设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(3),1164-1172
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.123118
äkÚu¾Ç³Á£nSI.
ÄåÆïÄ
±±±§§§öööëëë
•ânóŒÆêƆÚOÆ§H•â
ÂvFϵ2023c221F¶¹^Fϵ2023c316F¶uÙFϵ2023c323F
Á‡
©ïá˜‡äkÚu)Ç©ã1wSI³Á£n.§±d•x•k´a³Áêþˆ
²LKŠžâéÙ?1nܳÁ£nüÑ"|^FilippovXÚ ½5 ©Û nا©Û.3Ø
Ó KŠÛÄ寧/•¾²ï:Ú–²ï:Û-½5"ïÄL²§3ØÓ²LKŠ
‰Œe§O\ /¾³Áݘþ±9~àÁJ ¦^þU;•³Áêþu§Œ±•³Á£n
JøüÑÚ•{"
'…c
Filippov§Û-½§SI.§³Á£n
DynamicsofanSIModelforPest
ManagementwithSaturated
Morbidity
PeiZhou,ShanJiang
SchoolofMathematicsandStatistics,ChangshaUniversityofScienceandTechnology,Changsha
Hunan
Received:Feb.21
st
,2023;accepted:Mar.16
th
,2023;published:Mar.23
rd
,2023
©ÙÚ^:±,öë.äkÚu¾Ç³Á£nSI.ÄåÆïÄ[J].A^êÆ?Ð,2023,12(3):1164-1172.
DOI:10.12677/aam.2023.123118
±§öë
Abstract
Inthispaper,apiecewisesmoothSIpestcontrolmodelwithsaturationincidence
rateisestablished,inordertodrawthemanagementstrategyofchemicalcontrol
onlywhenthenumberofsusceptiblepestsreachestheeconomicthreshold.Using
thequalitativeanalysistheoryofFilippovsystem,theglobaldynamicsofthemodel
indifferentthresholdsandparameterrangesareanalyzed,andtheglobalstability
ofendemicequilibriumandpseudoequilibriumisobtained.Particularly,whenthe
parametersandthresholdsareproperlyselected,thetwoendemicequilibriumpoints
willbebi-stable.Theresearchshowsthatincreasingordecreasingthedosageof
pesticides caneffectively control the number ofpestsandavoideconomiclossesunder
differenteconomicthresholdranges.
Keywords
Filippov,GlobalStability,SIModel,PestControl
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
2019c§éÜI²LÚ¬¯ÖÜu©L«-.<•32030cý OO•85·†m,32050c
òˆ97·[1].•æFÃO•<•I¦,÷ )¡ãŒ]Ô.³ÁŠ•àŠÔU',‰à
ŠÔ)‘5î-K•,Noé³Á?1£n´<‚˜†'59:{K.zÆ£nÚ)Ô£n
´·‚~^•{,ª„/¦^àÁJ é<aèxÚ‚¸Ø|.)Ô“£•ªÏ~´Ý˜U',D
Â;¾.~X,©z[2]¥JÑ˜«|^M)·•àŠÔ³ÁD4—·¾Ó5oŠÔ•{.)
Ô“£wq´é‚¸vkÀ/k•ª,ݘU'ŒU¬Ú5Ù¦Á³,…¢¿‘¾³Á
¤p,¤±••3éŒ6à.
•)ûü˜››„–‘56à,é³Á?1£nž òùü«•ªkÅ(Ü,=nܳÁ
£n£IPM¤[3].³Áêþ‡L²LKŠ£ET¤ ž,æ„–§¦³Áêþ3²Lˆ³Y²(EIL)
±e,ù«•ªØ=Œ±¼•Z²LÃ…U~Ï››üÑ邸‘5K¡K•.é
DOI:10.12677/aam.2023.1231181165A^êÆ?Ð
±§öë
uIPMüÑ,NõÆöïáêÆ.é³Á£n?1ïÄ,XØëY››³Á£n[4–6]!äk
óÀA)ÔêÆ..
©Ù¥3©z[7]Ä:þ,b;¾®3³Á¥DÂ,ò³Á©•´a³Á(S)Úa/³Á(I).
a/³ÁجéàŠÔE¤K•,¤±·‚ò´a³ÁŠ•››•I,˜´a³ÁêþˆET,æ
IPM„–.,,©z[8]¥JÑa/ö†´aöDÂêþØŒU˜††I¤‚5O•,dua/³
ÁêþLõ;¾DÂgêòˆÚ.Ïd,©ò˜‡Úu¾Ç
βI
1+αI
•ÄFilippov¾Á³£n
.¥,éÙ?1Ä審Û,&?¦´a³Áêþ$uET„–.
2..09ý•£
2.1.³Á£nSI.
©ïáäkÚu¾Ç³Á“£.
(
dS
dt
= rS−
βSI
1+αI
−dS−ηq
1
S,
dI
dt
=
βSI
1+αI
−(d+ε)I+η(p−q
2
)I,
(2.1)
Ù¥,S(t)ÚI(t)©OL«´a³ÁÚ/¾³Á3tž•«+êþ¶rL«´a³ÁÑ)Ç;βL
«D/Ç,dÚεL«³Ág,kÇÚϾkÇ;α>0•Úëê,q
1
Úq
2
©OL«duh
àÁJŠ^¦´a³Á†/¾³Á«+êþ~'Ç;p•/¾³Áº˜„Ç.
η=
(
0,S<ET,
1,S>ET,
•››¼ê,ET•››KŠ.››¼êηL«´a³ÁêþŒuET,hàÁJ,´a³Áêþ$
uETž,Øæ„–.-q= p−q
2
,Óžbr>d+q
1
.
-H(Z) = S(t)−ET,Z= (S,I)
T
.…
F
1
(Z) = (f
11
,f
12
)
T
=

rS−
βSI
1+αI
−dS,
βSI
1+αI
−(d+ε)I

T
F
2
(Z) = (f
21
,f
22
)
T
=

rS−
βS(t)I
1+αI
−dS−q
1
S,
βSI
1+αI
−(d+ε)I−qI

T
XÚ(2.1))Œ¤XeFilippovXÚ
˙
Z=
(
F
1
(Z),Z∈G
1
F
2
(Z),Z∈G
2
(2.2)
Ù¥G
1
=

Z∈R
2
+
: H(Z) <0

,G
2
=

x∈R
2
+
: H(Z) >0

"ÓžPΣ =

Z∈R
2
+
: H(Z) = 0

•XÚ(2.1))ƒ†‚.
du•þ|ØëY5§©ò?ØXÚ(1.1)Filippov¿Âe)§Ù½ÂXeµ
DOI:10.12677/aam.2023.1231181166A^êÆ?Ð
±§öë
½Â2.1.e•þ¼ê(S(t),I(t))3[0,T)?¿k.4f«m(t
1
,t
2
)þýéëY(0<T≤
+∞),÷vЩ^‡S(0)=S
0
ÚI(0)=I
0
,…•3Œÿ¼êλ=λ(t):[0,T)→[0,1]¦éA
¤kt∈[0,T)k



dS
dt
= rS−
βSI
1+αI
−dS−γq
1
S,
dI
dt
=
βSI
1+αI
−(d+ε)I+γqI,
(2.3)
@o¡•þ¼ê(S(t),I(t))´XÚ((2.1))LЩŠ(S
0
,I
0
)).
½Â2.2.FilippovXÚ(2.1)²ï:[9]
1)eF
1
(Z
∗
) = 0,H(Z
∗
) <0½F
2
(Z
∗
) = 0,H(Z
∗
) >0¤á,KZ
∗
•¢²ï:;
2)eF
1
(Z
∗
) = 0,H(Z
∗
) >0½F
2
(Z
∗
) = 0,H(Z
∗
) <0¤á,KZ
∗
•J²ï:;
3)eλF
1
(Z
∗
)+(1−λ)F
2
(Z
∗
) = 0,H(Z
∗
) = 0,K¡Z
∗
•–²ï:,Ù¥
λ(Z) =
hH
Z
,F
2
i
hH
Z
,F
2
−F
1
i
.
2.2.fXÚÄ審Û
3ù˜Ü©,̇©Ûü‡fXÚÄåÆ1•.
éufXÚS
1
,ÙÄ2)ê•R
1
=
β
α(r−d)
.fXÚS
1
•3˜‡"²ï:E
0
= (0,0),dJacabian
1ªŒE
0
•Q:.R
1
>1ž,•3˜‡/•¾²ï:E
1
=(S
1
,I
1
)=

d+ε
β−α(r−d)
,
r−d
β−α(r−d)

.ƒ
A/,éufXÚS
2
,ÙÄ2)ê•R
2
=
β
α(r−d−q
1
)
,•3˜‡Ã¾²ï:E
0
=(0,0),E
0
•Q:.
R
2
>1ž,•3/•¾ï:E
2
= (S
2
,I
2
) = (
d+ε−q
β−α(r−d−q
1
)
,
r−d−q
1
β−α(r−d−q
1
)
).
·K2.3.XJR
1
>1,fXÚS
1
3G
1
«••3•˜ìC-½/•¾²ï:E
1
;XJR
2
>1,f
XÚS
2
3G
2
«••3•˜ìC-½/•¾²ï:E
2
.
y².òfXÚS
1
U¤





dS
dt
=
−β(I−I
1
)S
(1+αI)(1+αI
1
)
dI
dt
=
β(S−S
1
)I+αβII
1
(S−S
1
)−αβIS
1
(I−I
1
)
(1+αI)(1+αI
1
)
•ÄoäÊìżê
V
1
= (1+αI
1
)

S−S
1
−S
1
ln
S
S
1

+

I−I
1
−I
1
ln
I
I
1

.

dV
1
dt
= −αβ(I−I
1
)
2

1
(1+αI
1
)(1+αI)

≤0.ŠâLasallaØCn,ŒE
1
3G
1
«•ÛìC-½.
aq/,•ÄoäÊìżê
V
2
= (1+αI
2
)

S−S
2
−S
2
ln
S
S
2

+

I−I
2
−I
2
ln
I
I
2

d
dV
2
dt
= −αβ(I−I
2
)
2

1
(1+αI
2
)(1+αI)

≤0,ŒE
2
3G
2
«•ÛìC-½.
DOI:10.12677/aam.2023.1231181167A^êÆ?Ð
±§öë
3.wÄ審Û
Šâw•½Â,·‚Œ±Σ
s
= {x∈Σ|hH
z
,F
1
(x)i>0,hH
z
,F
1
(x)i<0}=
hH
z
,F
1
(x)i>0 ⇒I<I
1
hH
z
,F
2
(x)i<0 ⇒I>I
2
…I
2
<I
1
,ŒΣ
s
= {x∈Σ|I
2
<I<I
1
,S= ET}
dFilippovà•{ŒXÚ(2.1)÷Σ
s
w•§•
˙
I=
βET
1+αI
I−
qβ
q
1
(1+αI)
I
2
−
q
1
(d+ε)−q(r−d)
q
1
I= g(I).(3.1)
-ξ= q
1
(d+ε)+q
2
(r−d).
˙
I= 0,L«g(I) = 0§§ƒu
ϕ(I) = −(qβ+αξ)I
2
+(q
1
βET−ξ)I=0(3.2)
Ïd,ª(3.2)kü‡Š
I
(1)
= 0.I
(2)
=
ξ−q
1
βET
q
2
β−αξ
@oXÚŒU•3˜‡–²ï:Ep= [ET.I
(2)
].
e¡·‚I
(2)
∈[I
2
,I
1
]¿‡^‡:
ϕ(I
1
) =
βq
1
(r−d)[ET(β−α(r−d)−ε−d)]
[β−α(r−d)]
2
= βq
1
I
1
(ET−S
1
),
ϕ(I
2
) =
βq
1
(r−d−q
1
)[ET(β−α(r−d−q
1
)−ε−d+q)]
[β−α(r−d−q
1
)]
2
= βq
1
I
2
(ET−S
2
).
XJS
2
<ET<S
1
ž,Œϕ(I
1
)<0,ϕ(I
2
)>0,d":•3½nŒ•I
(2)
∈[I
2
,I
1
],–²ï:E
P
•
3.,,·‚Œ±
˙g

I
(2)

= −
(βETq
1
−ξ)(βq+αξ)
βq
1
(q+αETq
1
)
<0.
4.ÛÄ審Û
•yXÚ¥•3²ï:•35,·‚bR
1
>1.!ò©ÛFilippovÛÄåÆ,Ä
küؤkŒU4•‚,,2ò²ï:¢JÚÛÜ-½5ƒ(Ü,Œ±3nØÚêŠ[þ
XÚÛÄåÆ.duETŠØÓ,¤kŒU²ï:•35Ú-½5•ØÓ,¤±©e
n«œ¹?1?Ø.3XÚÛ-½5c,·‚küØXÚ•34•‚.
Ún4.1.XÚ(2.1)Ø•3•¹Ü©wãΣ
s
4•‚.
y².S
2
<ET<S
1
ž,–²ï:E
p
•3…ÛÜìC-½,ùL²lG
i
Ñu;‚ˆw
ãI
1
I
2
ª•–²ï:E
P
.dž,XÚSØ•3•¹Ü©wã4•‚.
DOI:10.12677/aam.2023.1231181168A^êÆ?Ð
±§öë
ET>S
1
ž§•3¢²ï:E
1
.b•3•¹Ü©wãΣ
s
4•‚Γ,;‚Γ²Lƒ
:(ET,I
1
)¿…2gˆΣ
s
,Xã1(a)¤«.ù†½n3.1¥E
1
ÛìC-½ƒgñ,¤±lƒ
:(ET,I
1
)Ñu;‚جˆΣ
s
,=Ø•3•¹Ü©wã4•‚.·‚•Œ±^aq•{y
²eET<S
2
žØ•34•‚.
Figure1.Schematicdiagramofexcludinglimitcycle
ã1.üØ‚«¿ã
Ún4.2.XÚ(2.1)Ø•3‚7wãΣ
s
4•‚.
y².b•3˜‡‚7wãI
1
I
2
4•‚L,Xã1(b)¤«.-L= L
1
+L
2
,…L
i
= L
T
G
i
.4
•‚Ú†‚S=ET−,S=ET+3:P
1
,Q
1
†P
2
,Q
2
?ƒ.-∂D
1
•‚ãL
1
†B
1
A
1
¤Œ¤
«•D
1
>.,-∂D
2
•‚ãL
2
†A
2
B
2
¤Œ¤«•D
2
>..Óž§A,B,A
1
,A
2
,B
1
,B
2
p‹I
©O•a,b,a−δ
1
(),a−δ
2
(),b+δ
3
(),b+δ
4
()§¿…÷vlim
→0
δ
i
() = 0,(i= 1,2,3.4).Dulac¼
êB(SI) =
1
SI
,@o
ZZ
D
1

∂(Bf
11
)
∂S
+
∂(Bf
12
)
∂I

dSdI+
ZZ
D
2

∂(Bf
21
)
∂S
+
∂(Bf
22
)
∂I

dSdI=
−2α
(1+αI)
2
<0(4.1)
3D
1
¥A^‚úªk
ZZ
D
1

∂(Bf
11
)
∂S
+
∂(Bf
12
)
∂I

dSdI=
I
∂D
1
+
−−−→
B
1
A
1
B(f
11
dI−f
12
ds)
=
I
∂D
1
B(f
11
dI−f
12
dS)+
Z
−−−→
B
1
A
1
Bf
11
dI
=
Z
−−−→
B
1
A
1
Bf
11
dI
=
Z
a−δ
1
()
b+δ
3
()

r
I
−
β
1+αI
−
d
I

dI
DOI:10.12677/aam.2023.1231181169A^êÆ?Ð
±§öë
Ó/,3D
2
¥A^‚úªk
ZZ
D
2

∂(Bf
21
)
∂S
+
∂(Bf
22
)
αI

dSdI=
Z
−−−→
A
2
B
2
Bf
21
dI
=
Z
b+δ
4
()
a−δ
2
()

r
I
−
β
1+αI
−
d
I
−
q
1
I

dI
@oŒ
lim
→0

ZZ
D
1

∂(Bf
11
)
∂S
+
∂(Bf
21
)
∂I

+
ZZ
D
2

∂(Bf
21
)
∂S
+
∂(Bf
22
)
αI

dSdI
=lim
→0
Z
a−δ
1
()
b+δ
3
()
r
I
−
β
1+αI
−
d
I
dI+
Z
b+δ
4
()
a−δ
2
()
r
I
−
β
1+αI
−
d
I
−
q
I
dI
!
.
=
Z
a
b
q
I
dI>0.
ù†(4.1)Ñygñ.Ïd,Ø•3‚7wãI
1
I
2
4•‚.
œ/1.1S
2
<S
1
<ETž,/•¾²ï:E
1
•¢²ï:,E
2
•J²ï:.3XÚÛ-
½5c,·‚küØXÚ•34•‚.
½n4.3.XJS
2
<S
1
<ET,¢²ï:E
1
ÛìC-½.
y².S
2
<S
1
<ETž,E
1
•¢²ï:,E
2
•J²ï:.qdª(3.1)5ŸŒ•g(I
1
)>
0,g(I
2
)>0,¤±[I
2
,I
1
]þ,g(I)>0,ù`²džØ•3–²ï:,…wãþ;‚••le
þ.dÚn(4.1)†(4.2)Œ•XÚ(2.1)Ø•34•‚.Ïd,3G
2
¥;‚ÃØ´Äƒ¥w㕪ª
uG
1
,G
1
¥;‚òª•uE
1
,d·K(2.3)Œ•E
1
ÛìC-½.¤±ÃØÐ© ˜XÛ,;‚ •
ªÑ¬-½E
1
,¤±E
1
ÛìC-½Xã2(a))¤«.
œ/1.2S
2
<ET<S
1
ž,E
1
ÚE
2
Ñ•J²ï:.
½n4.4.XJS
2
<ET<S
1
,–²ï:E
p
ÛìC-½.
y².S
2
<ET<S
1
ž,E
1
ÚE
2
Ñ•J²ï:,dª(3.1)5ŸŒ•g(I
1
)<0,g(I
2
)>0,¤
±3[I
2
,I
1
]þ•3•˜":,•Ò´`–²ï:E
p
•3…ÛÜìC-½.3ù«œ¹e,Œ•E
1
uG
2
«•,E
2
uG
1
«•,¤±;‚Ѫ•ƒ‡«•±ˆg²ï,qÏ•E
p
ÛÜìC-½,…d
Ún(4.1)†(4.2)Œ•Ø•34•‚.¤±¤k;‚•ªÑ¬Â¥wã¿Âñ–²ï:§ÏdŒ
•–²ï:E
p
ÛìC-½,Xã2(b))¤«.
œ/1.3ET<S
2
<S
1
ž,•3¢²ï:E
2
,J²ï:E
1
.Œ±e(Ø,Ùy²L§aqu½
n(4.5),;‚ã”Xã2(c))¤«.
½n4.5.XJET<S
2
<S
1
,¢²ï:E
2
ÛìC-½.
5.)ÔÆ¿Â
©±FilippovÄåÆXÚ•Ä:,ïáäkÚu)Ç³Á£nSI.,éÙ?1XÚ
©Û,¿•ÑzÆ“£Ú)Ô“£é³Á£nŠ^.ïÄÑ,R
2
<1ž,•kþ²ï:E
0
•
DOI:10.12677/aam.2023.1231181170A^êÆ?Ð
±§öë
Figure2.Thesystem(2.1)isgloballyasymptoticallystableinthreecases:(a)ET=6,(b)ET=3and(c)
ET=0.5.Otherparametersarer=0.7,d=0.3,q
1
=0.2,q=0.3,β=0.3,ε=0.2,α=0.5
ã2.XÚ(2.1)©O3(a)ET =6,(b)ET =3,(c)ET =0.5n«œ¹eÛìC-½ƒã§Ù¦ëê
•r=0.7,d=0.3,q
1
=0.2,q=0.3,β=0.3,ε=0.2,α=0.5
3,…E
0
•Q:,ù`²³ÁØŒUr•«ý.3R
1
>1cJe,1oÙ¥é/•¾²ï:Ú
–²ï:Û-½5?1©Û.S
2
<S
1
<ET½öS
2
<ET<S
1
ž§/•¾²ï:E
1
½
–²ï:E
P
ÛìC-½,dž´a³Áêþ-½3KŠET±e½ö-½3ET?,U;•
³Áêþu.•Ò´`››Œ›ëêq,O\/¾³Áݘþ±9~àÁJ¦^þ¦

d+ε−q
β−α(r−d)
<ETU;•³Áêþué²LE¤›”,Œ±•³Á£nJøüÑÚ•{.
ë•©z
[1]UnitedNations(2019)WorldPopulationProspects2019:Highlights.UnitedNationsDepart-
mentforEconomicandSocialAffairs,NewYork.
[2]Peng,H.(2005)WaspsDeliverDeadlyVirustoCropPests.VirusResearch,114,80-81.
DOI:10.12677/aam.2023.1231181171A^êÆ?Ð
±§öë
[3]Costa, M.I.(2010) Integrated Pest Management:Theoretical Insights from aThreshold Policy.
NeotropicalEntomology,39,1-8.https://doi.org/10.1590/S1519-566X2010000100001
[4]Tang,S.,Liang,J.,Xiao,Y.,etal.(2012)SlidingBifurcationsofFilippovTwoStagePest
Control Models withEconomicThresholds.SIAMJournalonAppliedMathematics,72,1061-
1080.https://doi.org/10.1137/110847020
[5]Liu,L.,Xiang,C.,Tang,G.,etal.(2019)SlidingDynamicsofaFilippovForest-PestModel
withThresholdPolicyControl.Complexity,2019,ArticleID:2371838.
https://doi.org/10.1155/2019/2371838
[6]Qin,W.,Tan,X.,Tosato,M.,etal.(2019)ThresholdControlStrategyforaNon-Smooth
Filippov EcosystemwithGroup Defense.AppliedMathematicsandComputation,362,Article
ID:124532.https://doi.org/10.1016/j.amc.2019.06.046
[7]Liu,B.,Liu,W.,Tao,F.,etal.(2015)ADynamicalAnalysisofaPiecewiseSmoothPest
ControlSIModel.InternationalJournalofBifurcationandChaos,25,ArticleID:1550068.
https://doi.org/10.1142/S0218127415500686
[8]Capasso,V.and Serio,G. (1978)A Generalizationof theKermack-McKendrickDeterministic
EpidemicModel.MathematicalBiosciences,42,43-61.
https://doi.org/10.1016/0025-5564(78)90006-8
[9]‘á÷,H,ZÏ.màØëY‡©•§n؆A^[M].®:‰ÆÑ‡,2011.
DOI:10.12677/aam.2023.1231181172A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.