设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(3),636-643
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133068
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
λ
-
¥
%
Morrey
˜
m
þ
\
O
………
ÖÖÖ
1
,
2
§§§
"""
ûûû
1
,
2
§§§
ooo
|||
___
1
,
2
§§§
MMM
€€€€€€
1
,
2
1
ž
h
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
#
õ
ž
w
2
ž
h
“
‰
Œ
Æ
A^
ê
Æï
Ä
¤
§
#
õ
ž
w
Â
v
F
Ï
µ
2023
c
2
22
F
¶
¹
^
F
Ï
µ
2023
c
3
23
F
¶
u
Ù
F
Ï
µ
2023
c
3
30
F
Á
‡
|
^
Ø
ª
9
¢
C
•{
§
¿
/
Ï
u
L
p
˜
m
þ
\
k
.
5
§
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
\
λ
-
¥
%
Morrey
˜
m
þ
k
.
5
"
'
…
c
\
λ
-
¥
%
Morrey
˜
m
§
©
ê
g
4
Œ
Ž
f
§
C
þ
Ø
WeightedEstimatesofFractional
MaximalOperatorwithVariable
Kernelon
λ
-Central
MorreySpaces
YuheYang
1
,
2
,ZhenXin
1
,
2
,QiaoxiaLi
1
,
2
,SusuXu
1
,
2
1
SchoolofMathematicsandStatistics,YiliNormalUniversity, YiningXinjiang
2
InstituteofAppliedMathematics,YiliNormalUniversity, YiningXinjiang
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
©
Ù
Ú
^
:
…
Ö
,
"
û
,
o
|
_
,
M
€€
.
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
λ
-
¥
%
Morrey
˜
m
þ
\
O
[J].
n
Ø
ê
Æ
,2023,13(3):636-643.DOI:10.12677/pm.2023.133068
…
Ö
Abstract
Byapplyingtheweightedinequalitiesandtherealvariablemethods,theboundedness
ofthefractionalmaximaloperatorwithvariablekernelisobtainedintheweighted
λ
-centralMorreyspaceswiththehelpofthecorrespondingboundednessonthe
L
p
spaces.
Keywords
Weighted
λ
-CentralMorreySpace,FractionalMaximalOperator,VariableKernel
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
Morrey
˜
m
3
N
Ú
©
Û
9
Ù
‡
©•
§
+
•k
X
2
•
A^
,
Ó
ž
,
•
Š
•
Lebesgue
˜
m
˜
«
g
,
í
2
[1].2000
c
,Alvarez,Lakey,
Ú
Guzman-Partide
3
©
z
[2]
¥
ï
Ä
¥
%
BMO
˜
m
Ú
Morrey
˜
m
'
X
ž
,
Ú
\
λ
-
¥
%
Morrey
˜
m
.2019
c
,
>
V
²
<
3
©
z
[3]
¥
Marcinkiewicz
È
©
9
Ù
†
f
3
λ
-
¥
%
Morrey
˜
m
þ
\
O
.2021
c
§
M
j
<
3
©
z
[4]
¥
ï
Ä
ä
k
o
÷
Ø
V
‚
5
Hardy
Ž
f
†
f
3
λ
-
¥
%
Morrey
˜
m
¥
k
.
5
.
k
'
ù
a
˜
m
þ
È
©
Ž
f
k
.
5
?
˜
Ú
ï
Ä
Œ
ë
„
[5–9].
Ó
ž
§
‘
C
þ
Ø
Ž
f
3
N
Ú
©
Û
ï
Ä
¥
Ó
k
-
‡
/
.2011
c
,
M
[
u
3
©
z
[10]
¥y
²
‘
C
þ
Ø
©
ê
g
È
©
Ž
f
3
Hardy
˜
m
þ
k
.
5
.2013
c
,
ë
p
3
©
z
[11]
¥
ï
Ä
‘
C
þ
Ø
Marcinkiewicz
È
©
\
k
.
5
,
?
N
õ
Æ
ö
é
‘
C
þ
Ø
Ž
f‰
2
•
ï
Ä
[12–16].
É
þ
¡
ï
Ä
é
u
,
©
ò
Ï
L
ï
Ä
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
L
p
˜
m
O
§
l
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
λ
-
¥
%
Morrey
˜
m
þ
\
O
.
3
Q
ã
©
Ì
‡
(
J
ƒ
c
,
I
‡Ú
\
e
¡
V
g
Ú
P
Ò
.
P
S
n
−
1
•
R
n
(
n
≥
2)
¥
ü
¥
¡
,
Ù
þ
C
Lebesgue
ÿ
Ý
d
σ
=d
σ
(
z
0
).
½
Â
3
R
n
×
R
n
þ
¼
ê
Ω
∈
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)(
t
≥
1)
÷
v
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
=sup
x
∈
R
n
(
Z
S
n
−
1
|
Ω(
x,z
0
)
|
t
d
σ
(
z
0
))
1
t
<
∞
,
(1)
Ù
¥
,
z
0
=
z
|
z
|
,
∀
z
∈
R
n
\{
0
}
.
DOI:10.12677/pm.2023.133068637
n
Ø
ê
Æ
…
Ö
¿
Ω
÷
v
^
‡
Ω(
x,λz
) = Ω(
x,z
),
∀
x,z
∈
R
n
,
∀
λ>
0
†
ž
”
^
‡
Z
S
n
−
1
Ω(
x,z
0
)d(
z
0
) = 0
,
∀
x
∈
R
n
.
(2)
é
u
0
<β<n
,
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
M
Ω
,β
½
Â
•
M
Ω
,β
(
f
)(
x
) = sup
Q
1
|
Q
|
n
−
β
Z
Q
|
Ω(
x,x
−
y
)
||
f
(
y
)
|
d
y.
(3)
©
ò
y
²
C
þ
Ø
©
ê
g
4
Œ
Ž
f
3
\
λ
-
¥
%
Morrey
˜
m
þ
k
.
5
.
1
<p,q<
∞
,
R
n
þ
š
K
Û
Ü
Œ
È
¼
ê
ω
(
x
)
¡
•
A
(
p,q
)
,
X
J
•
3
~
ê
C>
0,
¦
e
ª
¤
á
1
|
Q
|
Z
Q
ω
(
x
)
q
d
x
!
1
q
1
|
Q
|
Z
Q
ω
(
x
)
−
p
0
d
x
!
1
p
0
≤
C,
(4)
þ
ª
¥
•
~
ê
C
^
[
ω
]
A
(
p,q
)
L
«
.
½½½
ÂÂÂ
[17
,
18]
λ
∈
R
, 1
<q<
∞
,
ω
1
Ú
ω
2
•
Û
Ü
Œ
È
š
K
Œ
ÿ
¼
ê
,
\
λ
-
¥
%
Morrey
˜
m
½
Â
•
˙
B
q,λ
ω
1
,ω
2
(
R
n
) =
{
f
:
k
f
k
˙
B
q,λ
ω
1
,ω
2
= sup
r>
0
1
ω
1
(
B
(0
,r
))
1+
λq
Z
B
(0
,r
)
|
f
(
x
)
|
q
ω
2
(
x
)d
x
!
1
q
<
∞}
,
(5)
Ù
¥
,
B
(0
,r
)
L
«
R
n
¥
±
:
•
¥
%
,
r
•
Œ
»
¥
,
¿
…
ω
1
=
ω
2
:=
ω
ž
,
{P
˙
B
q,λ
ω
1
,ω
2
(
R
n
) =
˙
B
q,λ
ω
(
R
n
).
©
Ì
‡
(
J
X
e
.
½½½
nnn
1
<t<
∞
,0
≤
β<n
, Ω
∈
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
),
‘
C
þ
Ø
©
ê
g
4
Œ
Ž
f
M
Ω
,β
d
ª
(3)
¤
½
Â
,
@
o
1
p
−
1
q
=
β
n
,1
<p
0
<t
,
t
0
<p<q<
∞
,1
<t
0
<p<
n
β
,
λ
2
=
λ
1
+
β
n
<
0,
¿
…
ω
(
x
)
t
0
∈
A
(
p
t
0
,
q
t
0
)
ž
,
•
3
˜
‡
†
f
Ã
'
~
ê
C
,
¦
k
M
Ω
,β
(
f
)
k
˙
B
q,λ
2
ω
q
≤
C
k
f
k
˙
B
p,λ
1
ω
p
,ω
q
.
©
¥
,
p
0
L
«
p
é
ó
•
I
,
=
1
/p
+1
/p
0
=1.
C
´
Ø
•
6
u
Ì
‡
¼
ê
½
ë
þ
~
ê
,
3
Ø
Ó
1
¥
$
–
3
Ó
˜
1
¥
Œ
±
Ø
Ó
.
^
ω
∈
∆
2
L
«
÷
v
V
^
‡
¼
ê
ω
¤
8
Ü
,
=
•
3
~
ê
C>
0,
¦
é
?
¿
•
N
Q
⊂
R
n
,
¤
á
ω
(2
Q
)
≤
Cω
(
Q
).
2.
½
n
y
²
3
y
²
½
n
ƒ
c
,
k
‰
Ñ
e
¡
Ú
n
.
DOI:10.12677/pm.2023.133068638
n
Ø
ê
Æ
…
Ö
ÚÚÚ
nnn
1[13]
X
J
0
<α<n
, 1
<p<
n
α
,
±
9
1
p
−
1
q
=
α
n
,
e
ω
∈
A
(
p,q
)
,
K
(
Z
R
n
[
M
α
f
(
x
)
ω
(
x
)]
q
d
x
)
1
q
≤
C
(
Z
R
n
[
f
(
x
)
ω
(
x
)]
p
d
x
)
1
p
.
Ù
¥
C
´
Ø
•
6
u
f
~
ê
.
ÚÚÚ
nnn
2[18]
X
J
ω
∈
A
q
(1
≤
q<
∞
),
K
é
?
¿
k
∈
Z
+
,
l<
0,
±
9
•
N
B
⊂
R
n
,
k
ω
(2
k
B
)
l
≤
D
kl
1
ω
(
B
)
l
,
Ù
¥
,1
<D
1
<
2.
ÚÚÚ
nnn
3[19]
X
J
ω
∈
A
p
,1
≤
p<
∞
,
K
ω
∈
∆
2
.
é
¤
k
α>
1,
þ
k
ω
(
αQ
)
≤
α
nq
[
ω
]
A
p
ω
(
Q
)
.
ÚÚÚ
nnn
4
1
<t<
∞
, Ω
∈
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
),
e
0
<β<n
, 1
≤
t
0
<p<
n
β
,
1
p
−
1
q
=
β
n
,
ω
(
x
)
t
0
∈
A
(
p
t
0
,
q
t
0
)
.
K
•
3
Ø
•
6
u
f
~
ê
C
,
¦
(
Z
R
n
[
M
Ω
,β
f
(
x
)
ω
(
x
)]
q
d
x
)
1
q
≤
C
(
Z
R
n
[
f
(
x
)
ω
(
x
)]
p
d
x
)
1
p
.
Ú
n
4
y
²
1
<t<
∞
,Ω
∈
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
).
d
H¨older
Ø
ª
k
M
Ω
,β
f
(
x
) =sup
r>
0
1
r
n
−
β
Z
|
y
|≤
r
|
Ω(
x,y
)
||
f
(
x
−
y
)
|
d
y
≤
sup
r>
0
1
r
n
−
β
Z
|
y
|≤
r
|
Ω(
x,y
)
|
t
d
y
!
1
t
Z
|
y
|≤
r
|
f
(
x
−
y
)
|
t
0
d
y
!
1
t
0
.
Ù
¥
,
(
Z
|
y
|≤
r
|
Ω(
x,y
)
|
t
d
y
)
1
t
≤
Cr
n
t
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
.
Ï
d
,
M
Ω
,β
f
(
x
)
≤
Cr
n
t
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
sup
r>
0
1
r
n
−
β
(
Z
|
y
|≤
r
|
f
(
x
−
y
)
|
t
0
d
y
)
1
t
0
≤
C
sup
r>
0
1
r
n
−
βt
0
(
Z
|
y
|≤
r
|
f
(
x
−
y
)
|
t
0
d
y
)
1
t
0
≤
CM
βt
0
,t
0
.
(6)
5
¿
1
<t
0
<p<
n
β
,
1
p
−
1
q
=
β
n
Ú
1
<
p
t
0
<
n
βt
0
9
1
(
q
t
0
)
=
1
(
p
t
0
)
−
βt
0
n
.
d
Ú
n
1
9
ª
(6)
k
(
Z
R
n
[
M
Ω
,β
f
(
x
)
ω
(
x
)]
q
d
x
)
1
q
≤
C
(
Z
R
n
[
M
βt
0
,t
0
f
(
x
)
ω
(
x
)]
q
d
x
)
1
q
≤
C
(
Z
R
n
[
f
(
x
)
ω
(
x
)]
p
d
x
)
1
p
.
DOI:10.12677/pm.2023.133068639
n
Ø
ê
Æ
…
Ö
Ú
n
4
y
.
.
½½½
nnn
yyy
²²²
f
∈
˙
B
p,λ
1
ω
p
,ω
q
,
‰
½
?
¿
¥
B
=
B
(0
,r
),
r
=
√
nl
(
Q
),
©
)
f
•
f
=
f
1
+
f
2
,
Ù
¥
f
1
=
fχ
2
B
,
K
1
ω
q
(
B
)
1+
λ
2
q
Z
B
|
M
Ω
,β
(
f
)(
x
)
|
q
ω
q
(
x
)d
x
≤
1
ω
q
(
B
)
1+
λ
2
q
Z
B
|
M
Ω
,β
(
f
1
)(
x
)
|
q
ω
q
(
x
)d
x
+
1
ω
q
(
B
)
1+
λ
2
q
Z
B
|
M
Ω
,β
(
f
2
)(
x
)
|
q
ω
q
(
x
)d
x
:=
I
+
II.
é
I
,
d
Ú
n
4,
¿
5
¿
ω
t
0
∈
A
(
p
t
0
,
q
t
0
)
,
k
Z
B
|
M
Ω
,β
(
f
1
)(
x
)
|
q
ω
q
(
x
)d
x
≤
C
Z
2
B
|
f
(
x
)
|
p
ω
p
(
x
)d
x
!
q
p
≤
"
1
ω
q
(2
B
)
1+
λ
1
p
Z
2
B
|
f
(
x
)
|
p
ω
p
(
x
)d
x
!
1
p
#
q
ω
q
(2
B
)
(1+
λ
1
p
)
q
p
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
ω
q
(2
B
)
q
p
+
λ
1
q
.
1+
λ
2
q
≥
0
ž
,
d
Ú
n
3,
¿
5
¿
1
<t
0
<p<q<
∞
,
λ
2
−
λ
1
=
β
n
,
1
p
−
1
q
=
β
n
,
·
‚
k
I
=
1
ω
q
(
B
)
1+
λ
2
q
Z
B
|
M
Ω
,β
(
f
1
)(
x
)
|
q
ω
q
(
x
)d
x
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
ω
q
(2
B
)
1+
λ
2
q
ω
q
(
B
)
1+
λ
2
q
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
.
(7)
1+
λ
2
q<
0
ž
,
d
Ú
n
2
Ó
n
Œ
ƒ
Ó
O
.
e
¡
O
II
,
x
∈
B
,
y
∈
2
j
+1
B
,
2
j
−
1
r
B
≤|
y
−
x
|
<
2
j
+2
r
B
,
k
(
Z
2
j
+1
B
|
Ω(
x,x
−
y
)
0
|
t
d
y
)
1
t
≤
C
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
·|
2
j
+1
B
|
1
t
.
(8)
5
¿
ω
(
x
)
t
0
∈
A
(
p
t
0
,
q
t
0
)
,
d
ª
(4),
é
?
¿
•
N
Q
⊂
R
n
,
k
1
|
Q
|
Z
Q
ω
t
0
q
t
0
d
x
!
t
0
q
1
|
Q
|
Z
Q
ω
t
0
[
−
(
p
t
0
)
0
]
d
x
!
1
(
p
t
0
)
0
≤
C.
DOI:10.12677/pm.2023.133068640
n
Ø
ê
Æ
…
Ö
Ï
d
,
1
|
Q
|
Z
Q
ω
q
d
x
!
t
0
q
1
|
Q
|
Z
Q
ω
t
t
−
1
(
−
(
p
(
t
−
1)
pt
−
p
−
t
))
d
x
!
pt
−
p
−
t
p
(
t
−
1)
≤
C.
Z
Q
ω
−
pt
pt
−
p
−
t
d
x
≤
C
|
Q
|
pt
(
pt
−
t
−
p
)
q
|
Q
|
ω
q
(
Q
)
pt
(
pt
−
p
−
t
)
q
.
¤
±
,
Z
Q
ω
−
t
0
(
p
t
0
)
0
d
x
=
Z
Q
ω
−
pt
pt
−
p
−
t
d
x
≤
|
Q
|
pt
(
pt
−
t
−
p
)
q
|
Q
|
ω
q
(
Q
)
pt
(
pt
−
p
−
t
)
q
.
Ï
d
,
k
Z
Q
ω
−
pt
pt
−
p
−
t
d
x
!
1
−
1
p
−
1
t
=
|
Q
|
pt
(
pt
−
t
−
p
)
q
|
Q
|
ω
q
(
Q
)
pt
(
pt
−
p
−
t
)
q
!
pt
−
p
−
t
pt
≤
|
Q
|
1
q
|
Q
|
1
−
1
p
−
1
t
ω
q
(
Q
)
1
q
.
(9)
Š
â
þ
¡
O
,
d
H¨older
Ø
ª
Ú
λ
2
−
λ
1
=
α
n
9
ª
(8),(9),
k
M
Ω
,β
f
2
(
x
) =
1
|
Q
|
1
−
β
n
Z
Q
T
B
c
(0
,
2
r
)
|
Ω(
x,x
−
y
)
||
f
(
y
)
|
d
y
≤
1
|
B
|
1
−
β
n
∞
X
j
=1
Z
2
j
r<
|
y
|≤
2
j
+1
r
|
Ω(
x,x
−
y
)
||
f
(
y
)
|
d
y
≤
C
1
|
B
|
1
−
β
n
∞
X
j
=1
Z
2
j
+1
B
|
f
(
y
)
|
p
ω
p
d
y
!
1
p
Z
2
j
+1
B
|
Ω(
x,x
−
y
)
|
t
d
y
!
1
t
×
Z
2
j
+1
B
ω
(
y
)
−
pt
pt
−
p
−
t
d
y
!
1
−
1
p
−
1
t
≤
C
1
|
B
|
1
−
β
n
∞
X
j
=1
Z
2
j
+1
B
|
f
(
y
)
|
p
ω
p
d
y
!
1
p
|
2
j
+1
B
|
1
−
1
p
−
1
t
+
1
q
ω
q
(2
j
+1
B
)
1
q
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
·|
2
j
+1
B
|
1
t
≤
C
k
Ω
k
L
∞
(
R
n
)
×
L
t
(
S
n
−
1
)
∞
X
j
=1
|
2
j
+1
B
|
1
−
1
p
+
1
q
|
B
|
1
−
β
n
Z
2
j
+1
B
|
f
(
y
)
|
p
ω
p
d
y
!
1
p
≤
C
∞
X
j
=1
|
2
j
+1
B
|
1
q
−
1
p
+
β
n
1
ω
q
(2
j
+1
B
)
1+
λ
1
q
Z
2
j
+1
B
|
f
(
y
)
|
p
ω
p
d
y
!
1
p
×
ω
q
(2
j
+1
B
)
(1+
λ
1
q
)
1
p
ω
q
(2
j
+1
B
)
1
q
≤
C
k
f
k
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
|
2
j
+1
B
|
1
q
−
1
p
+
β
n
ω
q
(2
j
+1
B
)
(1+
λ
1
p
)
1
p
ω
q
(2
j
+1
B
)
1
q
≤
C
k
f
k
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
ω
q
(2
j
+1
B
)
λ
2
.
DOI:10.12677/pm.2023.133068641
n
Ø
ê
Æ
…
Ö
K
II
=
1
ω
q
(
B
)
1+
λ
2
q
Z
B
|
M
Ω
,β
(
f
2
)(
x
)
|
q
ω
q
(
x
)d
x
≤
C
ω
q
(
B
)
ω
q
(
B
)
1+
λ
2
q
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
ω
q
(2
j
+1
B
)
λ
2
q
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
ω
q
(2
j
+1
B
)
λ
2
q
ω
q
(
B
)
λ
2
q
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
[
ω
q
(2
j
+1
B
)
ω
q
(
B
)
]
λ
2
q
.
Ó
n
,
ω
t
0
∈
A
(
p
t
0
,
q
t
0
)
,1
<t
0
<p<q<
∞
ž
,
k
ω
q
∈
A
s
,
Ù
¥
s
= 1+
q
p
0
.
λ
2
<
0,
d
Ú
n
2
II
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
∞
X
j
=1
[
ω
q
(2
j
+1
B
)
ω
q
(
B
)
]
λ
2
q
≤
C
k
f
k
q
˙
B
p,λ
1
ω
p
,ω
q
.
(10)
(
Ü
I
Ú
II
O
,
½
n
y
.
.
Ä
7
‘
8
ž
h
“
‰
Œ
Æ
?
‘
8
(2021YSYB073).
ë
•
©
z
[1]Morrey,C.(1938) OnSolutions ofQuasi-Linear EllipticPartial Differential Equations.
Trans-
actionsoftheAmericanMathematicalSociety
,
43
,126-166.
https://doi.org/10.1090/S0002-9947-1938-1501936-8
[2]Alvarez,J.,Guzman-Partida,M.andLakey,J.(2000)SpacesofBounded
λ
-CentralMean
Oscillation,MorreySpaces,and
λ
-CentralCarlesonMeasures.
CollectaneaMathematica
,
51
,
1-47.
[3]
>
V
²
,
•
==
.Marcinkiewicz
È
©
9
Ù
†
f
3
\
λ
-
¥
%
Morrey
˜
m
þ
\
k
.
5
[J].
Ü
“
‰
Œ
ÆÆ
(
g
,
‰
Æ
‡
),2019,55(4):1-8.
[4]
M
j
,
’
¡
,
ê
ô
ì
.
ä
k
o
÷
Ø
V
‚
5
Hardy
Ž
f
†
f
3
λ
-
¥
%
Morrey
˜
m
¥
k
.
5
[J].
þ5
“
‰
Æ
Æ
,2021,41(6):12-17.
[5]Vakhtang, K. and Alexander, M. (2007) Weighted Criteriafor Generalized Fractional Maximal
FunctionsandPotentialsinLebesgueSpaceswithVariableExponet.
IntegralTransformsand
SpecialFunctions
,
18
,609-628.https://doi.org/10.1080/10652460701445344
DOI:10.12677/pm.2023.133068642
n
Ø
ê
Æ
…
Ö
[6]Tao,X.X.andShi,Y.L.(2011)MultilinearCommutatorsofCalder´on-ZygmundOperatoron
λ
-CentralMorreySpaces.
AdvancesinMathematics
,
40
,47-59.
[7]Yu,X.andTao,X.X.(2013)BoundednessforaClassofGeneralizedCommutatorson
λ
-
CentralMorreySpaces.
ActaMathematicaSinicaEnglishSeries
,
29
,1917-1926.
https://doi.org/10.1007/s10114-013-2174-4
[8]
>
V
²
,
p
J
.
õ
‚
5
©
ê
g
È
©
Ú
4
Œ
Ž
f
3
Morrey
˜
m
þ
\
O
[J].
ì
À
Œ
ÆÆ
(
n
Æ
‡
),2018,53(6):30-37.
[9]
Ü
â
,
É
ô
9
.
©
ê
g
4
Œ
¼
ê
†
f
[J].
ê
ÆÆ
,2009,52(6):1235-1238.
[10]
M
[
u
,
å
á
)
.
‘
C
þ
Ø
©
ê
g
È
©
Ž
f
3
Harey
˜
m
þ
k
.
5
[J].
X{
ê
Æ
†A^
ê
Æ
,
2011,27(2):199-203.
[11]
ë
p
,
o
\
¹
,
Á
ƒ
x
.
C
þ
Ø
Marcinkiewicz
È
©
\
k
.
5
(
=
©
)[J].
A^
ê
Æ
,2013,
26(1):172-176.
[12]Ding,Y.,Chen,J.C. and Fan, D.S. (2002) A Class of Integral Operators with Variable Kernels
onHardySpaces.
ChineseAnnalsofMathematicsSeriesA
,
23
,289-296.
[13]Ding, Y., Lin,C.C.and Shao,S.L.(2004) OntheMarcinkiewiczIntegralwith VariableKernels.
IndianaUniversityMathematicsJournal
,
53
,805-821.
https://doi.org/10.1512/iumj.2004.53.2406
[14]Chen,Y.P.andDing,Y.(2013)TheBoundednessforCommutatorofFractionalIntegral
OperatorwithRoughVariableKernel.
PotentialAnalysis
,
38
,119-142.
https://doi.org/10.1007/s11118-011-9267-4
[15]Shao,X.K.and Wang, S.P. (2015) Boundedness of Fractional Operators with Variable Kernels
onWeightedMorreySpaces.
JournalofAnhuiUniversity(NaturalSciences)
,
39
,21-24.
[16]
"
Õ
±
,
>
V
²
.
‘
C
þ
Ø
Marcinkiewicz
È
©
Ž
f
3
C
•
I
Herz
.
Hardy
˜
m
þ
k
.
5
[J].
ì
À
Œ
ÆÆ
(
n
Æ
‡
),2018,53(6):38-43.
[17]
ë
p
,
Â
+
ï
,
R
.
©
ê
g
È
©
Ž
f
†
f
3
λ
-
¥
%
Morrey
˜
m
þ
\
k
.
5
[J].
ì
À
Œ
Æ
Æ
(
n
Æ
‡
),2011,46(12):88-92.
[18]Yu,X.,Zhang,H.H.andZhao,G.P.(2016)WeightedBoundednessofSomeIntegralOp-
eratorsonWeighted
λ
-CentralMorreySpaces.
AppliedMathematics—AJournalofChinese
Universities
,
31
,331-342.https://doi.org/10.1007/s11766-016-3348-5
[19]Grafakos, L.(2008)Classical and ModernFourier Analysis.PrenticeHall,New York, 279-291.
DOI:10.12677/pm.2023.133068643
n
Ø
ê
Æ