设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(3),1068-1076
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.123108
Œ
È
¼
ê
H¨older
Ø
ª
d
Ø
ª
!!!˜˜˜
………
§§§
ÜÜÜ
•••
qqq
§§§
ÜÜÜ
©©©
QQQ
~
Ù
n
ó
Æ
§
ê
Æ
†
Ú
O
Æ
§
ô
€
~
Ù
Â
v
F
Ï
µ
2023
c
2
15
F
¶
¹
^
F
Ï
µ
2023
c
3
11
F
¶
u
Ù
F
Ï
µ
2023
c
3
20
F
Á
‡
H¨older
Ø
ª
3
©
Û
Æ
Ú
Ð
Ø
ª
n
Ø
¥
ˆ
ü
X
4
Ù
-
‡
Ú
"
Š
•
ƒ
'
ï
Ä
˜
‡
-
‡
•
¡
,
§
†
Ù
§
Ø
ª
ƒ
m
d
'
X
ï
Ä
•
5
É
-
À
"
©
y
²
ÿ
Ý
˜
m
þ
È
©
/
ª
H¨older
Ø
ª
†
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
,
±
9
§
†
˜
²
þ
Ø
ª
ƒ
m
d
'
X
"
ù
(
J
4
Œ
/
í
2
o
]
7
•
C
ï
á
l
Ñ
Ø
ª
d
'
X
"
'
…
c
H¨older
Ø
ª
§
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
§
˜
²
þ
Ø
ª
§
d
5
EquivalentInequalitiesoftheH¨older
InequalityforIntegrableFunctions
ShiyuShen,ShengjieZhang,WenbinZhang
SchoolofMathematicsandStatistics,ChangshuInstituteofTechnology,ChangshuJiangsu
Received:Feb.15
th
,2023;accepted:Mar.11
th
,2023;published:Mar.20
th
,2023
Abstract
H¨olderinequalityplaysanextremelyimportantroleinanalysisandelementaryin-
equalitytheory.Asanimportantaspectofrelatedresearch,thestudyofitsequiva-
©
Ù
Ú
^
:
!˜
…
,
Ü
•
q
,
Ü
©
Q
.
Œ
È
¼
ê
H¨older
Ø
ª
d
Ø
ª
[J].
A^
ê
Æ
?
Ð
,2023,12(3):1068-1076.
DOI:10.12677/aam.2023.123108
!˜
…
lencerelationshipwithotherinequalitieshasalsoreceivedincreasingattention.This
paperprovestheH¨olderinequalityandtheAM-GMinequalityinmeasurespace,and
itsequivalencerelationshipwiththepowermeaninequality.Theseresultsgeneralize
thediscreteinequalityequivalencerelationshiprecentlyestablishedbyLi
etal.
Keywords
H¨olderInequality,AM-GMInequality,PowerAverageInequality,Equivalence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
²
;
©
Û
+
•
¥
\
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
[1]
Ï
~
´
l
Jensen
Ø
ª
í
ä
Ñ
5
,
†
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
ƒ
'
,Jensen
Ø
ª´
˜
‡•
2
Â
Ø
ª
"
d
,
d
LeonardJames
Rogers
u
y
¿
d
OttoH¨older
Õ
á
u
y
H¨older
Ø
ª
[2]
´
ï
Ä
È
©
Ú
L
p
˜
m
˜
‡
Ä
…
Ø
Œ
½
"
Ø
ª
•
´
Cauchy-Bunyakovsky-Schwarz
Ø
ª
[3]
í
2
"
H¨older
Ø
ª
^u
y
²
Minkowski
Ø
ª
,
ù
´
L
p
(
µ
)
˜
m
[4,5]
¥
n
/
Ø
ª
"
S
a
= (
a
1
,a
2
,...,a
n
)
\
˜
²
þ
(
•
¡
•
2
Â
²
þ
),
M
(
a
)
½
Â
•
M
m
r
(
a
) =
m
1
a
r
1
+
m
2
a
r
2
+
···
+
m
n
a
r
n
)
1
r
,
ù
´
˜
‡
8
Ü
¼
ê
x
,
3
©
Û
Ø
ª
¥
å
X
–
'
-
‡
Š
^
[2–6]
"
C
c
5
§
N
õ
ï
Ä
<
é
ï
Ä
˜
Í
¶
©
Û
Ø
ª
ƒ
m
ê
Æ
d
5
a
,
,
X
Cauchy
õ
Schwarz
Ø
ª
,Bernoulli
Ø
ª
,Wielandt
Ø
ª
Ú
Minkowski
Ø
ª
,
•
„
[7–13]
"
d
,
ù
ï
Ä
5
¿
\
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
,H¨older
Ø
ª
Ú
\
˜
²
þ
Ø
ª
ƒ
m
'
X
E,
Ø
˜
Ù
,
¦
+
˜
‡
Ø
ª
Ï
~
k
Ï
u
y
²
,
˜
‡
Ø
ª
[1,12],
3
þ
ã
ï
Ä
-
y
e
,
•[
y
²
ù
n
‡
Í
¶
Ø
ª
ƒ
m
ê
Æ
d
5
;[15]
¥
Ú
\
(
J
•
í
2
"
½
n
A
-
0
≤
a
i
,b
i
∈
R
(
i
=1
,
···
,n
)
,
p,q
∈
R
,
…
1
p
+
1
q
=1
.
X
J
0
≤
c
i
∈
R
(
i
=1
,
···
,n
)
¿
…
0
≤
λ
i
∈
R
(
i
= 1
,
···
,n
)
,
k
P
n
k
=1
λ
i
= 1
,
K
±
e
Ø
ª
ƒ
p
d
lll
ÑÑÑ
H¨older
ØØØ
ªªª
µµµ
n
X
k
=1
a
k
b
k
≤
n
X
k
=1
a
p
k
!
1
p
n
X
k
=1
b
q
k
!
1
q
.
(1)
DOI:10.12677/aam.2023.1231081069
A^
ê
Æ
?
Ð
!˜
…
lll
ÑÑÑ
\\\
AM-GM
ØØØ
ªªª
µµµ
n
Y
k
=1
c
λ
k
k
≤
n
X
k
=1
λ
k
c
k
.
(2)
lll
ÑÑÑ
\\\
˜˜˜
²²²
þþþ
ØØØ
ªªª
µµµ
e
0
≤
r
≤
s
,
K
n
X
k
=1
λ
k
c
r
k
!
1
r
≤
n
X
k
=1
λ
k
c
s
k
!
1
s
.
(3)
½
n
A
L
²
l
Ñ
/
ª
H¨older
Ø
ª
†
\
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
,
±
9\
˜
²
þ
Ø
ª
´
d
"
˜
‡
g
,
¯
K
´
é
ë
Y/
ª
H¨older
Ø
ª
,
Ù
d
/
ª
L
y
•
N
Ø
ª
,
§
‚
†
Ø
ª
(2)
†
(3)
qk
N
é
X
?
©
£
‰
þ
ã
¯
K
,
‰
Ñ
“
ë
Y/
ª
”
AM-GM
Ø
ª
Ú
˜
²
þ
Ø
ª
,
¿
y
²
§
‚
†
ë
Y/
ª
H¨older
Ø
ª
ƒ
m
d
5
"
A
O
/
,
·
‚
(
J
´
Ä
u
ÿ
Ý
˜
m
þ
ÿ
Ý
È
©
5
Ð
m
"
•
Q
ã
·
‚
(
J
,
I
Ú
?
e
P
Ò
:
(Ω
,µ
)
•
˜
ÿ
Ý
˜
m
,
f,g
•
(Ω
,µ
)
þ
Œ
È
¼
ê
"
P
ÿ
Ý
µ
3
Ω
þ
o
Ÿ
þ
•
|
µ
|
"
é
p
≥
1,
·
‚
½
Â
f
L
p
‰
ê
||
f
||
p
X
e
:
||
f
||
p
=
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
1
p
,x
∈
Ω
.
·
‚
Ì
‡
(
J
´
µ
½
n
1.1
-
p,q>
1
,
…
1
p
+
1
q
= 1
,
f,g
•
ÿ
Ý
˜
m
Ω
þ
Œ
È
¼
ê
,
µ
•
Ω
þ
˜
‡
ÿ
Ý
,
0
<r<s
,
K
±
e
Ø
ª
ƒ
p
d
"
(i)H¨older
ÈÈÈ
©©©
ØØØ
ªªª
µµµ
Z
Ω
|
f
(
x
)
g
(
x
)
|
dµ
(
x
)
≤k
f
k
p
k
g
k
q
.
(4)
(ii)AM-GM
ØØØ
ªªª
µµµ
exp
1
|
µ
|
Z
Ω
ln
|
f
(
x
)
|
dµ
(
x
)
≤
1
|
µ
|
Z
Ω
|
f
(
x
)
|
dµ
(
x
)
.
(5)
(iii)
˜˜˜
²²²
þþþ
ØØØ
ªªª
µµµ
1
|
µ
|
Z
Ω
|
f
(
x
)
|
r
dµ
(
x
)
1
r
≤
1
|
µ
|
Z
Ω
|
f
(
x
)
|
s
dµ
(
x
)
1
s
.
(6)
w
,
,
3
Ø
ª
(4)-(6)
¥
,
e
Ω=[
a,b
]
…
f,g
•
3
x
i
∈
[
a,b
]
,i
∈
1
,
2
,
···
,n
þ
š
0
Š
,
K
N
´
y
²
(4)-(6)
é
A
(1)-(3)
"
Ä
u
d
*
,
·
‚
ò
(5)
Ú
(6)
¡
•
ë
Y/
ª
AM-GM
Ø
ª
Ú
˜
²
þ
Ø
ª
"
DOI:10.12677/aam.2023.1231081070
A^
ê
Æ
?
Ð
!˜
…
2.
ë
Y/
ª
H¨older
Ø
ª
†
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
d
5
½
n
2.1
ë
Y/
ª
H¨older
Ø
ª
(4)
†
ë
Y
AM-GM
Ø
ª
(5)
d
"
y
²
µ
3
H¨older
Ø
ª
(4)
¥
,
-
f
=
1
|
µ
|
1
p
|
˜
f
(
x
)
|
1
p
,g
=
1
|
µ
|
1
q
.
K
Œ
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
dµ
(
x
)
≥
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
dµ
(
x
)
p
.
(7)
3
(7)
¥
,
-
|
˜
˜
f
(
x
)
|
=
|
˜
f
(
x
)
|
1
p
,
K
Œ
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
dµ
(
x
) =
1
|
µ
|
Z
Ω
|
˜
˜
f
(
x
)
|
dµ
(
x
)
.
(8)
é
(8)
ª
m
>
A^
Ø
ª
(7),
·
‚
k
1
|
µ
|
Z
Ω
|
˜
˜
f
(
x
)
|
1
p
dµ
(
x
)
≥
1
|
µ
|
Z
Ω
|
˜
˜
f
(
x
)
|
1
p
2
dµ
(
x
)
p
.
(9)
Ü
¿
(7),(8),(9)
Œ
k
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
dµ
(
x
)
≥
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
dµ
(
x
)
p
≥
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
2
dµ
(
x
)
p
2
.
U
Y
ù
‡
L
§
,
·
‚
k
±
e
Ø
ª
ó
1
|
µ
|
Z
Ω
|
f
|
dx
≥
1
|
µ
|
Z
Ω
|
f
|
1
/p
dx
p
≥
1
|
µ
|
Z
Ω
|
f
|
1
p
2
dx
p
2
≥···≥
1
|
µ
|
Z
Ω
|
f
|
1
p
n
dx
p
n
≥···
.
A
O
/
,
n
ª
u
Ã
¡
,
·
‚
k
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
dµ
(
x
)
≥
lim
n
→∞
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
n
dµ
(
x
)
p
n
.
(10)
e
5
,
é
(10)
ª
¦
4
•
"
·
‚
-
A
=
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
n
dµ
(
x
)
p
n
.
DOI:10.12677/aam.2023.1231081071
A^
ê
Æ
?
Ð
!˜
…
•
Ä
ln
A
3
n
→∞
ž
4
•
,
=
¦
lim
n
→∞
ln
A
=lim
n
→∞
p
n
ln
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
n
dµ
(
x
)
.
(11)
·
‚
ò
y
²
lim
n
→∞
p
n
ln
1
|
µ
|
Z
Ω
|
˜
f
(
x
)
|
1
p
n
dµ
(
x
)
=
1
|
µ
|
Z
Ω
ln
|
˜
f
(
x
)
|
dµ.
(12)
w
,
§
e
-
1
p
n
=
y
,
K
p
n
=
1
y
,
þ
ª
†
>C
•
lim
y
→
0
ln
1
|
µ
|
R
Ω
|
˜
f
(
x
)
|
y
dµ
(
x
)
y
.
A^
â
7
ˆ
{
K
Œ
lim
n
→∞
ln
A
=lim
y
→
0
1
|
µ
|
R
Ω
ln
|
˜
f
(
x
)
||
˜
f
(
x
)
|
y
dµ
(
x
)
1
|
µ
|
R
Ω
|
˜
f
(
x
)
|
y
dµ
(
x
)
.
=
1
|
µ
|
Z
Ω
ln
|
˜
f
(
x
)
|
dµ
(
x
)
.
ù
Ò
y
²
(12)
"
‡
L
5
§
b
(5)
¤
á
§
·
‚
ò
y
²
(4)
7
,
¤
á
"
é
u
λ
1
,λ
2
∈
[0
,
1]
,c
1
,c
2
>
0,
Š
•
(5)
ª
˜
‡
l
Ñ
œ
/
,
·
‚
k
±
e
\
Ä
Ø
ª
λ
1
c
1
+
λ
2
c
2
≥
c
λ
1
1
c
λ
2
2
.
(13)
3
(13)
¥
-
λ
1
=
1
p
,λ
2
=
1
q
,
±
9
c
1
=
|
f
(
x
)
|
p
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
);
c
2
=
|
g
(
x
)
|
q
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
,
Œ
1
p
|
f
(
x
)
|
p
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
)+
1
q
|
g
(
x
)
|
q
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
≥|
f
(
x
)
||
g
(
x
)
|
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
1
q
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
)
1
p
.
(14)
DOI:10.12677/aam.2023.1231081072
A^
ê
Æ
?
Ð
!˜
…
é
(14)
ü
>
'
u
dµ
È
©
Œ
1
p
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
)+
1
q
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
)
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
≥
Z
Ω
|
g
(
x
)
|
q
dµ
(
x
)
1
p
Z
Ω
|
f
(
x
)
|
p
dµ
(
x
)
1
q
Z
Ω
|
f
(
x
)
g
(
x
)
|
dµ
(
x
)
.
d
=
Z
Ω
|
f
(
x
)
g
(
x
)
|
dµ
(
x
)
≤k
f
k
p
k
g
k
q
.
y
.
"
3.
ÿ
Ý
˜
m
þ
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
Ú
˜
²
þ
Ø
ª
ƒ
m
d
5
½
n
3.1
ë
Y
AM-GM
Ø
ª
(5)
†
ë
Y
˜
²
þ
Ø
ª
(6)
d
"
y
²
µ
3
(6)
ª
¥
-
s
= 1,
r
•
g
1
2
,
1
3
,
···
,
1
n
,
···
,
K
Œ
1
|
µ
|
Z
Ω
|
f
(
x
)
|
dµ
(
x
)
≥
1
|
µ
|
Z
Ω
|
f
(
x
)
|
1
2
dµ
(
x
)
2
≥
1
|
µ
|
Z
Ω
|
f
(
x
)
|
1
3
dµ
(
x
)
3
≥···
≥
1
|
µ
|
Z
Ω
|
f
(
x
)
|
1
n
dµ
(
x
)
n
≥···
.
(15)
3
þ
ã
Ø
ª
ó
¥
-
t
=
1
n
,
K
n
ª
u
Ã
¡
ž
,
t
ª
u
0,
¿
…
k
lim
n
→∞
1
|
µ
|
Z
Ω
|
f
(
x
)
|
1
n
dµ
(
x
)
n
= lim
t
→
0
1
|
µ
|
Z
Ω
|
f
(
x
)
|
t
dµ
(
x
)
1
t
.
é
m
>
¦
4
•
(
2
g
A^
â
7
ˆ
{
K
),
Œ
lim
t
→
0
1
|
µ
|
Z
Ω
|
f
(
x
)
|
t
dµ
(
x
)
1
t
= exp
1
|
µ
|
Z
Ω
ln
|
f
(
x
)
|
dµ
(
x
)
.
(16)
Ü
¿
(15)
†
(16),
·
‚
k
1
|
µ
|
Z
Ω
|
f
(
x
)
|
dµ
(
x
)
≥
exp
1
|
µ
|
Z
Ω
ln
|
f
(
x
)
|
dµ
(
x
)
.
ù
Ò
(5)
"
DOI:10.12677/aam.2023.1231081073
A^
ê
Æ
?
Ð
!˜
…
‡
L
5
,
b
(5)
¤
á
,
·
‚
ò
y
²
(6)
7
,
¤
á
"
·
‚
ò
==
I
‡
(5)
ª
±
e
A
Ï
œ
/
µ
λ
1
c
1
+
λ
2
c
2
≥
c
λ
1
1
c
λ
2
2
.
(17)
Ù
¥
λ
1
,λ
2
∈
[0
,
1]
,c
1
,c
2
>
0
.
3
(18)
ª
¥
-
λ
1
=
r
s
,λ
2
= 1
−
r
s
,
¿
…
-
u
s
(
f
) =
1
|
µ
|
Z
Ω
|
f
(
x
)
|
s
dµ
(
x
)
.
(18)
±
9
c
1
=
1
|
µ
|
|
f
(
x
)
|
s
u
s
(
f
)
−
1
;
c
2
=
1
|
µ
|
.
K
k
r
s
1
|
µ
|
|
f
(
x
)
|
s
u
s
(
f
)
−
1
+
1
−
r
s
1
|
µ
|
≥
1
|
µ
|
|
f
(
x
)
|
s
u
s
(
f
)
−
1
r
s
1
|
µ
|
1
−
r
s
.
(19)
é
(19)
ª
ü
>
'
u
dµ
È
©
,
d
(18)
ª
Œ
1
|
µ
|
Z
Ω
|
f
(
x
)
|
r
dµ
(
x
)
u
s
(
f
)
−
r
s
≤
r
s
Z
Ω
1
|
µ
|
|
f
(
x
)
|
s
u
s
(
f
)
−
1
dµ
(
x
)+
1
−
r
s
Z
Ω
1
|
µ
|
dµ
(
x
)
=
r
s
+
1
−
r
s
= 1
.
d
=
1
|
µ
|
Z
Ω
|
f
(
x
)
|
r
dµ
(
x
)
1
|
µ
|
Z
Ω
|
f
(
x
)
|
s
dµ
(
x
)
−
r
s
≤
1
.
d
d
Œ
1
|
µ
|
Z
Ω
|
f
(
x
)
|
r
dµ
(
x
)
1
r
≤
1
|
µ
|
Z
Ω
|
f
(
x
)
|
s
dµ
(
x
)
1
s
.
y
.
"
4.
o
(
à
5
´ê
Æ
¥
˜
‡
Ä
:
-
‡
ï
Ä
‘
K
"
à
5
ƒ
'
Ø
ª
`
z
/
ª
Ú
d
/
ª
A^
´
˜
‡
Q
Ð
q
Ø
”
c
÷5
ï
Ä
•
•
"
à
5
ƒ
'
Ø
ª
d
5
3
Ã
õ
c
÷
‘
K
¥
k
X
\
2
•
A^
,
~
X
,Sobolev
i
\
n
Ø
`
z
†
\
r
,
_
Sobolev
Ø
ª
ï
á
"
§
3
A
Û
©
Û
!
•
¼
©
Û
!
V
Ç
Ú
O
+
•
•
k
X
-
Œ
¿Â
"
DOI:10.12677/aam.2023.1231081074
A^
ê
Æ
?
Ð
!˜
…
©
ï
Ä
H¨older
Ø
ª
†
Ž
â
²
þ
-
A
Û
²
þ
Ø
ª
!
˜
²
þ
Ø
ª
-
‡
Ø
ª
ƒ
m
d
5
ÿ
Ð
ë
Y
ÿ
Ý
˜
m
Œ
15
"
·
‚
(
J
4
Œ
/
í
2
Q
k
l
Ñ
œ
/
ž
ƒ
'
d
5
,
3
ƒ
'
A^
Œ
·
5
þ
•
ò
¬
•
2
•
!
(
¹
"
Y
·
‚
òU
Yï
Ä
à
5
ƒ
'
4
Š
¯
K
,
å
¦
y
²
\
r
/
ª
\
A
Û
²
þ
-
Ž
â
²
þ
Ø
ª
,
¿
ï
áë
Y
‡
\
r
˜
²
þ
Ø
ª
9
Ù
d
/
ª
,
í
Ä
à
5
ƒ
'
Ø
ª
9
Ù
A^
ï
Ä
"
Ä
7
‘
8
‘
8
¼
ô
€
Ž
Œ
Æ
)
M
#
M
’
Ô
ö
‘
8
]
Ï
,
‘
8
?
Ò
µ
202210333019Z
"
ë
•
©
z
[1]Abramovich,S.,Mond,B.andPeˇcari´c, J.E.(1997)SharpeningJensen’sInequalityand aMajorization
Theorem.
JournalofMathematicalAnalysisandApplications
,
214
,721-728.
https://doi.org/10.1006/jmaa.1997.5527
[2]Hardy,G.H.,Littlewood,J.E.,P´olya,G.andP´olya,G.(1952)Inequalities.CambridgeUniversity
Press,Cambridge.
[3]Dragomir, S.S. (2003)A Survey onCauchy-Bunyakovsky-Schwarz Type Discrete Inequalities.
Journal
ofInequalitiesinPureandAppliedMathematics
,
4
,Article63.
[4]Beckenbach,E.F.andBellman,R.(2012)Inequalities(Vol.30).SpringerScience&BusinessMedia,
Berlin.
[5]Mitrinovic,D.S.andVasic,P.M.(1970)AnalyticInequalities(Vol.1).Springer-Verlag,Berlin.
[6]Abramovich,S.,Mond,B.andPe´cari´c, J.E.(1997)SharpeningJensen’sInequalityand aMajorization
Theorem.
JournalofMathematicalAnalysisandApplications
,
214
,721-728.
https://doi.org/10.1006/jmaa.1997.5527
[7]Fujii, M.,Furuta, T.,Nakamoto,R. and Takahashi, S.E. (1997) Operator Inequalities and Covariance
inNoncommutativeProbability.
MathematicaJaponicae
,
46
,317-320.
[8]Li,Y.C.and Shaw,S.Y.(2006) AProofofH¨older’sInequality Usingthe Cauchy-Schwarz Inequality.
JournalofInequalitiesinPureandAppliedMathematics
,
7
,Article62.
[9]Maligranda,L.(2001)EquivalenceoftheH¨older-RogersandMinkowskiInequalities.
Mathematical
Inequalities&Applications
,
4
,203-207.https://doi.org/10.7153/mia-04-18
[10]Maligranda,L.(2012)TheAM-GMInequalityIsEquivalenttotheBernoulliInequality.
TheMath-
ematicalIntelligencer
,
34
,1-2.https://doi.org/10.1007/s00283-011-9266-8
[11]Zhang,F.(2001) Equivalenceof theWielandt Inequality andthe Kantorovich Inequality.
Linearand
MultilinearAlgebra
,
48
,275-279.https://doi.org/10.1080/03081080108818673
[12]Marshall,A.W.,Olkin,I.andArnold,B.C.(1979)Inequalities:TheoryofMajorizationandIts
Applications(Vol.143,pp.xx+-569).AcademicPress,NewYork.
DOI:10.12677/aam.2023.1231081075
A^
ê
Æ
?
Ð
!˜
…
[13]Sitnik,S.M.(2010)GeneralizedYoungandCauchy-BunyakowskyInequalitieswithApplications:A
Survey.arXivpreprint.
[14]Lin,M.(2012)TheAM-GMInequalityandCBSInequalityAreEquivalent.
TheMathematicalIn-
telligencer
,
34
,6.https://doi.org/10.1007/s00283-012-9292-1
[15]Li,Y.,Gu, X.M.andZhao, J.(2018)TheWeightedArithmeticMean-GeometricMeanInequalityIsE-
quivalent totheH¨older Inequality.
Symmetry
,
10
, Article380.https://doi.org/10.3390/sym10090380
DOI:10.12677/aam.2023.1231081076
A^
ê
Æ
?
Ð