设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(3),625-635
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133067
‘
k
6
Äé
ê
.
Kirchhoff
•
§
)
•
3
5
)))
ooo
þ
°
n
ó
Œ
Æ
n
Æ
§
þ
°
Â
v
F
Ï
µ
2023
c
2
22
F
¶
¹
^
F
Ï
µ
2023
c
3
23
F
¶
u
Ù
F
Ï
µ
2023
c
3
30
F
Á
‡
?
Ø
˜
a
‘
k
6
Äé
ê
.
Kirchhoff
•
§
)
•
3
5
Ú
õ
-
5
¯
K
"
é
6
Ä
‘
¼
ê
J
Ñ
Ü
·
^
‡
§
$
^
C
©•{
Ú
ì
´
½
n
§
3
ë
ê
œ
¹
e
§
©
O
•
§
)
•
3
5
Ú
õ
)
5
(
J
"
'
…
c
Kirchhoff
•
§
§
é
ê
š
‚
5
‘
§
6
Ä
ExistenceofSolutionsto
LogarithmicKirchhoff
EquationwithaSmall
Perturbation
JingTang
CollegeofScience,UniversityofShanghaiforScienceandTechnology,Shanghai
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
©
Ù
Ú
^
:
)
o
.
‘
k
6
Äé
ê
.
Kirchhoff
•
§
)
•
3
5
[J].
n
Ø
ê
Æ
,2023,13(3):625-635.
DOI:10.12677/pm.2023.133067
)
o
Abstract
ThispaperconsiderstheexistenceandmultiplicityofsolutionsforlogarithmicKirch-
hoffequationswithasmallperturbation.Undersomeappropriateconditionsfor
perturbation,usingconstrainedvariationalmethodandMountain PassTheorem,the
existence and multiplicityof solutions areobtained respectivelywhen parameter small
enough.
Keywords
KirchhoffEquations,LogarithmicNonlinearity,SmallPerturbation
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
•
Ä
e
‘
k
6
Äé
ê
.
Kirchhoff
•
§
(
−
(
a
+
b
R
Ω
|∇
u
|
2
d
x
)∆
u
=
|
u
|
p
−
2
u
ln
u
2
+
λf
(
x,u
)
,
inΩ
,
u
= 0
,
on
∂
Ω
,
Ù
¥
Ω
⊂
R
3
´
˜
‡
ä
k
1
w
>
.
k
.
«
•
,
a,b>
0
´
½
~
ê
,4
<p<
6,
¼
ê
f
(
x,u
)
÷
v
±
e
^
‡
µ
(
A
)
f
(
x,u
)
∈
C
(Ω);
(
B
)
f
(
x,u
)
≥
0
,
…
f
(
x,
0)
6
= 0.
Kirchhoff
•
§
•
@
Š
•
˜
‡
½
.
d
Kirchhoff[1]
J
Ñ
,
3
5
n
Ø
!
>
^
Æ
!
š
Ú
î
å
Æ
Ô
n
Æ
+
•k
é2
•
A^
.
C
A
c
,
N
õ
Æ
ö
ï
Ä
L
±
e
•
§
(
−
(
a
+
b
R
Ω
|∇
u
|
2
d
x
)∆
u
=
f
(
x,u
)
,
inΩ
,
u
= 0
,
on
∂
Ω
,
(1)
X
Ma[2]
Ï
L
¦
^
C
©•{
ï
Ä
•
§
(1)
)
•
3
5
,Alves[3]
|
^
.
:
n
Ø
a
q
(
J
.
DOI:10.12677/pm.2023.133067626
n
Ø
ê
Æ
)
o
•
C
,
k
N
õ
Æ
ö
|
^
Œ
‰
Œ
C
©•{
,
X
µ
é
¡
ì
´
½
n
!
½
n
ï
Ä
•
§
(1)
)
•
3
5
9
)
ˆ
«
/
,
·
‚
Œ
±
ë
„
©
z
[4–11].
A
O
/
,
š
‚
5
‘
f
(
x,u
)
•
|
Ü
œ
/
ž
,
7
[
²
[12]
•
§
(1)
õ
)
•
3
5
,
Wen
3
[13]
¥
|
^
ÿ
À
Ý
n
Ø
±
9
'
u
é
ê
‘
#
O
,
•
§
C
Ò
)
•
3
5
.
É
þ
ã
©
z
9
ƒ
'
¤
J
é
u
,
©
ï
Ä
‘
k
é
ê
š
‚
5
‘
±
9
6
Ä
Kirchhoff
•
§
)
•
3
5
.
du
š
‚
5
‘
´
d
é
ê
š
‚
5
‘
Ú
=ä
k
ë
Y5
Ÿ
¼
ê
f
(
x,u
)
|
Ü
¤
,
¦
y
ì
´
A
Û
(
Ú
(PS)
S
k
.
5
C
›
©
(
J
,
ù
•
´
©
M
#
:
Ú
I
‡
Ž
Ñ
J
:
.
e
¡
‰
Ñ
©
Ì
‡
(
J
.
½½½
nnn
1.1
b
Ω
⊂
R
3
´
˜
‡
>
.
1
w
k
.
«
•
,
a,b>
0
´
½
~
ê
,4
<p<
6,
¼
ê
f
(
x,u
)
÷
v
^
‡
(
A
),
K
•
3
~
ê
λ
∗
>
0,
¦
λ
∈
(0
,λ
∗
)
ž
•
§
(1)
•
3
˜
‡
)
.
½½½
nnn
1.2
b
Ω
⊂
R
3
´
˜
‡
>
.
1
w
k
.
«
•
,
a,b>
0
´
½
~
ê
,4
<p<
6,
¼
ê
f
(
x,u
)
÷
v
^
‡
(
A
)
Ú
(
B
),
K
|
λ
|
v
ž
,
•
§
(1)
•
3
,
˜
‡
)
v
λ
,
¿
…
3
H
1
0
(Ω)
˜
m
þ
,
λ
→
0
ž
,
v
λ
→
0.
2.
ý
•
£
Ä
k
`
²
©
¥
˜
Î
Ò
.
˜
m
H
1
0
(Ω)
L
«
Ê
Ï
Sobolev
˜
m
,
§
‰
ê´
k
u
k
=
Z
Ω
|∇
u
|
2
d
x
1
/
2
,
˜
m
L
s
(Ω)(2
≤
s
≤
6)
‰
ê
½
Â
•
|
u
|
s
=
Z
Ω
|
u
|
r
d
x
1
s
.
´
•
•
§
(1)
é
A
U
þ
•
¼
•
I
(
u
) =
a
2
Z
Ω
|∇
u
|
2
d
x
+
b
4
Z
Ω
|∇
u
|
2
d
x
2
+
2
p
2
Z
Ω
|
u
|
p
d
x
−
1
p
Z
Ω
|
u
|
p
ln
u
2
d
x
−
λ
Z
Ω
F
(
x,u
)d
x.
Ï
L
{
ü
O
Ž
,
é
u
p
∈
(4
,
6)
Ú
q
∈
(
p,
6),
Œ
±
lim
t
→
0
|
t
|
p
−
1
ln
|
t
|
t
= 0
,
lim
t
→∞
|
t
|
p
−
1
ln
|
t
|
|
t
|
q
−
1
= 0
,
=
é
u
>
0,
•
3
C
>
0,
¦
é
?
¿
t
∈
R
\{
0
}
,
k
|
t
|
p
−
1
ln
|
t
|≤
|
t
|
+
C
|
t
|
q
−
1
.
(2)
d
d
Œ
š
‚
5
‘
R
Ω
|
u
|
p
ln
u
2
d
x
3
˜
m
H
1
0
(Ω)
þ
´
k
½
Â
,
I
(
u
)
•
˜
‘
3
˜
m
H
1
0
(Ω)
þ
Œ
U
´
Ã
½
Â
.
Ï
d
,
é
I
(
u
)
?
1
±
e
?
l
Ž
Ñ
d
(
J
.
DOI:10.12677/pm.2023.133067627
n
Ø
ê
Æ
)
o
ë
Y
¼
ê
β
k
(
t
)
÷
v
X
e
^
‡
µ
β
k
(
t
) =
(
1
,
|
t
|≤
k
,
0
,
|
t
|≥
k
+1;
k<
|
t
|
<k
+1
ž
,0
<β
k
(
t
)
<
1.
½
Â
f
k
(
x,t
) =
β
k
(
t
)
f
(
x,t
)
,F
k
(
x,t
) =
Z
t
0
f
k
(
x,s
)d
s,
(3)
K
•
3
~
ê
C
(
k
),
k
|
f
k
(
x,t
)
|≤
C
(
k
)
,
|
F
k
(
x,t
)
|≤
C
(
k
)
.
(4)
À
¯
λ
(
k
)
>
0,
¦
é
u
?
¿
x
∈
Ω
,t
∈
R
,k
∈
N
,
k
¯
λ
(
k
)
|
f
k
(
x,t
)
|≤
1
,
¯
λ
(
k
)
|
F
k
(
x,t
)
|≤
1
,
¯
λ
(
k
)
tf
k
(
x,t
)
≤
1
.
(5)
d
d
,
é
u
k
∈
N
,
λ
∈
0
,
¯
λ
(
k
)
,
½
Â
?
•
¼
•
I
k
(
u
) =
a
2
Z
Ω
|∇
u
|
2
d
x
+
b
4
Z
Ω
|∇
u
|
2
d
x
2
+
2
p
2
Z
Ω
|
u
|
p
dx
−
1
p
Z
Ω
|
u
|
p
ln
u
2
d
x
−
λ
Z
Ω
F
k
(
x,u
)d
x.
(6)
|
^
[11]
a
q
y
²
,
d
(2)
ª
Ú
(6)
ª
,
·
‚
Œ
±
I
k
(
u
)
∈C
1
(
H
1
0
(Ω)
,
R
),
±
9
é
u
?
¿
u,v
∈
H
1
0
(Ω),
¤
á
(
I
0
k
(
u
)
,v
) =
a
Z
Ω
|∇
u
∇
v
|
d
x
+
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
|∇
u
∇
v
|
d
x
−
Z
Ω
|
u
|
p
−
2
uv
ln
u
2
d
x
−
λ
Z
Ω
f
k
(
x,u
)
v
d
x.
(7)
3.
½
n
1.1
y
²
ÚÚÚ
nnn
3.1
b
a,b>
0
´
½
~
ê
,4
<p<
6,
p<q<
6,
K
•
3
λ
∗
(
k
)
>
0,
¦
é
?
¿
λ
∈
(0
,λ
∗
),
k
(1)
•
3
u
0
∈
H
1
0
(Ω)
Ú
~
ê
r>
0,
k
u
0
k
>r
ž
,
I
k
(
u
0
)
<
0;
(2)
•
3
~
ê
ρ>
0,
|
u
|
=
r
ž
,
I
k
(
u
)
≥
ρ
.
yyy
²²²
(1)
|
^
Sobolev
i
\
½
n
,(2)
Ú
(5),
l
(6)
Œ
I
k
(
u
)
>
a
2
−
p
k
u
k
2
−
C
p
k
u
k
q
−
λC
(
k
)
|
Ω
|
.
DOI:10.12677/pm.2023.133067628
n
Ø
ê
Æ
)
o
À
λ
∗
(
k
)
>
0
9
r,ρ>
0,
K
é
?
¿
λ
∈
(0
,λ
∗
(
k
))
Ñ
k
I
k
(
u
)
≥
ρ,
Ù
¥
k
u
k
=
r.
(2)
du
é
u
?
¿
s
∈
(0
,
+
∞
),
¤
á
2(1
−
s
p
)+
ps
p
ln
s
2
>
0
,
(8)
Ï
d
é
?
¿
t>
0,
u
∈
E
Ñ
k
I
k
(
tu
)
≤
at
2
2
Z
Ω
|∇
u
|
2
d
x
+
bt
4
4
Z
Ω
|∇
u
|
2
d
x
2
+
2
t
p
p
2
Z
Ω
|
u
|
p
d
x
−
t
p
p
Z
Ω
|
u
|
p
ln
u
2
d
x
−
t
p
ln
t
2
p
Z
Ω
|
u
|
p
d
x
+
|
Ω
|
6
at
2
2
k
u
k
2
+
bt
4
4
k
u
k
4
+
C
k
u
k
p
−
t
p
p
Z
Ω
|
u
|
p
ln
u
2
d
x
+
|
Ω
|
.
(9)
q
Ï
•
p
∈
(4
,
6),
¤
±
t
→∞
ž
,
I
k
(
tu
)
→−∞
.
ù
Ò
¿
›
X
,
7
½
•
3
u
0
¦
I
k
(
u
0
)
<
0.
Ú
n
3.1
y
.
.
ÚÚÚ
nnn
3.2
b
a,b>
0
´
½
~
ê
,4
<p<
6,
p<q<
6,
K
é
?
¿
λ
∈
(0
,λ
∗
),
I
k
3
˜
m
H
1
0
(Ω)
¥
÷
v
(
PS
)
^
‡
,
Ù
¥
λ
∗
(
k
)
d
Ú
n
3.1
‰
Ñ
.
yyy
²²²
b
{
u
n
}⊂
H
1
0
(Ω)
•
I
3
H
1
0
(Ω)
¥
(
PS
)
S
,
K
n
→∞
ž
,
•
3
C>
0,
¦
n
→∞
,
¤
á
|
I
k
(
u
n
)
|
<C,
k
I
0
k
(
u
n
)
k→
0
.
(10)
d
(5)
−
(7)
ª
,
Œ
±
í
C
>
I
k
(
u
n
)
−
1
p
(
I
0
k
(
u
n
)
,u
n
)
>
(
p
−
2)
a
2
p
k
u
n
k
2
+
(
p
−
4)
b
4
p
k
u
n
k
4
+
2
p
2
Z
Ω
|
u
n
|
p
d
x
−
λ
Z
Ω
F
k
(
x,u
n
)
−
1
p
f
k
(
x
n
,u
n
)
u
n
d
x
>
(
p
−
2)
a
2
p
k
u
n
k
2
−
p
+1
p
|
Ω
|
.
(11)
ù
Ò
¿
›
X
{
u
n
}
3
˜
m
H
1
0
(Ω)
þ
k
.
,
•
3
{
u
n
}
,
‡
f
£
Ø
”
E
P
•
{
u
n
}
¤
9
u
∈
H
1
0
(Ω),
n
→∞
ž
k
u
n
*u
3
H
1
0
(Ω)
S
,
u
n
→
u
3
L
r
(Ω)
S
(1
≤
r<
6)
,
u
n
→
u
a.e.
x
∈
Ω
.
(12)
DOI:10.12677/pm.2023.133067629
n
Ø
ê
Æ
)
o
|
^
(2),(5)
Ú
H¨older
Ø
ª
Z
Ω
|
u
n
|
p
−
2
u
n
ln
u
2
n
−|
u
|
p
−
2
u
ln
u
2
(
u
n
−
u
)d
x
≤
Z
Ω
|
u
n
|
+
C
|
u
n
|
q
−
1
+
|
u
|
+
C
|
u
|
q
−
1
|
u
n
−
u
|
d
x
≤
(
|
u
n
|
2
+
|
u
|
2
)
|
u
n
−
u
|
2
+
C
(
|
u
n
|
q
−
1
q
+
|
u
|
q
−
1
q
)
|
u
n
−
u
|
q
=
o
n
(1)(13)
Ú
λ
Z
Ω
(
f
k
(
x,u
n
)
−
f
k
(
x,u
))(
u
n
−
u
)d
x
≤
λ
Z
Ω
(
|
f
k
(
x,u
n
)
|
+
|
f
k
(
x,u
)
|
)
|
u
n
−
u
|
d
x
≤
2
|
Ω
|
1
2
|
u
n
−
u
|
2
=
o
n
(1)
.
(14)
?
(
Ü
(6)-(7)
ª
k
o
n
(1) = (
I
0
k
(
u
n
)
−
I
0
k
(
u
)
,u
n
−
u
)
=
a
k
u
n
−
u
k
2
+
b
2
(
k
u
n
k
2
Z
Ω
∇
u
n
(
∇
u
n
−∇
u
)d
x
−k
u
k
2
Z
Ω
∇
u
(
∇
u
n
−∇
u
)d
x
)
−
Z
Ω
|
u
n
|
p
−
2
u
n
ln
u
2
n
−|
u
|
p
−
2
u
ln
u
2
(
u
n
−
u
)d
x
−
λ
Z
Ω
(
f
k
(
x,u
n
)
−
f
k
(
x,u
))(
u
n
−
u
)d
x
≥
C
k
u
n
−
u
k
2
,
K
n
→∞
ž
,
k
k
u
n
−
u
k→
0.
Ú
n
3.2
y
.
.
é
u
Ú
n
3.1
‰
½
u
0
,
½
Â
Γ :=
γ
∈
C
[0
,
1]
,H
1
0
(Ω)
:
γ
(0) = 0
,γ
(1) =
u
0
,
d
k
:=inf
γ
∈
Γ
max
0
≤
t
≤
1
I
k
(
γ
(
t
))
.
ÚÚÚ
nnn
3.3
b
a,b>
0
´
½
~
ê
,4
<p<
6,
p<q<
6,
K
é
?
¿
λ
∈
(0
,λ
∗
),
I
k
ä
k
.
Š
d
k
,
Ù
¥
λ
∗
(
k
)
d
Ú
n
3.1
‰
Ñ
.
yyy
²²²
d
y
²
a
q
u
[14],
ù
p
Ñ
.
ÚÚÚ
nnn
3.4
b
a,b>
0
´
½
~
ê
,4
<p<
6,
p<q<
6,
K
é
?
¿
λ
∈
(0
,λ
∗
),
•
3
†
k
Ã
'
~
ê
M
,
¦
k
u
k
k
<M
,
Ù
¥
u
k
´
d
Ú
n
3.3
½
Â
I
k
.
:
,
λ
∗
(
k
)
d
Ú
n
3.1
‰
Ñ
.
DOI:10.12677/pm.2023.133067630
n
Ø
ê
Æ
)
o
yyy
²²²
½
Â
#
•
¼
X
e
ˆ
I
(
u
) =
a
2
Z
Ω
|∇
u
|
2
d
x
+
b
4
(
Z
Ω
|∇
u
|
2
d
x
)
2
+
2
p
2
Z
Ω
|
u
|
p
dx
−
1
p
Z
Ω
|
u
|
p
ln
u
2
d
x
+
|
Ω
|
.
(15)
´
I
k
(
u
)
≤
ˆ
I
(
u
).
$
^
a
q
u
y
²
Ú
n
3.1
•{
Œ
,
ˆ
I
(
u
)
•
ä
k
ì
´
A
Û
(
.
Ï
d
,
e
½
Â
ˆ
d
:=inf
γ
∈
Γ
max
0
≤
t
≤
1
ˆ
I
(
γ
(
t
))
.
K
k
d
k
≤
ˆ
d.
?
d
(11)
ª
Œ
ˆ
d
≥
d
k
≥
1
2
−
1
p
k
u
k
k
2
−
p
−
1
p
|
Ω
|
,
u
´
,
k
u
k
k≤
M
,
Ù
¥
M>
0
…
†
k
Ã
'
.
Ú
n
3.4
y
.
.
ÚÚÚ
nnn
3.5
b
a,b>
0
´
½
~
ê
,4
<p<
6,
p<q<
6,
K
é
?
¿
λ
∈
(0
,λ
∗
),
K
•
3
†
k
Ú
λ
Ã
'
~
ê
˜
M
,
¦
|
u
k
|
∞
≤
˜
M
,
Ù
¥
u
k
´
d
Ú
n
3.3
½
Â
I
k
.
:
,
λ
∗
(
k
)
d
Ú
n
3.1
‰
Ñ
.
yyy
²²²
•
•
B
å
„
,
Ø
”
b
u
=
u
k
.
é
u
?
¿
m
∈
N
,
‰
½
β>
1,
½
Â
B
m
=
n
x
∈
Ω;
|
u
|
β
−
1
≤
m
o
,D
m
= Ω
\
B
m
Ú
u
m
=
(
u
|
u
|
2(
β
−
1)
,x
∈
B
m
,
m
2
u,x
∈
D
m
.
´
u
m
∈
H
1
0
(Ω)
,u
m
≤|
u
|
2
β
−
1
9
∇
u
m
=
(
(2
β
−
1)
|
u
|
2(
β
−
1)
∇
u,x
∈
B
m
,
m
2
∇
u,x
∈
D
m
,
ù
Ò
¿
›
X
u
m
Œ
±
Š
•
ÿ
Á
¼
ê
.
Ø
d
ƒ
,
„
Œ
Z
Ω
∇
u
∇
u
m
d
x
= (2
β
−
1)
Z
B
m
|
u
|
2(
β
−
1)
|∇
u
|
2
d
x
+
m
2
Z
D
m
|∇
u
|
2
d
x.
(16)
-
v
m
=
(
u
|
u
|
β
−
1
,x
∈
B
m
,
mu,x
∈
D
m
,
l
v
2
m
=
uu
m
≤|
u
|
2
β
±
9
∇
v
m
=
(
β
|
u
|
β
−
1
∇
u,x
∈
B
m
,
m
∇
u,x
∈
D
m
.
DOI:10.12677/pm.2023.133067631
n
Ø
ê
Æ
)
o
?
k
Z
Ω
|∇
v
m
|
2
d
x
=
β
2
Z
B
m
|
u
|
2(
β
−
1)
|∇
u
|
2
d
x
+
m
2
Z
D
m
|∇
u
|
2
d
x.
(17)
2
d
(16)
Ú
(17)
ª
Œ
Z
Ω
|∇
v
m
|
2
−∇
u
∇
u
m
d
x
= (
β
−
1)
2
Z
B
m
|
u
|
2(
β
−
1)
|∇
u
|
2
d
x.
(18)
ò
u
m
“
\
(7)
ª
,
K
k
a
Z
Ω
∇
u
∇
u
m
d
x
+
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
∇
u
∇
u
m
d
x
=
Z
Ω
|
u
|
p
−
1
u
m
ln
u
2
d
x
+
λ
Z
Ω
f
k
(
x,u
)
u
m
d
x.
d
(4),(16)
Ú
(18)
ª
k
a
Z
Ω
|∇
v
m
|
2
d
x
+
β
2
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
uu
m
d
x
=
a
(
β
−
1)
2
Z
B
m
|
u
|
2(
β
−
1)
|∇
u
|
2
d
x
+
a
Z
Ω
∇
u
∇
u
m
d
x
+
β
2
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
uu
m
d
x
≤
a
(
β
−
1)
2
2
β
−
1
+1
Z
B
m
∇
u
∇
u
m
d
x
+
β
2
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
uu
m
d
x
≤
β
2
(
a
Z
Ω
∇
u
∇
u
m
d
x
+
b
Z
Ω
|∇
u
|
2
d
x
Z
Ω
uu
m
d
x
)
≤
β
2
Z
Ω
|
u
|
p
−
1
|
u
m
|
ln
u
2
d
x
+
λ
Z
Ω
f
k
(
x,u
)
|
u
m
|
d
x
≤
β
2
Z
Ω
|
u
||
u
m
|
d
x
+
C
Z
Ω
|
u
|
q
−
1
|
u
m
|
d
x
+
Z
Ω
|
u
m
|
d
x
≤
β
2
Z
Ω
|
u
|
2
β
d
x
+
C
Z
Ω
|
u
|
q
−
2+2
β
d
x
+
Z
Ω
|
u
|
2
β
−
1
d
x
≤
β
2
C
1
Z
Ω
|
u
|
q
−
2+2
β
d
x
2
β
q
−
2+2
β
+
β
2
C
Z
Ω
|
u
|
q
−
2+2
β
d
x
+
β
2
C
2
Z
Ω
|
u
|
q
−
2+2
β
d
x
2
β
−
1
q
−
2+2
β
.
(19)
Ø
”
b
R
Ω
|
u
|
q
−
2+2
β
d
x>
1,
¤
á
Z
Ω
|∇
v
m
|
2
d
x
≤
β
2
C
Z
Ω
|
u
|
q
−
2+2
β
d
x.
Š
â
Sobolev
Ø
ª
Œ
Z
B
m
|
v
m
|
6
d
x
1
3
≤
S
Z
Ω
|∇
v
m
|
2
d
x
≤
Sβ
2
C
Z
Ω
|
u
|
q
−
2+2
β
d
x.
DOI:10.12677/pm.2023.133067632
n
Ø
ê
Æ
)
o
?
˜
Ú
,
(
Ü
H¨older
Ø
ª
Ú
Ú
n
3.4
k
Z
B
m
|
v
m
|
6
d
x
1
3
≤
Sβ
2
C
|
u
|
q
−
2
6
(
Z
Ω
|
u
|
2
βr
1
d
x
)
1
r
1
≤
Sβ
2
CM
q
−
2
(
Z
Ω
|
u
|
2
βr
1
d
x
)
1
r
1
,
(20)
Ù
¥
r
1
÷
v
1
r
1
+
q
−
2
6
= 1.
Ï
•
3
B
m
¥
,
k
|
v
m
|
=
|
u
|
β
,
¤
±
Z
B
m
|
u
|
6
β
d
x
1
3
≤
Sβ
2
CM
q
−
2
(
Z
Ω
|
u
|
2
βr
1
d
x
)
1
r
1
.
-
m
→∞
,
Š
â
ü
N
Â
ñ
½
n
,
k
|
u
|
6
β
≤
β
1
β
SCM
q
−
2
1
2
β
|
u
|
2
βr
1
.
(21)
σ
=
3
r
1
,
K
σ>
1.
-
(21)
ª
¥
β
=
σ,
·
‚
k
|
u
|
6
σ
≤
σ
1
σ
SCM
q
−
2
1
2
σ
|
u
|
6
.
(22)
2ö
,
-
(21)
ª
¥
β
=
σ
2
,
K
k
|
u
|
6
σ
2
≤
σ
2
σ
2
SCM
q
−
2
1
2
σ
2
|
u
|
6
σ
.
(23)
Ï
d
,
(
Ü
(22)
Ú
(23)
ª
Œ
|
u
|
6
σ
2
≤
σ
(
1
σ
+
2
σ
2
)
SCM
q
−
2
1
2
(
1
σ
+
1
σ
2
)
|
u
|
6
.
-
(21)
ª
¥
β
=
σ
i
,i
= 1
,
2
,...
,
¿
-
E
±
þ
Ú
½
Œ
|
u
|
6
σ
i
≤
σ
P
i
j
=1
j
σ
j
SCM
q
−
2
1
2
P
i
j
=1
1
σ
j
|
u
|
6
.
-
þ
ª
¥
i
→∞
,
(
Ü
Ú
n
3.4,
·
‚
k
|
u
|
∞
≤
C
|
u
|
6
≤
CM
≤
˜
M,
Ù
¥
˜
M>
0
…
˜
M
Š
†
λ
Ú
k
Ã
'
.
Ú
n
3.5
y
.
.
½½½
nnn
1.1
yyy
²²²
À
J
~
ê
k
,
¦
k>
˜
M
,
Ù
¥
˜
M
d
Ú
n
2.5
‰
Ñ
.
-
λ
∗
=
λ
∗
(
k
),
K
é
?
¿
λ
∈
(0
,λ
∗
),
·
‚
k
|
u
k
|
∞
<k
.
Ï
d
,
Š
â
f
k
(
x,t
)
Ú
F
k
(
x,t
)
½
Â
,
k
f
k
(
x,u
k
) =
f
(
x,u
k
)a.e.
x
∈
Ω
.
u
´
u
k
´
•
§
(1)
)
.
DOI:10.12677/pm.2023.133067633
n
Ø
ê
Æ
)
o
4.
½
n
1.2
y
²
5
¿
,
3
Ú
n
3.1
¥
,
X
J
·
‚
ò
r
Ú
ρ
©
O
O
†
¤
•
~
ê
,
K
•
3
λ
0
∈
(0
,λ
∗
),
¦
λ
∈
(0
,λ
0
)
ž
,
I
k
E
ä
k
ì
´
A
Û
(
.
=
k
e
¡
Ú
n
.
ÚÚÚ
nnn
4.1
•
3
~
ê
0
<r
0
<r
,0
<ρ
0
<ρ
,
±
9
0
<λ
0
(
k
)
<λ
∗
(
k
),
K
•
3
u
0
∈
H
1
0
(Ω),
é
?
¿
λ
∈
(0
,λ
0
)
k
I
k
(
u
0
)
<
0
k
u
0
k
>r
0
Ú
I
k
(
u
)
≥
ρ
0
Ù
¥
k
u
k
=
r
0
,
(24)
Ù
¥
r,ρ,λ
∗
(
k
)
d
Ú
n
3.1
‰
½
.
y
b
ë
Y
¼
ê
f
(
x,u
)
3
Ω
þ
÷
v
f
(
x,
0)
≥
0
,f
(
x,
0)
6
= 0.
d
Ú
n
3.1
Œ
inf
k
u
k
=
r
I
k
(
u
)
≥
ρ>
0
≤
I
k
(0)
.
(25)
-
B
r
=
{
u
∈
H
1
0
(Ω)
|k
u
k≤
r
}
,
K
I
k
3
B
r
þ
Œ
±
4
Š
,
4
Š
:
•
v
λ
,
´
•
v
λ
∈
B
r
.
¯
¢
þ
,
Š
â
Ekland
C
©
n
,
·
‚
Œ
±
À
J
˜
‡
S
{
v
n
}⊂
B
r
,
¦
3
B
r
þ
k
I
k
(
v
n
)
→
I
k
(
v
λ
),
k
I
0
k
(
v
n
)
k→
0.
w
,
,
•
3
{
v
n
}
˜
‡
f
S
(
Ø
”
E
P
•
{
v
n
}
),
3
B
r
þ
k
v
n
*v
λ
.
Š
â
I
k
f
e
Œ
ë
Y5
,
Œ
±
I
k
(
v
λ
)
≤
liminf
n
→∞
I
k
(
v
n
),
K
v
λ
´
I
k
3
B
r
þ
4
Š
.
2
d
I
k
(0)
≤
0,
·
‚
Œ
±
I
k
(
v
λ
)
<
0
<I
k
(
u
k
),
Ù
¥
u
k
´
½
n
1.1
¥
¤
‰
½
I
k
.
:
.
Ï
d
v
λ
6
=
u
k
.
|
^
†
Ú
n
3.5
a
q
y
²
Œ
±
,
|
λ
|
<λ
∗
v
ž
,
·
‚
k
|
v
λ
|
∞
≤
C
,
Ù
¥
C>
0
†
k
Ã
'
.
d
d
,
À
k>C
,
K
f
k
(
x,v
λ
) =
f
(
x,v
λ
),
l
v
λ
´
•
§
(1)
˜
‡
)
.
,
˜
•
¡
,
d
Ú
n
4.1
Œ
•
,
é
z
˜
‡
λ
∈
(0
,λ
0
),
v
λ
Ñ
´
•
§
(1)
)
.
K
d
v
λ
∈
B
r
,
k
k
v
λ
k
<r
.
Ä
K
λ
→
0
ž
,
k
v
λ
k→
α
,
Ù
¥
0
<α<r
.
e
¡
,
·
‚
À
J
S
{
λ
n
}⊂
(0
,λ
0
),
K
n
→∞
ž
,
λ
n
→
0.
d
d
Œ
•
,
•
3
ρ
0
>
0,
¦
n
¿
©
Œ
ž
,
k
I
k
(
v
λ
n
)
≥
ρ
0
>
0.
ù
†
I
k
(
v
λ
)
<
0
´
g
ñ
.
Ï
d
,
λ
→
0
ž
,
k
v
λ
k→
0.
ë
•
©
z
[1]Kirchhoff,G.(1883)Mechanik.Teubner,Leipzig.
[2]Ma,T.F.andRivera, J.E.M.(2003)Positive Solitions foraNonlinearNonlocalEllipticTrans-
missionProblem.
AppliedMathematicsLetters
,
16
,243-248.
https://doi.org/10.1016/S0893-9659(03)80038-1
[3]Alves,C.O.,Correa,F.andMa,T.F.(2005)PositiveSolutionsforaQuasilinearElliptic
EquationofKirchhoffType.
ComputersandMathematicswithApplications
,
49
,85-93.
https://doi.org/10.1016/j.camwa.2005.01.008
[4]Azzollini,A. (2012)The Elliptic Kirchhoff Equation in
R
N
Perturbed by a Local Nontinearity.
DifferentialandIntegralEquations
,
25
,543-554.https://doi.org/10.57262/die/1356012678
DOI:10.12677/pm.2023.133067634
n
Ø
ê
Æ
)
o
[5]Chen,S.T.,Zhang,B.L.andTang,X.H.(2018)ExistenceandNon-ExistenceResultsfor
Kirchhoff-TypeProblemswithConvolutionNonlinearity.
AdvancesinNonlinearAnalysis
,
9
,
148-167.https://doi.org/10.1515/anona-2018-0147
[6]Figueiredo,G.M.andSantosJunior,J.R.(2012)MultiplicityofSolutionsforaKirchhoff
EquationwithSubcritiealorCriticalGrowth.
DifferentialandIntegralEquations
,
25
,853-
868.https://doi.org/10.57262/die/1356012371
[7]He, X. and Zou, W.M. (2010) Multiplicityof Solutionsfor aClass ofKirchhoff Type Problems.
ActaMathematicaeApplicataeSinica
,
26
,387-394.
https://doi.org/10.1007/s10255-010-0005-2
[8]Mao,A.M.andZhang,Z.T.(2009)Sign-ChangingandMultipleSolutionsofKirchhoffType
ProblemswithouttheP.S.Condition.
NonlinearAnalysis
,
70
,1275-1287.
https://doi.org/10.1016/j.na.2008.02.011
[9]Mao,A.M.andZhu,X.C.(2017)ExistenceandMultiplicityResultsforKirchhoffProblems.
MediterraneanJournalofMathematics
,
14
,ArticleNo.58.
https://doi.org/10.1007/s00009-017-0875-0
[10]Peng,L.,Suo,H.,Wu,D.,Feng,H.andLei,C.(2021)MultiplePositiveSolutionsfora
LogarithmicSchr¨odinger-PoissonSystemwithSingularNonelinearity.
ElectronicJournalof
QualitativeTheoryofDifferentialEquations
,
90
,1-15.
https://doi.org/10.14232/ejqtde.2021.1.90
[11]Zhang,Z.T.andPerera,K.(2006)SignChangingSolutionsofKirchhoffTypeProblemsvia
Invariant SetsofDescentFlow.
JournalofMathematicalAnalysisandApplications
,
317
,450-
463.https://doi.org/10.1016/j.jmaa.2005.06.102
[12]Lan,Y.Y.(2016)ExistenceofSolutionsforKirchhoffEquationswithaSmallPerturbations.
ElectronicJournalofDifferentialEquations
,
225
,1-12.
[13]Wen,L.,Tang,X.andChen,S.(2019)GroundStateSign-ChangingSolutionsforKirchhoff
EquationswithLogarithmicNonlinearity.
ElectronicJournalofQualitativeTheoryofDiffer-
entialEquations
,No.47,1-13.https://doi.org/10.14232/ejqtde.2019.1.47
[14]Willem,M.(1996)MinimaxTheorems.Birkh¨auser,Boston.
https://doi.org/10.1007/978-1-4612-4146-1
DOI:10.12677/pm.2023.133067635
n
Ø
ê
Æ