设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(3),636-643
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133068
‘CþØ©êg4ŒŽf3λ-¥%
Morrey˜mþ\O
………ÖÖÖ
1,2
§§§"""ûûû
1,2
§§§ooo|||___
1,2
§§§MMM€€€€€€
1,2
1
žh“‰ŒÆêƆÚOÆ§#õžw
2
žh“‰ŒÆA^êÆïĤ§#õžw
ÂvFϵ2023c222F¶¹^Fϵ2023c323F¶uÙFϵ2023c330F
Á‡
|^Øª9¢C•{§¿/ÏuL
p
˜mþ\k.5§CþØ©êg4Œ Žf3\
λ-¥%Morrey˜mþk.5"
'…c
\λ-¥%Morrey˜m§©êg4ŒŽf§CþØ
WeightedEstimatesofFractional
MaximalOperatorwithVariable
Kernelonλ-Central
MorreySpaces
YuheYang
1,2
,ZhenXin
1,2
,QiaoxiaLi
1,2
,SusuXu
1,2
1
SchoolofMathematicsandStatistics,YiliNormalUniversity, YiningXinjiang
2
InstituteofAppliedMathematics,YiliNormalUniversity, YiningXinjiang
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
©ÙÚ^:…Ö,"û,o|_,M€€.‘CþØ©êg4ŒŽf3λ-¥%Morrey˜mþ\O[J].nØê
Æ,2023,13(3):636-643.DOI:10.12677/pm.2023.133068
…Ö
Abstract
Byapplyingtheweightedinequalitiesandtherealvariablemethods,theboundedness
ofthefractionalmaximaloperatorwithvariablekernelisobtainedintheweighted
λ-centralMorreyspaceswiththehelpofthecorrespondingboundednessontheL
p
spaces.
Keywords
Weightedλ-CentralMorreySpace,FractionalMaximalOperator,VariableKernel
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
Morrey˜m3NÚ©Û9Ù ‡©•§+•kX2•A^,Óž,•Š•Lebesgue˜
m˜«g,í2[1].2000c,Alvarez,Lakey,ÚGuzman-Partide3©z[2]¥ïÄ¥%BMO
˜mÚMorrey˜m'Xž,Ú\λ-¥%Morrey˜m.2019c,>V²<3©z[3]¥
Marcinkiewicz È©9Ù†f3λ-¥%Morrey˜mþ\O.2021c§Mj<3©
z[4]¥ïÄäko÷ØV‚5HardyŽf†f 3λ-¥%Morrey ˜m¥k.5.k'ù
a˜mþÈ©Žfk.5?˜ÚïÄŒë„[5–9].Óž§‘CþØŽf3NÚ©ÛïÄ¥
Ók-‡/ .2011c,M[u3©z[10]¥y²‘ CþØ©êgÈ©Žf3Hardy ˜m
þk.5.2013c,ëp3©z[11]¥ïÄ‘CþØMarcinkiewiczÈ©\k.5,?
NõÆöé‘CþØŽf‰2•ïÄ[12–16].Éþ¡ïÄéu,©òÏLïÄ‘Cþ
Ø©êg4ŒŽf3L
p
˜mO§l‘CþØ©êg4ŒŽf3λ-¥%Morrey˜m
þ\O.3Qã©Ì‡(Jƒc,I‡Ú\e¡VgÚPÒ.
PS
n−1
•R
n
(n≥2)¥ü ¥¡,ÙþCLebesgueÿÝdσ=dσ(z
0
).½Â3
R
n
×R
n
þ¼êΩ ∈L
∞
(R
n
)×L
t
(S
n−1
)(t≥1) ÷v
kΩk
L
∞
(R
n
)×L
t
(S
n−1
)
=sup
x∈R
n
(
Z
S
n−1
|Ω(x,z
0
)|
t
dσ(z
0
))
1
t
<∞,(1)
Ù¥,z
0
=
z
|z|
,∀z∈R
n
\{0}.
DOI:10.12677/pm.2023.133068637nØêÆ
…Ö
¿Ω÷v^‡Ω(x,λz) = Ω(x,z),∀x,z∈R
n
,∀λ>0 †ž”^‡
Z
S
n−1
Ω(x,z
0
)d(z
0
) = 0,∀x∈R
n
.(2)
éu0 <β<n,‘CþØ©êg4ŒŽfM
Ω,β
½Â•
M
Ω,β
(f)(x) = sup
Q
1
|Q|
n−β
Z
Q
|Ω(x,x−y)||f(y)|dy.(3)
©òy²CþØ©êg4ŒŽf3\λ-¥%Morrey˜mþk.5.
1<p,q<∞,R
n
þšKÛ܌ȼêω(x) ¡•A(p,q) ,XJ•3~êC>0,¦
eª¤á
1
|Q|
Z
Q
ω(x)
q
dx
!
1
q
1
|Q|
Z
Q
ω(x)
−p
0
dx
!
1
p
0
≤C,(4)
þª¥•~êC^[ω]
A(p,q)
L«.
½½½ÂÂÂ[17,18]λ∈R, 1 <q<∞, ω
1
Úω
2
•ÛÜŒÈšKŒÿ¼ê, \λ-¥%Morrey
˜m½Â•
˙
B
q,λ
ω
1
,ω
2
(R
n
) = {f: kfk
˙
B
q,λ
ω
1
,ω
2
= sup
r>0
1
ω
1
(B(0,r))
1+λq
Z
B(0,r)
|f(x)|
q
ω
2
(x)dx
!
1
q
<∞},(5)
Ù¥,B(0,r) L«R
n
¥±:•¥%, r•Œ»¥,¿…ω
1
= ω
2
:= ωž,{P
˙
B
q,λ
ω
1
,ω
2
(R
n
) =
˙
B
q,λ
ω
(R
n
).
©̇(JXe.
½½½nnn1<t<∞,0≤β<n, Ω∈L
∞
(R
n
)×L
t
(S
n−1
),‘CþØ©êg4ŒŽfM
Ω,β
dª(3) ¤½Â,@o
1
p
−
1
q
=
β
n
,1 <p
0
<t,t
0
<p<q<∞,1 <t
0
<p<
n
β
,λ
2
= λ
1
+
β
n
<0,¿
…ω(x)
t
0
∈A
(
p
t
0
,
q
t
0
)
ž,•3˜‡†fÃ'~êC,¦
kM
Ω,β
(f)k
˙
B
q,λ
2
ω
q
≤Ckfk
˙
B
p,λ
1
ω
p
,ω
q
.
©¥,p
0
L«péó•I,=1/p+1/p
0
=1.C´Ø•6u̇¼ê½ëþ~ê,3ØÓ1
¥$–3Ó˜1¥Œ±ØÓ.^ω∈∆
2
L«÷vV^‡¼êω¤8Ü,=•3~ê
C>0,¦é?¿•NQ⊂R
n
,¤áω(2Q) ≤Cω(Q).
2.½ny²
3y²½nƒc,k‰Ñe¡Ún.
DOI:10.12677/pm.2023.133068638nØêÆ
…Ö
ÚÚÚnnn1[13]XJ0 <α<n, 1 <p<
n
α
,±9
1
p
−
1
q
=
α
n
,eω∈A
(p,q)
,K
(
Z
R
n
[M
α
f(x)ω(x)]
q
dx)
1
q
≤C(
Z
R
n
[f(x)ω(x)]
p
dx)
1
p
.
Ù¥C´Ø•6uf~ê.
ÚÚÚnnn2[18]XJω∈A
q
(1 ≤q<∞),Ké?¿k∈Z
+
,l<0,±9•NB⊂R
n
,k
ω(2
k
B)
l
≤D
kl
1
ω(B)
l
,
Ù¥,1 <D
1
<2.
ÚÚÚnnn3[19]XJω∈A
p
,1 ≤p<∞,Kω∈∆
2
.é¤kα>1,þk
ω(αQ) ≤α
nq
[ω]
A
p
ω(Q).
ÚÚÚnnn41<t<∞, Ω∈L
∞
(R
n
)×L
t
(S
n−1
),e0<β<n, 1≤t
0
<p<
n
β
,
1
p
−
1
q
=
β
n
,
ω(x)
t
0
∈A
(
p
t
0
,
q
t
0
)
.K•3Ø•6uf~êC,¦
(
Z
R
n
[M
Ω,β
f(x)ω(x)]
q
dx)
1
q
≤C(
Z
R
n
[f(x)ω(x)]
p
dx)
1
p
.
Ún4y²1 <t<∞,Ω ∈L
∞
(R
n
)×L
t
(S
n−1
).dH¨olderØªk
M
Ω,β
f(x) =sup
r>0
1
r
n−β
Z
|y|≤r
|Ω(x,y)||f(x−y)|dy
≤sup
r>0
1
r
n−β
Z
|y|≤r
|Ω(x,y)|
t
dy
!
1
t
Z
|y|≤r
|f(x−y)|
t
0
dy
!
1
t
0
.
Ù¥,
(
Z
|y|≤r
|Ω(x,y)|
t
dy)
1
t
≤Cr
n
t
kΩk
L
∞
(R
n
)×L
t
(S
n−1
)
.
Ïd,
M
Ω,β
f(x) ≤Cr
n
t
kΩk
L
∞
(R
n
)×L
t
(S
n−1
)
sup
r>0
1
r
n−β
(
Z
|y|≤r
|f(x−y)|
t
0
dy)
1
t
0
≤Csup
r>0
1
r
n−βt
0
(
Z
|y|≤r
|f(x−y)|
t
0
dy)
1
t
0
≤CM
βt
0
,t
0
.(6)
5¿1 <t
0
<p<
n
β
,
1
p
−
1
q
=
β
n
Ú1 <
p
t
0
<
n
βt
0
9
1
(
q
t
0
)
=
1
(
p
t
0
)
−
βt
0
n
.dÚn1 9ª(6) k
(
Z
R
n
[M
Ω,β
f(x)ω(x)]
q
dx)
1
q
≤C(
Z
R
n
[M
βt
0
,t
0
f(x)ω(x)]
q
dx)
1
q
≤C(
Z
R
n
[f(x)ω(x)]
p
dx)
1
p
.
DOI:10.12677/pm.2023.133068639nØêÆ
…Ö
Ún4y..
½½½nnnyyy²²²f∈
˙
B
p,λ
1
ω
p
,ω
q
,‰½?¿¥B=B(0,r),r=
√
nl(Q),©)f•f= f
1
+f
2
,Ù¥
f
1
= fχ
2B
,K
1
ω
q
(B)
1+λ
2
q
Z
B
|M
Ω,β
(f)(x)|
q
ω
q
(x)dx≤
1
ω
q
(B)
1+λ
2
q
Z
B
|M
Ω,β
(f
1
)(x)|
q
ω
q
(x)dx
+
1
ω
q
(B)
1+λ
2
q
Z
B
|M
Ω,β
(f
2
)(x)|
q
ω
q
(x)dx
:=I+II.
éI,dÚn4,¿5¿ω
t
0
∈A
(
p
t
0
,
q
t
0
)
,k
Z
B
|M
Ω,β
(f
1
)(x)|
q
ω
q
(x)dx≤C
Z
2B
|f(x)|
p
ω
p
(x)dx
!
q
p
≤
"
1
ω
q
(2B)
1+λ
1
p
Z
2B
|f(x)|
p
ω
p
(x)dx
!
1
p
#
q
ω
q
(2B)
(1+λ
1
p)
q
p
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
ω
q
(2B)
q
p
+λ
1
q
.
1+λ
2
q≥0 ž,dÚn3,¿5¿1 <t
0
<p<q<∞,λ
2
−λ
1
=
β
n
,
1
p
−
1
q
=
β
n
,·‚k
I=
1
ω
q
(B)
1+λ
2
q
Z
B
|M
Ω,β
(f
1
)(x)|
q
ω
q
(x)dx
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
ω
q
(2B)
1+λ
2
q
ω
q
(B)
1+λ
2
q
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
.(7)
1+λ
2
q<0ž,dÚn2ÓnŒƒÓO.
e¡OII,x∈B, y∈2
j+1
B,2
j−1
r
B
≤|y−x|<2
j+2
r
B
,k
(
Z
2
j+1
B
|Ω(x,x−y)
0
|
t
dy)
1
t
≤CkΩk
L
∞
(R
n
)×L
t
(S
n−1
)
·|2
j+1
B|
1
t
.(8)
5¿ω(x)
t
0
∈A
(
p
t
0
,
q
t
0
)
,dª(4),é?¿•NQ⊂R
n
,k
1
|Q|
Z
Q
ω
t
0
q
t
0
dx
!
t
0
q
1
|Q|
Z
Q
ω
t
0
[−(
p
t
0
)
0
]
dx
!
1
(
p
t
0
)
0
≤C.
DOI:10.12677/pm.2023.133068640nØêÆ
…Ö
Ïd,
1
|Q|
Z
Q
ω
q
dx
!
t
0
q
1
|Q|
Z
Q
ω
t
t−1
(−(
p(t−1)
pt−p−t
))
dx
!
pt−p−t
p(t−1)
≤C.

Z
Q
ω
−
pt
pt−p−t
dx≤C
|Q|
pt
(pt−t−p)q
|Q|
ω
q
(Q)
pt
(pt−p−t)q
.
¤±,
Z
Q
ω
−t
0
(
p
t
0
)
0
dx=
Z
Q
ω
−
pt
pt−p−t
dx≤
|Q|
pt
(pt−t−p)q
|Q|
ω
q
(Q)
pt
(pt−p−t)q
.
Ïd,k
Z
Q
ω
−
pt
pt−p−t
dx
!
1−
1
p
−
1
t
=
|Q|
pt
(pt−t−p)q
|Q|
ω
q
(Q)
pt
(pt−p−t)q
!
pt−p−t
pt
≤
|Q|
1
q
|Q|
1−
1
p
−
1
t
ω
q
(Q)
1
q
.(9)
Šâþ¡O,dH¨olderØªÚλ
2
−λ
1
=
α
n
9ª(8),(9),k
M
Ω,β
f
2
(x) =
1
|Q|
1−
β
n
Z
Q
T
B
c
(0,2r)
|Ω(x,x−y)||f(y)|dy
≤
1
|B|
1−
β
n
∞
X
j=1
Z
2
j
r<|y|≤2
j+1
r
|Ω(x,x−y)||f(y)|dy
≤C
1
|B|
1−
β
n
∞
X
j=1
Z
2
j+1
B
|f(y)|
p
ω
p
dy
!
1
p
Z
2
j+1
B
|Ω(x,x−y)|
t
dy
!
1
t
×
Z
2
j+1
B
ω(y)
−
pt
pt−p−t
dy
!
1−
1
p
−
1
t
≤C
1
|B|
1−
β
n
∞
X
j=1
Z
2
j+1
B
|f(y)|
p
ω
p
dy
!
1
p
|2
j+1
B|
1−
1
p
−
1
t
+
1
q
ω
q
(2
j+1
B)
1
q
kΩk
L
∞
(R
n
)×L
t
(S
n−1
)
·|2
j+1
B|
1
t
≤CkΩk
L
∞
(R
n
)×L
t
(S
n−1
)
∞
X
j=1
|2
j+1
B|
1−
1
p
+
1
q
|B|
1−
β
n
Z
2
j+1
B
|f(y)|
p
ω
p
dy
!
1
p
≤C
∞
X
j=1
|2
j+1
B|
1
q
−
1
p
+
β
n
1
ω
q
(2
j+1
B)
1+λ
1
q
Z
2
j+1
B
|f(y)|
p
ω
p
dy
!
1
p
×
ω
q
(2
j+1
B)
(1+λ
1
q)
1
p
ω
q
(2
j+1
B)
1
q
≤Ckfk
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
|2
j+1
B|
1
q
−
1
p
+
β
n
ω
q
(2
j+1
B)
(1+λ
1
p)
1
p
ω
q
(2
j+1
B)
1
q
≤Ckfk
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
ω
q
(2
j+1
B)
λ
2
.
DOI:10.12677/pm.2023.133068641nØêÆ
…Ö
K
II=
1
ω
q
(B)
1+λ
2
q
Z
B
|M
Ω,β
(f
2
)(x)|
q
ω
q
(x)dx
≤C
ω
q
(B)
ω
q
(B)
1+λ
2
q
kfk
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
ω
q
(2
j+1
B)
λ
2
q
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
ω
q
(2
j+1
B)
λ
2
q
ω
q
(B)
λ
2
q
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
[
ω
q
(2
j+1
B)
ω
q
(B)
]
λ
2
q
.
Ón,ω
t
0
∈A
(
p
t
0
,
q
t
0
)
,1 <t
0
<p<q<∞ž,kω
q
∈A
s
,Ù¥s= 1+
q
p
0
.λ
2
<0,dÚn2 
II≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j=1
[
ω
q
(2
j+1
B)
ω
q
(B)
]
λ
2
q
≤Ckfk
q
˙
B
p,λ
1
ω
p
,ω
q
.(10)
(ÜIÚIIO,½ny..
Ä7‘8
žh“‰ŒÆ?‘8(2021YSYB073).
ë•©z
[1]Morrey,C.(1938) OnSolutions ofQuasi-Linear EllipticPartial Differential Equations.Trans-
actionsoftheAmericanMathematicalSociety,43,126-166.
https://doi.org/10.1090/S0002-9947-1938-1501936-8
[2]Alvarez,J.,Guzman-Partida,M.andLakey,J.(2000)SpacesofBoundedλ-CentralMean
Oscillation,MorreySpaces,andλ-CentralCarlesonMeasures.CollectaneaMathematica,51,
1-47.
[3]>V²,•==.MarcinkiewiczÈ©9Ù† f3\λ-¥%Morrey˜mþ\k.5[J].
Ü“‰ŒÆÆ(g,‰Æ‡),2019,55(4):1-8.
[4]Mj,’¡,êôì.äko÷ØV‚5HardyŽf†f3λ-¥%Morrey˜m¥k.5[J].
þ5“‰ÆÆ,2021,41(6):12-17.
[5]Vakhtang, K. and Alexander, M. (2007) Weighted Criteriafor Generalized Fractional Maximal
FunctionsandPotentialsinLebesgueSpaceswithVariableExponet.IntegralTransformsand
SpecialFunctions,18,609-628.https://doi.org/10.1080/10652460701445344
DOI:10.12677/pm.2023.133068642nØêÆ
…Ö
[6]Tao,X.X.andShi,Y.L.(2011)MultilinearCommutatorsofCalder´on-ZygmundOperatoron
λ-CentralMorreySpaces.AdvancesinMathematics,40,47-59.
[7]Yu,X.andTao,X.X.(2013)BoundednessforaClassofGeneralizedCommutatorsonλ-
CentralMorreySpaces.ActaMathematicaSinicaEnglishSeries,29,1917-1926.
https://doi.org/10.1007/s10114-013-2174-4
[8]>V²,p J.õ‚5©êgÈ©Ú4ŒŽf3Morrey˜mþ\O[J].ìÀŒÆÆ(n
Ƈ),2018,53(6):30-37.
[9]Üâ,Éô9.©êg4Œ¼ê†f[J].êÆÆ,2009,52(6):1235-1238.
[10]M[u,åá).‘CþØ©êgÈ©Žf 3Harey˜mþk.5[J].X{êÆ†A^êÆ,
2011,27(2):199-203.
[11]ëp,o\¹,Áƒx.CþØMarcinkiewiczÈ©\k.5(=©)[J].A^êÆ,2013,
26(1):172-176.
[12]Ding,Y.,Chen,J.C. and Fan, D.S. (2002) A Class of Integral Operators with Variable Kernels
onHardySpaces.ChineseAnnalsofMathematicsSeriesA,23,289-296.
[13]Ding, Y., Lin,C.C.and Shao,S.L.(2004) OntheMarcinkiewiczIntegralwith VariableKernels.
IndianaUniversityMathematicsJournal,53,805-821.
https://doi.org/10.1512/iumj.2004.53.2406
[14]Chen,Y.P.andDing,Y.(2013)TheBoundednessforCommutatorofFractionalIntegral
OperatorwithRoughVariableKernel.PotentialAnalysis,38,119-142.
https://doi.org/10.1007/s11118-011-9267-4
[15]Shao,X.K.and Wang, S.P. (2015) Boundedness of Fractional Operators with Variable Kernels
onWeightedMorreySpaces.JournalofAnhuiUniversity(NaturalSciences),39,21-24.
[16]"Õ±,>V².‘CþØMarcinkiewiczÈ©Žf3C•IHerz.Hardy˜mþk.5[J].
ìÀŒÆÆ(nƇ),2018,53(6):38-43.
[17]ëp,Â+ï,R.©êgÈ©Žf†f3λ-¥%Morrey˜ mþ\k.5[J].ìÀŒÆ
Æ(nƇ),2011,46(12):88-92.
[18]Yu,X.,Zhang,H.H.andZhao,G.P.(2016)WeightedBoundednessofSomeIntegralOp-
eratorsonWeightedλ-CentralMorreySpaces.AppliedMathematics—AJournalofChinese
Universities,31,331-342.https://doi.org/10.1007/s11766-016-3348-5
[19]Grafakos, L.(2008)Classical and ModernFourier Analysis.PrenticeHall,New York, 279-291.
DOI:10.12677/pm.2023.133068643nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.