equalitytheory.Asanimportantaspectofrelatedresearch,thestudyofitsequiva-
©ÙÚ^:!˜…,Ü•q,Ü©Q.ŒÈ¼êH¨olderØªdØª[J].A^êÆ?Ð,2023,12(3):1068-1076.
DOI:10.12677/aam.2023.123108
!˜…
lencerelationshipwithotherinequalitieshasalsoreceivedincreasingattention.This
paperprovestheH¨olderinequalityandtheAM-GMinequalityinmeasurespace,and
itsequivalencerelationshipwiththepowermeaninequality.Theseresultsgeneralize
thediscreteinequalityequivalencerelationshiprecentlyestablishedbyLietal.
Keywords
H¨olderInequality,AM-GMInequality,PowerAverageInequality,Equivalence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3²;©Û+•¥\Žâ²þ-AÛ²þØª[1]Ï~´lJensenØªíäÑ5,†
Žâ²þ-AÛ²þØªƒ',JensenØª´˜‡•2ÂØª"d,dLeonardJames
Rogersuy¿dOttoH¨olderÕáuyH¨olderØª[2]´ïÄÈ©ÚL
p
˜m˜‡Ä…
ØŒ½"Øª•´Cauchy-Bunyakovsky-SchwarzØª[3]í2"H¨olderØª^uy
²MinkowskiØª,ù´L
p
(µ)˜m[4,5]¥n/Øª"Sa= (a
1
,a
2
,...,a
n
)\˜²
þ(•¡•2²þ),M(a)½Â•M
m
r
(a) = m
1
a
r
1
+m
2
a
r
2
+···+m
n
a
r
n
)
1
r
,ù´˜‡8Ü¼ê
x,3©ÛØª¥åX–'-‡Š^[2–6]"
Cc5§NõïÄ<éïĘͶ©ÛØªƒmêÆd5a,,XCauchyõ
SchwarzØª,BernoulliØª,WielandtØªÚMinkowskiØª,•„[7–13]"d,ù
ïÄ5¿\Žâ²þ-AÛ²þØª,H¨olderØªÚ\˜²þØªƒm'XE,Ø
˜Ù,¦+˜‡ØªÏ~k Ïuy² ,˜‡Øª[1,12],3þãïÄ-ye,•[y²ùn
‡Í¶ØªƒmêÆd5;[15]¥Ú\(J•í2"
½nA-0≤a
i
,b
i
∈R(i=1,···,n),p,q∈R,…
1
p
+
1
q
=1.XJ0≤c
i
∈R(i=1,···,n)¿
…0 ≤λ
i
∈R(i= 1,···,n),k
P
n
k=1
λ
i
= 1,K±eØªƒpd
lllÑÑÑH¨olderØØØªªªµµµ
n
X
k=1
a
k
b
k
≤
n
X
k=1
a
p
k
!
1
p
n
X
k=1
b
q
k
!
1
q
.(1)
DOI:10.12677/aam.2023.1231081069A^êÆ?Ð
!˜…
lllÑÑÑ\\\AM-GMØØØªªªµµµ
n
Y
k=1
c
λ
k
k
≤
n
X
k=1
λ
k
c
k
.(2)
lllÑÑÑ\\\˜˜˜²²²þþþØØØªªªµµµe0 ≤r≤s,K
n
X
k=1
λ
k
c
r
k
!
1
r
≤
n
X
k=1
λ
k
c
s
k
!
1
s
.(3)
½nAL²lÑ/ªH¨olderØª†\Žâ²þ-AÛ²þØª,±9\˜²þØª
´d"˜‡g,¯K´éëY/ªH¨olderØª,Ùd/ªLy•NØª,§‚
†Øª(2)†(3)qkNéX?©£‰þã¯K,‰Ñ“ëY/ª”AM-GMØªÚ ˜
²þØª,¿y²§‚†ëY/ªH¨olderØªƒmd5"AO/,·‚(J´Äu
ÿݘmþÿÝÈ©5Ðm"
•Qã·‚(J,IÚ?ePÒ:(Ω,µ)•˜ÿݘm,f,g•(Ω,µ)þŒÈ¼ê"Pÿ
ݵ3ΩþoŸþ•|µ|"ép≥1,·‚½ÂfL
p
‰ê||f||
p
Xe:
||f||
p
=

Z
Ω
|f(x)|
p
dµ(x)

1
p
,x∈Ω.
·‚̇(J´µ
½n1.1-p,q>1,…
1
p
+
1
q
= 1,f,g•ÿݘmΩþŒÈ¼ê,µ•Ωþ˜‡ÿÝ,0 <r<s,
K±eØªƒpd"
(i)H¨olderÈÈÈ©©©ØØØªªªµµµ
Z
Ω
|f(x)g(x)|dµ(x) ≤kfk
p
kgk
q
.(4)
(ii)AM-GMØØØªªªµµµ
exp

1
|µ|
Z
Ω
ln|f(x)|dµ(x)

≤
1
|µ|
Z
Ω
|f(x)|dµ(x).(5)
(iii)˜˜˜²²²þþþØØØªªªµµµ

1
|µ|
Z
Ω
|f(x)|
r
dµ(x)

1
r
≤

1
|µ|
Z
Ω
|f(x)|
s
dµ(x)

1
s
.(6)
w,,3Øª(4)-(6)¥,eΩ=[a,b]…f,g•3x
i
∈[a,b],i∈1,2,···,nþš0Š,KN´
y²(4)-(6)éA(1)-(3)"Äud*,·‚ò(5)Ú(6)¡•ëY/ªAM-GMØªÚ˜²þØ
ª"
DOI:10.12677/aam.2023.1231081070A^êÆ?Ð
!˜…
2.ëY/ªH¨olderØª†Žâ²þ-AÛ²þØªd5
½n2.1ëY/ªH¨olderØª(4)†ëYAM-GMØª(5)d"
y²µ
3H¨olderØª(4)¥,-
f=
1
|µ|
1
p
|
˜
f(x)|
1
p
,g=

1
|µ|

1
q
.
KŒ
1
|µ|
Z
Ω
|
˜
f(x)|dµ(x) ≥

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
dµ(x)

p
.(7)
3(7)¥,-|
˜
˜
f(x)|= |
˜
f(x)|
1
p
,KŒ
1
|µ|
Z
Ω
|
˜
f(x)|dµ(x) =
1
|µ|
Z
Ω
|
˜
˜
f(x)|dµ(x).(8)
é(8)ªm>A^Øª(7),·‚k
1
|µ|
Z
Ω
|
˜
˜
f(x)|
1
p
dµ(x) ≥

1
|µ|
Z
Ω
|
˜
˜
f(x)|
1
p
2
dµ(x)

p
.(9)
Ü¿(7),(8),(9)Œk
1
|µ|
Z
Ω
|
˜
f(x)|dµ(x) ≥

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
dµ(x)

p
≥

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
2
dµ(x)

p
2
.
UYù‡L§,·‚k±eØªó
1
|µ|
Z
Ω
|f|dx≥

1
|µ|
Z
Ω
|f|
1/p
dx

p
≥

1
|µ|
Z
Ω
|f|
1
p
2
dx

p
2
≥···≥

1
|µ|
Z
Ω
|f|
1
p
n
dx

p
n
≥···.
AO/,nªuá,·‚k
1
|µ|
Z
Ω
|
˜
f(x)|dµ(x) ≥lim
n→∞

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
n
dµ(x)

p
n
.(10)
e5,é(10)ª¦4•"·‚-
A=

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
n
dµ(x)

p
n
.
DOI:10.12677/aam.2023.1231081071A^êÆ?Ð
!˜…
•ÄlnA3n→∞ž4•,=¦
lim
n→∞
lnA=lim
n→∞
p
n
ln

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
n
dµ(x)

.(11)
·‚òy²
lim
n→∞
p
n
ln

1
|µ|
Z
Ω
|
˜
f(x)|
1
p
n
dµ(x)

=
1
|µ|
Z
Ω
ln|
˜
f(x)|dµ.(12)
w,§e-
1
p
n
= y,Kp
n
=
1
y
,þª†>C•
lim
y→0
ln

1
|µ|
R
Ω
|
˜
f(x)|
y
dµ(x)

y
.
A^â7ˆ{KŒ
lim
n→∞
lnA=lim
y→0
1
|µ|
R
Ω
ln|
˜
f(x)||
˜
f(x)|
y
dµ(x)
1
|µ|
R
Ω
|
˜
f(x)|
y
dµ(x)
.
=
1
|µ|
Z
Ω
ln|
˜
f(x)|dµ(x).
ùÒy²(12)"
‡L5§b(5)¤á§·‚òy²(4)7,¤á"
éuλ
1
,λ
2
∈[0,1],c
1
,c
2
>0,Š•(5)ª˜‡lÑœ/,·‚k±e\ÄØª
λ
1
c
1
+λ
2
c
2
≥c
λ
1
1
c
λ
2
2
.(13)
3(13)¥-λ
1
=
1
p
,λ
2
=
1
q
,±9
c
1
= |f(x)|
p
Z
Ω
|g(x)|
q
dµ(x);
c
2
= |g(x)|
q
Z
Ω
|f(x)|
p
dµ(x),
Œ
1
p
|f(x)|
p
Z
Ω
|g(x)|
q
dµ(x)+
1
q
|g(x)|
q
Z
Ω
|f(x)|
p
dµ(x)
≥|f(x)||g(x)|

Z
Ω
|f(x)|
p
dµ(x)

1
q

Z
Ω
|g(x)|
q
dµ(x)

1
p
.
(14)
DOI:10.12677/aam.2023.1231081072A^êÆ?Ð
!˜…
é(14)ü>'udµÈ©Œ
1
p
Z
Ω
|f(x)|
p
dµ(x)
Z
Ω
|g(x)|
q
dµ(x)+
1
q
Z
Ω
|g(x)|
q
dµ(x)
Z
Ω
|f(x)|
p
dµ(x)
≥

Z
Ω
|g(x)|
q
dµ(x)

1
p

Z
Ω
|f(x)|
p
dµ(x)

1
q
Z
Ω
|f(x)g(x)|dµ(x).
d=
Z
Ω
|f(x)g(x)|dµ(x) ≤kfk
p
kgk
q
.
y."
3.ÿݘmþŽâ²þ-AÛ²þØªÚ˜²þØªƒmd5
½n3.1ëYAM-GMØª(5)†ëY˜²þØª(6)d"
y²µ3(6)ª¥-s= 1,r•g
1
2
,
1
3
,···,
1
n
,···,KŒ
1
|µ|
Z
Ω
|f(x)|dµ(x) ≥

1
|µ|
Z
Ω
|f(x)|
1
2
dµ(x)

2
≥

1
|µ|
Z
Ω
|f(x)|
1
3
dµ(x)

3
≥···
≥

1
|µ|
Z
Ω
|f(x)|
1
n
dµ(x)

n
≥···.
(15)
3þãØªó¥-t=
1
n
,Knªuáž,tªu0,¿…k
lim
n→∞

1
|µ|
Z
Ω
|f(x)|
1
n
dµ(x)

n
= lim
t→0

1
|µ|
Z
Ω
|f(x)|
t
dµ(x)

1
t
.
ém>¦4•(2gA^â7ˆ{K),Œ
lim
t→0

1
|µ|
Z
Ω
|f(x)|
t
dµ(x)

1
t
= exp

1
|µ|
Z
Ω
ln|f(x)|dµ(x)

.(16)
Ü¿(15)†(16),·‚k
1
|µ|
Z
Ω
|f(x)|dµ(x) ≥exp

1
|µ|
Z
Ω
ln|f(x)|dµ(x)

.
ùÒ(5)"
DOI:10.12677/aam.2023.1231081073A^êÆ?Ð
!˜…
‡L5,b(5)¤á,·‚òy²(6)7,¤á"
·‚ò==I‡(5)ª±eAÏœ/µ
λ
1
c
1
+λ
2
c
2
≥c
λ
1
1
c
λ
2
2
.(17)
Ù¥λ
1
,λ
2
∈[0,1],c
1
,c
2
>0.
3(18)ª¥-λ
1
=
r
s
,λ
2
= 1−
r
s
,¿…-
u
s
(f) =
1
|µ|
Z
Ω
|f(x)|
s
dµ(x).(18)
±9
c
1
=
1
|µ|
|f(x)|
s
u
s
(f)
−1
;c
2
=
1
|µ|
.
Kk
r
s
1
|µ|
|f(x)|
s
u
s
(f)
−1
+

1−
r
s

1
|µ|
≥

1
|µ|
|f(x)|
s
u
s
(f)
−1

r
s

1
|µ|

1−
r
s
.(19)
é(19)ªü>'udµÈ©,d(18)ªŒ
1
|µ|
Z
Ω
|f(x)|
r
dµ(x)u
s
(f)
−
r
s
≤
r
s
Z
Ω
1
|µ|
|f(x)|
s
u
s
(f)
−1
dµ(x)+

1−
r
s

Z
Ω
1
|µ|
dµ(x)
=
r
s
+

1−
r
s

= 1.
d=
1
|µ|
Z
Ω
|f(x)|
r
dµ(x)

1
|µ|
Z
Ω
|f(x)|
s
dµ(x)

−
r
s
≤1.
ddŒ

1
|µ|
Z
Ω
|f(x)|
r
dµ(x)

1
r
≤

1
|µ|
Z
Ω
|f(x)|
s
dµ(x)

1
s
.
y."
4.o(
à5´êÆ¥˜‡Ä:-‡ïÄ‘ K"à5ƒ'Øª`z/ªÚd/ªA^´˜‡Q
ÐqØ”c÷5ïÄ••"à5ƒ'Øªd53à õc÷‘ K¥kX \2 •A^,~
X,Sobolevi\nØ`z†\r,_SobolevØªïá"§3AÛ©Û!•¼©Û!VÇÚO
+••kX-Œ¿Â"
DOI:10.12677/aam.2023.1231081074A^êÆ?Ð
!˜…
©ïÄH¨olderØª†Ž â²þ-AÛ²þØª!˜²þØª-‡Øªƒmd5ÿ
ÐëYÿݘmŒ15"·‚(J4Œ/í2QklÑœ/žƒ'd5,3ƒ'A^Œ
·5þ•ò¬•2•!(¹"Y·‚òUYïÄà5ƒ'4НK,å¦y²\r/ª\AÛ²
þ-Žâ²þØª,¿ïáëY‡\r˜²þØª9Ùd/ª,íÄà5ƒ'Øª9ÙA^ 
ïÄ"
Ä7‘8
‘8¼ô€ŽŒÆ)M#M’Ôö‘8]Ï,‘8?Òµ202210333019Z"
ë•©z
[1]Abramovich,S.,Mond,B.andPeˇcari´c, J.E.(1997)SharpeningJensen’sInequalityand aMajorization
Theorem.JournalofMathematicalAnalysisandApplications,214,721-728.
https://doi.org/10.1006/jmaa.1997.5527
[2]Hardy,G.H.,Littlewood,J.E.,P´olya,G.andP´olya,G.(1952)Inequalities.CambridgeUniversity
Press,Cambridge.
[3]Dragomir, S.S. (2003)A Survey onCauchy-Bunyakovsky-Schwarz Type Discrete Inequalities.Journal
ofInequalitiesinPureandAppliedMathematics,4,Article63.
[4]Beckenbach,E.F.andBellman,R.(2012)Inequalities(Vol.30).SpringerScience&BusinessMedia,
Berlin.
[5]Mitrinovic,D.S.andVasic,P.M.(1970)AnalyticInequalities(Vol.1).Springer-Verlag,Berlin.
[6]Abramovich,S.,Mond,B.andPe´cari´c, J.E.(1997)SharpeningJensen’sInequalityand aMajorization
Theorem.JournalofMathematicalAnalysisandApplications,214,721-728.
https://doi.org/10.1006/jmaa.1997.5527
[7]Fujii, M.,Furuta, T.,Nakamoto,R. and Takahashi, S.E. (1997) Operator Inequalities and Covariance
inNoncommutativeProbability.MathematicaJaponicae,46,317-320.
[8]Li,Y.C.and Shaw,S.Y.(2006) AProofofH¨older’sInequality Usingthe Cauchy-Schwarz Inequality.
JournalofInequalitiesinPureandAppliedMathematics,7,Article62.
[9]Maligranda,L.(2001)EquivalenceoftheH¨older-RogersandMinkowskiInequalities.Mathematical
Inequalities&Applications,4,203-207.https://doi.org/10.7153/mia-04-18
[10]Maligranda,L.(2012)TheAM-GMInequalityIsEquivalenttotheBernoulliInequality.TheMath-
ematicalIntelligencer,34,1-2.https://doi.org/10.1007/s00283-011-9266-8
[11]Zhang,F.(2001) Equivalenceof theWielandt Inequality andthe Kantorovich Inequality. Linearand
MultilinearAlgebra,48,275-279.https://doi.org/10.1080/03081080108818673
[12]Marshall,A.W.,Olkin,I.andArnold,B.C.(1979)Inequalities:TheoryofMajorizationandIts
Applications(Vol.143,pp.xx+-569).AcademicPress,NewYork.
DOI:10.12677/aam.2023.1231081075A^êÆ?Ð
!˜…
[13]Sitnik,S.M.(2010)GeneralizedYoungandCauchy-BunyakowskyInequalitieswithApplications:A
Survey.arXivpreprint.
[14]Lin,M.(2012)TheAM-GMInequalityandCBSInequalityAreEquivalent.TheMathematicalIn-
telligencer,34,6.https://doi.org/10.1007/s00283-012-9292-1
[15]Li,Y.,Gu, X.M.andZhao, J.(2018)TheWeightedArithmeticMean-GeometricMeanInequalityIsE-
quivalent totheH¨older Inequality. Symmetry,10, Article380.https://doi.org/10.3390/sym10090380
DOI:10.12677/aam.2023.1231081076A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.