设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(3),669-682
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133072
˜a[‚5Schr¨odinger•§)•35
±±±¯¯¯
þ°nóŒÆnÆ§þ°
ÂvFϵ2023c222F¶¹^Fϵ2023c323F¶uÙFϵ2023c330F
Á‡
©?ØXe˜a[‚5Schr¨odinger•§
−∆u+V(x)u+
γ
2
∆(u
2
)u= f(u),x∈R
N
,
Ù¥V(x):R
N
→R• ³¼ê,γ>0,…N≥3.γ∈(0,γ
0
)ž,·‚þã¯K
).d ³¼êV(x) ≡V
∞
>0,·‚3H
2
(R
N
)∩C
2
(R
N
)þy²²;»•)u
γ
•35,
…γ→0
+
ž,÷vu
γ
→u
0
,Ù¥u
0
´±eŒ‚5¯KÄ):
−∆u+V
∞
u= f(u),x∈R
N
.
'…c
[‚5Schr¨odinger•§§C©•{§L
∞
-O§MorseS“
ExistenceofPositiveSolutionsfor
QuasilinearSchr¨odingerEquations
MinZhou
CollegeofScience,UniversityofShanghaiforScienceandTechnology,Shanghai
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
©ÙÚ^:±¯.˜a[‚5Schr¨odinger•§)•35[J].nØêÆ,2023,13(3):669-682.
DOI:10.12677/pm.2023.133072
±¯
Abstract
ThispaperfocusesonaclassofquasilinearSchr¨odingerequations:
−∆u+V(x)u+
γ
2
∆(u
2
)u= f(u),x∈R
N
,
whereV(x) : R
N
→Risagivenpotential,γ>0andN≥3.Firstly,weobtainapositive
solutionfortheaboveprobleminγ∈(0,γ
0
).ThepotentialfunctionV(x)isconsidered
inV(x) ≡V
∞
>0.Weprovetheexistenceofapositiveclassicalradialsolutionu
γ
and
uptoasubsequence,u
γ
→u
0
inH
2
(R
N
) ∩C
2
(R
N
)asγ→0
+
,whereu
0
istheground
stateofthefollowingsemilinearproblem:
∆u+V
∞
u= f(u),x∈R
N
.
Keywords
QuasilinearSchr¨odingerEquations,VariationalMethods,L
∞
-Estimate,Mores
Iteration
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ïÄXe[‚5Schr¨odinger•§7Å)•35:
i∂
t
z= −∆z+W(x)z−l(|z|
2
)z+
γ
2
[∆ρ(|z|
2
)]ρ
0
(|z|
2
)z,x∈R
N
(1)
Ù¥z:R
N
×R→C,W:R
N
→R´˜‡‰½ ³,γ´˜‡¢~ê,l,ρ•¢¼ê.¯¤±•,
•§(1)7Å)÷ve[‚5Schr¨odinger•§
−∆u+V(x)u+
γ
2
[∆ρ(|u|
2
)]ρ
0
(|u|
2
)u= f(u),x∈R
N
,(2)
DOI:10.12677/pm.2023.133072670nØêÆ
±¯
Ù¥V(x) = W(x)−E,f(t) := l(|t|
2
)t•#š‚5‘./X(2)[‚5Schr¨odinger•§®2•A
^uÔnõ‡+•(„[1]).~Xρ(t) = 1ž,•§òz•XeŒ‚5œ¹:
−∆u+V(x)u= l(u),x∈R
N
.
3L30cp,þã•§2•ïÄ,ë„©z[2,3].ρ(t) = tž,=
−∆u+V(x)u+
γ
2
∆(u
2
)u= f(u),x∈R
N
,(3)
§[lfNÔnÆ¥‡6N•§;ρ(t) =(1+t)
1/2
ž,þã•§ïápõLJá
-1ì3ÔŸ¥gÏ•§,ë„©z[4,5].
3LA›cp,kNõÆö|^C©•{,Œþ'u•§(2))•35Úõ-
5(J.γ<0ž,˜•¡ÏLå•zy²(3))•35.ù•¡¤JŒ±ë„©
z[6–8].,˜•¡,~êγ“LØÓÔnA,ÏdïÄ|γ|→0ž,Ä)•359ÙìC1
•´›©-‡.3©z[1]¥,AdachiïÄ±e•§:
−∆u+λu+
γ
2
∆(u
2
)u= |u|
p−2
u,x∈R
3
,(4)
(JL²,3˜mH
2
(R
3
)∩C
2
(R
3
)þ,•§(4)Ä)u
γ
÷vγ→0
−
ž,ku
γ
→u
0
,Ù¥u
0
´
Xe•§•˜Ä):
−∆u+λu= |u|
p−2
u,x∈R
3
.
3©z[9]¥§ly²3p∈(2,4)œ¹e•§(4))ìC1•,õAdachi<
3[1]¥‰Ñ(J.3©z[10–13]¥Adachi<A^»©ÛÚC©•{,š‚5‘ä
kH
1
.O•ÚH
1
‡.O•ž,•§(4)Ä)ìC1•.
'u¯K(3)ïÄ̇8¥3γ<0.éuγ>0,)•35(J„'.5¿,γ>0,
·‚ØU†^[6]¥CþC†{ïįK.•ŽÑù˜(J§ÏLC©•{(Ü?E|,
Alves3©z[7]¥y²e•§)•35
−∆u+V(x)u+
γ
2
∆(u
2
)u= |u|
p−2
u,x∈R
N
,(5)
Ù¥2 <p<2
∗
,γ>0•v¢ê.3©z[14]¥,lïá´k.O•š‚5‘[‚
5Schr¨odinger•§)•35.éuγ>0Úγ→0
+
œ¹e,•§(5))ìC1•ÿ™•
Ä.
©̇óŠ´éγ>0ïÄ(3)Ä)•35.
©òïıeäk˜„š‚5üëêý•§)
−∆u+V(x)u+
γ
2
∆(u
2
)u= f(u),x∈R
N
(6)
•35,Ù¥N≥3,γ>0,V(x) ∈C(R
N
,R),…÷v:
(V
0
)x∈R
N
ž,V(x) ≥V
0
>0;
DOI:10.12677/pm.2023.133072671nØêÆ
±¯
(V
1
)lim
|x|→∞
V(x) = V
∞
…V(x) ≤V
∞
.
éuš‚5‘f,f∈C
1
(R
N
),¿÷v
(f
1
)éut≤0,kf(t) = 0,…•3p∈(2,2
∗
),¦
|f(t)|≤C(1+|t|
p−1
),
Ù¥2
∗
=
2N
N−2
•.•ê;
(f
2
)
lim
t→0
+
f(t)
t
= 0;
(f
3
)•3θ>2,¦éut>0,¤á
0 <θF(t) ≤tf(t),
Ù¥F(t) =
R
t
0
f(s)ds.
•§(6)éAg,•¼I•
I(u) =
1
2
Z
R
N
(1−γu
2
)|∇u|
2
dx+
1
2
Z
R
N
V(x)u
2
dx−
Z
R
N
F(u)dx,
Ù3˜mH
1
(R
N
)¥ŒUØ´û½Â,¤±©̇(J´:Äk,duI(u)3H
1
(R
N
)¥
ŒUØ´û½Â,ÏdUþ•¼I(u)Ø´1w,•5Ã¯K´XÛyÌÜ©5§
=1−γu
2
>0;Ùg,3‡˜mR
N
¥,;—5˜„ؤá.
É©z[7]Ú[14]éu,·‚镼I?1±e?
−div(g
2
(u)∇u)+g(u)g
0
(u)|∇u|
2
+V(x)u= f(u),x∈R
N
,(7)
Ù¥g(t)=
p
1−γt
2
,γ>0,k|t|<
1
√
3γ
.d(7)ªk˜‡)u
γ
,,ÏLMorseS“f)
˜—L
∞
-O(†γÃ').·‚òy²,γvž,u´¯K(6)).Äk|^MorseS“,‰
Ñu
γ
H
1
-‰ê˜—k.5,ƒA^u
γ
˜—O5y²Ù3˜mH
1
(R
N
)þrÂñ5.˜
·‚UÙ3˜mH
1
þÂñ5, ·‚ÒŒ±A^ýO5u
γ
3˜mH
2
(R
N
)∩C
2
(R
N
)þ
Âñ5.
©Ì‡(JXe
½½½nnn1.1b^‡(V
0
), (V
1
)9(f
1
)−(f
3
)¤á, K•3γ
0
>0 ,¦¯K(6) éu¤kγ∈[0,γ
0
)Ñ
•3)u
γ
,…•3†γÃ'~êC>0,¦
|u
γ
|
∞
≤C.
2.ý•£
É©z[14]éu,·‚ïıe[‚5Schr¨odinger•§
−div(g
2
γ
(u)∇u)+g
γ
(u)g
0
γ
(u)|∇u|
2
+V(x)u= f(u),x∈R
N
(8)
DOI:10.12677/pm.2023.133072672nØêÆ
±¯
Ù¥g
γ
(t) : [0,+∞) →R,½ÂXe
g
γ
(t) =
(
p
1−γt
2
,if0 ≤t<
1
√
3γ
,
1
3
√
2γt
+
1
√
6
,ift≥
1
√
3γ
,
éut<0,kg
γ
(t) = g
γ
(−t),g
γ
(t) ∈C
1
(R,(
p
1/6,1]),…3[0,+∞)þü~.
G
γ
(t)=
R
t
0
g
γ
(s)ds.d½Â,G
γ
(t)´‰½Û¼ê,…•3‡¼êG
−1
γ
(t).N´y²,
G
−1
γ
(t)äkXe5Ÿ.
ÚÚÚnnn2.1
(1)lim
t→0
+
G
−1
γ
(t)
t
= 1;
(2)lim
t→+∞
G
−1
γ
(t)
t
=
√
6;
(3)éut≥0,kt≤G
−1
γ
(t) ≤
√
6t;
(4)éut≥0,k−
1
2
≤
t
g
γ
(t)
g
0
γ
(t) ≤0.
´••§(8)Uþ•¼•
e
I(u) =
1
2
Z
R
N
g
2
γ
(u)|∇u|
2
dx+
1
2
Z
R
N
V(x)|u|
2
dx−
Z
R
N
F(u)dx.(9)
·‚•{´y²•§(9)š²….:u…|u(x)|
∞
<
1
√
3γ
•35,§´•§(9)š²…).e
÷v|u(x)|
∞
<
1
√
3γ
,uB••§(6)˜‡š²…).
ƒ,XeCþ
v= G
γ
(u) =
Z
u
0
g
γ
(s)ds,
•§(9)Uþ•¼Œ±U¤Xe
J
γ
(v) =
1
2
Z
R
N
|∇v|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(v)|
2
dx−
Z
R
N
F(G
−1
γ
(v))dx.
dÚn2.1Ú^‡(V
0
),(V
1
)9(f
1
) −(f
3
),·‚Œ•§J
γ
(v)3˜mH
1
(R
N
)þ´û½Â,J
γ
∈
C
1
(H
1
(R
N
),R)…éuv∈H
1
(R
N
)k
J
0
γ
(v)ϕ=
Z
R
N
∇v∇ϕdx+
Z
R
N
V(x)
G
−1
γ
(v)
g
γ
(G
−1
γ
(v))
ϕdx−
Z
R
N
f(G
−1
γ
(v))
g
γ
(G
−1
γ
(v))
ϕdx.
ÚÚÚnnn2.2ev∈H
1
(R
N
)´J
γ
.:,Ku= G
−1
γ
(v) ∈H
1
(R
N
)…u´•§(8)f).
yyy²²²bv∈H
1
(R
N
)´J
γ
.:,dÚn2.1Œ±†OŽu=G
−1
γ
(v)∈H
1
(R
N
).éu¤
kϕ∈H
1
(R
N
),k
Z
R
N
∇v∇ϕdx+
Z
R
N
V(x)
G
−1
γ
(v)
g
γ
(G
−1
γ
(v))
ϕdx−
Z
R
N
f(G
−1
γ
(v))
g
γ
(G
−1
γ
(v))
ϕdx= 0,
DOI:10.12677/pm.2023.133072673nØêÆ
±¯
ϕ= g
γ
(u)ψÙ¥ψ∈C
∞
0
(R
N
),Kk
Z
R
N
∇v∇ug
0
γ
(u)ψdx+
Z
R
N
∇v∇ψg
γ
(u)dx+
Z
R
N
V(x)uψdx−
Z
R
N
f(u)ψdx= 0,
½
Z
R
N

−div(g
2
γ
(u)∇u)+g
γ
(u)g
0
γ
(u)|∇u|
2
+V(x)u−f(u)

ψdx= 0.
nþ,¦•§(8)š²…)•35,•I‡ïÄXe•§š²…)•35
−∆v+V(x)
G
−1
γ
(v)
g
γ
(G
−1
γ
(v))
=
f(G
−1
γ
(v))
g
γ
(G
−1
γ
(v))
,x∈R
N
.(10)
3.½n1.1y²
½ÂH
1
(R
N
)˜m‰ê•
kuk=

Z
R
N
(|∇u|
2
+u
2
)dx

1/2
,
9Xe•§
−∆v+V
∞
G
−1
γ
(v)
g
γ
(G
−1
γ
(v))
=
f(G
−1
γ
(v))
g
γ
(G
−1
γ
(v))
(11)
ÙéAUþ•¼Xe
J
∞
(v) =
1
2
Z
R
N

|∇v|
2
+V
∞
|G
−1
γ
(v)|
2

dx−
Z
R
N
F(G
−1
γ
(v))dx.
½Â
d
∞
= inf{J
∞
(v)|v∈H
1
(R
N
)\{0},J
∞
0
(v) = 0}.
•y²þã¯K,·‚Äk£Berestycki-Lions[2]ÚColin-Jeanjean[6]éXe•§A‡
²;(Ø
−∆v= k(v),x∈R
N
.(12)
•§(12)éAUþ•¼•
J(v) =
1
2
Z
R
N
|∇v|
2
dx−
Z
R
N
K(v)dx,
Ù¥K(s) =
R
s
0
k(t)dt.
k(s)÷v±e^‡ž
DOI:10.12677/pm.2023.133072674nØêÆ
±¯
(k
0
)k(s) ∈C(R,R);
(k
1
)−∞<liminf
s→0
+
k(s)
s
≤limsup
s→0
+
k(s)
s
= −C<0;
(k
2
)lim
s→+∞
|k(s)|
s
2
∗
−1
= 0;
(k
3
)•3s
0
>0,¦K(s
0
) >0,
Œ±±e·K(„[2,15,16]).
···KKK3.1b=inf{J(w)|w••§(12)š²…f)}.e(k
0
)−(k
3
)¤á,Kb>0…¼
êw∈H
1
(R
N
).éu?¿x∈R
N
,•3´»η∈C([0,1],H
1
(R
N
)),¦η(t)(x) >0…
max
t∈[0,1]
J(η(t)) = J(w).
Ïdd•§(11)9−∆v= k(v)Œ
k(s) =
f(G
−1
γ
(s))
g
γ
(G
−1
γ
(s))
−V
∞
G
−1
γ
(s)
g(G
−1
γ
(s))
.
´k(s)÷v(k
0
) −(k
3
).Ïd,•3w
∞
∈H
1
(R
N
)¦d
∞
>0.d,·‚Œ±é´»η∈
C([0,1],H
1
(R
N
)),éu¤kx∈R
N
,t∈(0,1]…η(0) = 0,kJ
∞
(η(1)) <0,w
∞
∈η([0,1])9
max
t∈[0,1]
J
∞
(η(t)) = J
∞
(w
∞
).
•ïÄJ
γ
,½Â
d
γ
=inf
η∈Γ
max
t∈[0,1]
J
γ
(η(t)),
Ù¥Γ = {η∈C([0,1],H
1
(R
N
))|η(0) = 0,J
γ
(η(1)) <0}.
e5òyJ
γ
ì´½nAÛ^‡,¿y²PSSk.5.
ÚÚÚnnn3.1b(f
1
)−(f
3
),(V
0
)9(V
1
)¤á.K•3ρ>09e∈H
1
(R
N
),¦éukvk= ρ,k
J
γ
(v) >0,
…J
γ
(e) <0
yyy²²²dÚn2.1,(V
0
),(f
1
),(f
2
)9Sobolevi\,k
J
γ
(v) =
1
2
Z
R
N
|∇v|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(v)|
2
dx−
Z
R
N
F(G
−1
γ
(v))dx
≥
1
2
Z
R
N
|∇v|
2
dx+
1
2
Z
R
N
V(x)|v|
2
dx−
Z
R
N

ε|G
−1
γ
(v)|
2
+C
ε
|G
−1
γ
(v)|
p

dx
≥min{1,V
0
}
1
4
Z
R
N

|∇v|
2
+|v|
2

dx−C
Z
R
N
|v|
p
dx
≥min{1,V
0
}
1
4
kvk
2
−Ckvk
p
.
Ïd,p>2ž,J
γ
(v)3v= 0?kÛÜ•Š.
DOI:10.12677/pm.2023.133072675nØêÆ
±¯
,˜•¡,d^‡(f
3
)Œ,éut>0k
F(t) ≥Ct
θ
,
Ù¥w∈C
∞
0
(R
N
),supp(w) = B
1
…w(x) ≥0,
J
γ
(tw) =
t
2
2
Z
R
N
|∇w|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(tw)|
2
dx−
Z
R
N
F(G
−1
γ
(tw))dx
=
t
2
2
Z
R
N
|∇w|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(tw)|
2
dx−
Z
B
1
F(G
−1
γ
(tw))dx
≤
t
2
2
Z
R
N
|∇w|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(tw)|
2
dx−
Z
B
1
(C
1
(G
−1
γ
(tw))
θ
−C
2
)dx
≤
t
2
2
Z
R
N
|∇w|
2
dx+3t
2
Z
R
N
V
∞
|w|
2
dx−Ct
θ
Z
R
N
|w|
θ
dx+C.
duθ>2,t→∞ž,kJ
γ
(tw) →−∞
ÚÚÚnnn3.2(f
1
)−(f
3
),(V
0
)9(V
1
)¤á.KJ
γ
PSS´k..
yyy²²²{v
n
}⊂H
1
(R
N
)•J
γ
PSS,=
J
γ
(v
n
) =
1
2
Z
R
N
|∇v
n
|
2
dx+
1
2
Z
R
N
V(x)|G
−1
γ
(v
n
)|
2
dx
−
Z
R
N
F(G
−1
γ
(v
n
))dx= d+o
n
(1).
(13)
Kéu?¿ϕ∈H
1
(R
N
),hJ
0
γ
(v
n
),ϕi= o
n
(1)kϕk,=
Z
R
N

∇v
n
∇ϕ+V(x)
G
−1
γ
(v
n
)
g
γ
(G
−1
γ
(v
n
))
ϕ

dx−
Z
R
N
f(G
−1
γ
(v
n
))
g
γ
(G
−1
γ
(v
n
))
ϕdx= o
n
(1)kϕk.(14)
ϕ= G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
)),dÚn2.1-(4)Œ
|∇(G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
)))|≤

1+
G
−1
γ
(v
n
)
g
γ
(G
−1
γ
(v
n
))
g
0
γ
(G
−1
γ
(v
n
))

|∇v
n
|≤|∇v
n
|.(15)
,˜•¡,dÚn2.1-(3),·‚k
|G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
))|≤
√
6|v
n
|.(16)
(Ü(15)Ú(16)Œ
kG
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
))k≤
√
6kv
n
k.
·‚Œ±ÀJϕ= G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
)).ÒkhJ
0
γ
(v
n
),G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
))i= o
n
(1)kv
n
k·‚k
DOI:10.12677/pm.2023.133072676nØêÆ
±¯
o
n
(1)kv
n
k=
Z
R
N

1+
G
−1
γ
(v
n
)
g
γ
(G
−1
γ
(v
n
))
g
0
γ
(G
−1
γ
(v
n
))

|∇v
n
|
2
dx
+
Z
R
N
V(x)|G
−1
γ
(v
n
)|
2
dx−
Z
R
N
f(G
−1
γ
(v
n
))G
−1
γ
(v
n
)dx
≤
Z
R
N
|∇v
n
|
2
dx+
Z
R
N
V(x)|G
−1
γ
(v
n
)|
2
dx−
Z
R
N
f(G
−1
γ
(v
n
))G
−1
γ
(v
n
)dx.
(17)
Ïd,d(f
3
),(13),(14),(17)9Ún2.1,·‚Œ
θd+o
n
(1)+o
n
(1)kv
n
k= θJ
γ
(v
n
)−hJ
0
γ
(v
n
),G
−1
γ
(v
n
)g
γ
(G
−1
γ
(v
n
))i
≥
θ−2
2
Z
R
N
|∇v
n
|
2
dx+
θ−2
2
Z
R
N
V(x)|G
−1
γ
(v
n
)|
2
dx
≥
θ−2
2
min{1,V
0
}kv
n
k
2
,
=kv
n
k˜—k..
/Ï©z[17]¥(Ø,·‚J
γ
PSSk.±eL«.
···KKK3.2(f
1
) −(f
3
),(V
0
)9(V
1
)¤á,{v
n
}⊂H
1
(R
N
)•J
γ
PSS.K•3{v
n
}fS
(•^{v
n
}L«).éuêm∈N∪{0},S{y
i
n
}⊂R
N
,w
i
∈H
1
(R
N
)k
(1)éui6= j,n→∞ž,k|y
i
n
|→∞…|y
i
n
−y
j
n
|→∞,
(2)3˜mH
1
(R
N
)þ,kv
n
*v
0
9J
0
γ
(v
0
) = 0,
(3)éu0 ≤i≤m,kw
i
6= 0…(J
∞
)
0
(w
i
) = 0,
(4)kv
n
−v
0
−
P
m
i=0
w
i
(·−y
i
n
)k→0,
(5)J
γ
(v
n
) →J
γ
(v
0
)+
P
m
i=0
J
∞
(w
i
).
•|^·K3.2J
γ
PSS;5,·‚I‡y²±eÚn.
ÚÚÚnnn3.3(f
1
)−(f
3
),(V
0
)9(V
1
).Kd
γ
<d
∞
yyy²²²Šâ·K3.1,•3w
∞
∈H
1
(R
N
)¦J
∞
(w
∞
) = d
∞
>0.·‚Œ±é´»η∈C([0,1],H
1
(R
N
))§
¦éu¤kx∈R
N
9t∈(0,1],η(0) = 0,J
∞
(η(1)) <0,w
∞
∈η([0,1]),kη(t)(x) >0…
max
t∈[0,1]
J
∞
(η(t)) = J
∞
(w
∞
).
Ù¥½:w
∞
…η,éu?¿t∈(0,1],k
J
γ
(η(t)) <J
∞
(η(t)),
ddŒ
d≤max
t∈[0,1]
J
γ
(η(t)) <max
t∈[0,1]
J
∞
(η(t)) = d
∞
,
ùÒ¤y².
e5(ÜÚn3.3Ú·K3.2,y²J
γ
kì´.:.
ÚÚÚnnn3.4b^‡(f
1
)−(f
3
),(V
0
)9(V
1
)¤á.KJ
γ
k.:.
yyy²²²dÚn3.1Ú3.2§•3˜‡k.PSS{v
n
}⊂H
1
(R
N
).d·K3.2•3m∈N∪{0}Úv
γ
∈
DOI:10.12677/pm.2023.133072677nØêÆ
±¯
H
1
(R
N
),¦3˜mH
1
(R
N
)þk
v
n
*v
γ
J
0
γ
(v
γ
) = 0
…
J
γ
(v
n
) →J
γ
(v
γ
)+
m
X
i=1
J
∞
(w
i
),
Ù¥{w
i
}
m
i=1
´J
∞
š²….:.
eJ
γ
(v
γ
) <0,@BØ^y².eJ
γ
(v
γ
) ≥0,K
d
γ
=lim
n→∞
J
γ
(v
n
) = J
γ
(v
γ
)+
m
X
i=1
J
∞
(w
i
) ≥md
∞
.
dÚn3.3,Œm= 0.Ïdd·K3.2-(4),·‚Œ
v
n
→v
γ
inH(R
N
).
ÚÚÚnnn3.5(f
1
)−(f
3
),(V
0
)9(V
1
)¤á,v
γ
•J
γ
÷vJ
γ
(v
γ
)=d
γ
˜‡.:.K•3C>0
(†γÕá),¦
kv
γ
k
2
≤Cd
γ
.(18)
yyy²²²Šâ^‡(f
3
),·‚Œ±±eO
θd
γ
= θJ
γ
(v
γ
)−hJ
0
γ
(v
γ
),G
−1
γ
(v
γ
)g
γ
(G
−1
γ
(v
γ
))i
=
θ
2
Z
R
N
|∇v
γ
|
2
dx+
θ
2
Z
R
N
V(x)|G
−1
γ
(v
γ
)|
2
dx−θ
Z
R
N
F(G
−1
γ
(v
γ
))dx
−
Z
R
N
∇v
γ
∇

G
−1
γ
(v
γ
)g
γ
(G
−1
γ
(v
γ
))

dx−
Z
R
N
V(x)|G
−1
γ
(v
γ
)|
2
dx
+
Z
R
N
f(G
−1
γ
(v
γ
))G
−1
γ
(v
γ
)dx
≥
θ−2
2
Z
R
N
|∇v
γ
|
2
dx+
θ−2
2
Z
R
N
V(x)|G
−1
γ
(v
γ
)|
2
dx
≥
θ−2
2
min{1,V
0
}kv
γ
k
2
.
ù`²kv
γ
k
2
≤Cd
γ
.
d,•y²kv
γ
kH
1
-‰ê˜—O.•ÄXeUþ•¼
P
∞
(v) = 3
Z
R
N

|∇v|
2
+V
∞
v
2

dx−C
Z
R
N
|v|
θ
dx+C
Ù¥θ∈(2,2
∗
),·‚^c
∞
L«Uþ•¼P
∞
ì´Y²†γÕá.duJ
γ
(v)≤P
∞
(v),•ÄXe8
DOI:10.12677/pm.2023.133072678nØêÆ
±¯
Ü
Γ
P
= {η∈C([0,1],H
1
(R
N
)|η(0) = 0,P
∞
(η(1)) <0}.
Ù¥Γ
P
⊂Γ,Ïdk
d
γ
=inf
η∈Γ
max
t∈[0,1]
J
γ
(η(t)) ≤inf
η∈Γ
P
max
t∈[0,1]
J
γ
(η(t))
≤inf
η∈Γ
P
max
t∈[0,1]
P
∞
(η(t)) := c
∞
.
Ïd,)v
γ
7L÷vXeO
kv
γ
k
2
≤
2θc
∞
(θ−2)min{1,V
0
}
.
·‚5¿,L
∞
-‰ê؇L
1
√
3γ
¯K(8)f)•´¯K(6)f).¤±e˜Ú·‚òïÄJ
γ

.:L
∞
O,ù‡y²•´MorseS“˜‡A^.
ÚÚÚnnn3.6XJv
γ
∈H
1
(R
N
)´¯K(8)f),Kv
γ
∈L
∞
(R
N
)…•3˜‡Õáuγ~êC
∗
>0,
¦|v
γ
|
∞
≤C
∗
.
yyy²²²ù‡¯K(JŒ±ë•©z[7]y².•{üå„,·‚^gL«g
γ
,G
−1
L«G
−1
γ
…^vL
«v
γ
.v∈H
1
(R
N
)´−∆v+V(x)
G
−1
(v)
g(G
−1
(v))
=
f(G
−1
(v))
g(G
−1
(v))
f),=éu?¿ϕ∈H
1
(R
N
),k
Z
R
N
∇v∇ϕdx+
Z
R
N
V(x)
G
−1
(v)
g(G
−1
(v))
ϕdx=
Z
R
N
f(G
−1
(v))
g(G
−1
(v))
ϕdx,(19)
dÚn3.4,Œv>0.T>0,¿½Â
v
T
=
(
v,0 <v≤T,
T,v≥T.
3•§(19)¥,-ϕ= v
2(η−1)
T
v(η>1),Œ
Z
R
N
|∇v|
2
·v
2(η−1)
T
dx+2(η−1)
Z
{x|v(x)<T}
v
2(η−1)−1
T
v|∇v|
2
dx+
Z
R
N
V(x)
G
−1
(v)
g(G
−1
(v))
v
2(η−1)
T
vdx
=
Z
R
N
f(G
−1
(v))
g(G
−1
(v))
v
2(η−1)
T
vdx.
dÚn2.1-(3)(Üþã•§†ý1‘´šK,éu?¿η>0Œ
Z
R
N
|∇v|
2
v
2(η−1)
T
dx≤
Z
R
N
f(G
−1
(v))
g(G
−1
(v))
v
2(η−1)
T
vdx
≤C
Z
R
N
|G
−1
(v)|
p−1
g(G
−1
(v))
v
2(η−1)
T
vdx
≤C
Z
R
N
v
p
v
2(η−1)
T
dx.
(20)
DOI:10.12677/pm.2023.133072679nØêÆ
±¯
,˜•¡,|^SobolevØª,·‚k

Z
R
N
(vv
η−1
T
)
2
∗
dx

2
2
∗
≤C
Z
R
N
|∇(vv
η−1
T
)|
2
dx
≤C
Z
R
N
|∇v|
2
v
2(η−1)
T
dx+C(η−1)
2
Z
R
N
|∇v|
2
v
2(η−1)
T
dx
≤Cη
2
Z
R
N
|∇v|
2
v
2(η−1)
T
dx,
ùp·‚^(a+b)
2
≤2(a
2
+b
2
)9η
2
≥(η−1)
2
+1.
dªf(20),H¨olderØª9Sobolevi\½n

Z
R
N
(vv
η−1
T
)
2
∗
dx

2
2
∗
≤Cη
2
Z
R
N
v
p−2
v
2
v
2(η−1)
T
dx
≤Cη
2

Z
R
N
v
2
∗
dx

p−2
2
∗

Z
R
N
(vv
η−1
T
)
22
∗
2
∗
−p+2
dx

2
∗
−p+2
2
∗
≤Cη
2
kvk
p−2

Z
R
N
v
η22
∗
2
∗
−p+2
dx

2
∗
−p+2
2
∗
,
ùp·‚¦^0 ≤v
T
≤v.e5,Pζ=
22
∗
2
∗
−p+2
,

Z
R
N
(vv
η−1
T
)
2
∗
dx

2
2
∗
≤Cη
2
kvk
p−2
|v|
2η
ηζ
.
dFatouÚnŒ
|v|
η2
∗
≤(Cη
2
kvk
p−2
)
1
2η
|v|
ηζ
.(21)
·‚½Âη
n+1
ζ= 2
∗
η
n
,Ù¥n= 0,1,2,...Úη
0
=
2
∗
+2−p
2
.d(21)k
|v|
η
1
2
∗
≤(Cη
2
1
kvk
p−2
)
1
2η
1
|v|
2
∗
η
0
≤(Ckvk
p−2
)
1
2η
1
+
1
2η
0
η
1
η
0
0
η
1
η
1
1
|v|
2
∗
.
dMorseS“
|v|
η
n
2
∗
≤(Ckvk
p−2
)
1
2η
0
P
n
i=0
(
ζ
2
∗
)
i
(η
0
)
1
η
0
P
n
i=0
(
ζ
2
∗
)
i
(
2
∗
ζ
)
1
η
0
P
n
i=0
i(
ζ
2
∗
)
i
|v|
2
∗
.
Ïdk
|v|
∞
≤Ckvk
2
∗
−2
2
∗
−p
≤C
∗
.
½½½nnn1.1yyy²²²dÚn3.69Ún2.1-(3)k
|u
γ
|
∞
= |G
−1
γ
(v
γ
)|
∞
≤
√
6|v
γ
|
∞
,
DOI:10.12677/pm.2023.133072680nØêÆ
±¯
•3γ
0
>0,é?¿0 <γ<γ
0
k
|u
γ
|
∞
= |G
−1
γ
(v
γ
)|
∞
≤
√
6|v
γ
|
∞
≤
√
6C
∗
≤
1
√
3γ
.
Ïd,é?¿γ∈(0,γ
0
),u
γ
= G
−1
(v
γ
)´¯K(6)).
ë•©z
[1]Adachi,S.andWatanabe,T.(2012)AsymptoticPropertiesofGroundStatesofQuasilinear
Schr¨odingerEquationswithH
1
-SubcriticalExponent.AdvancedNonlinearStudies,12,255-
279.https://doi.org/10.1515/ans-2012-0205
[2]Berestycki, H.andLions,P.L. (1983)NonlinearScalar Field EquationsI.ArchiveforRational
MechanicsandAnalysis,82,313-346.https://doi.org/10.1007/BF00250555
[3]Lions,P.L.(1984)TheConcentrationCompactnessPrincipleintheCalculusofVariations.
TheLocallyCompactCase.PartIand II.Annalesdel’InstitutHenriPoincar´e:AnalyseNon
Lin´eaire,109-145,223-283.https://doi.org/10.1016/s0294-1449(16)30422-x
[4]Borovskii,A.andGalkin,A.(1983)DynamicalModulationofanUltrashortHigh-Intensity
LaserPulseinMatter.JournalofExperimentalandTheoreticalPhysics,77,562-573.
[5]Brandi,H.,Manus,C.,Mainfray,G.,Lehner,T.andBonnaud,G.(1993)Relativisticand
PonderomotiveSelf-FocusingofaLaserBeaminaRadiallyInhomogeneousPlasma.Physics
ofFluids,5,3539-3550.https://doi.org/10.1063/1.860828
[6]Colin,M.andJeanjean,L.(2004)SolutionsforaQuasilinearSchr¨odingerEquations:ADual
Approach.NonlinearAnalysis,56,213-226.https://doi.org/10.1016/j.na.2003.09.008
[7]Alves,C.,Wang,Y.andShen,Y.(2015)SolitonSolutionsforaClassofQuasilinear
Schr¨odingerEquationswithaParameter.JournalofDifferentialEquations,259,318-343.
https://doi.org/10.1016/j.jde.2015.02.030
[8]Liu,J., Wang,Y. and Wang,Z.-Q.(2003)SolitonSolutionsforQuasilinearSchr¨odinger Equa-
tionsII.JournalofDifferentialEquations,187,473-493.
https://doi.org/10.1016/S0022-0396(02)00064-5
[9]Wang,Y.andShen,Y.(2018)ExistenceandAsymptoticBehaviorofPositiveSolutionsfora
ClassofQuasilinearSchr¨odingerEquations.AdvancedNonlinearStudies,18,131-150.
https://doi.org/10.1515/ans-2017-6026
[10]Adachi,S.,Shibata,M.andWatanabe,T.(2014)AsymptoticBehaviorofPositiveSolutions
fora ClassofQuasilinear EllipticEquationswithGeneralNonlinearities. Communicationson
PureandAppliedAnalysis,13,97-118.https://doi.org/10.3934/cpaa.2014.13.97
DOI:10.12677/pm.2023.133072681nØêÆ
±¯
[11]Adachi,S.,Shibata,M.andWatanabe,T.(2020)UniquenessofAsymptoticLimitofGround
StatesforaClassofQuasilinearSchr¨odingerEquationwithH
1
-CriticalGrowthinR
3
.Appli-
cableAnalysis,101,671-691.https://doi.org/10.1080/00036811.2020.1757079
[12]Adachi,S.,Shibata,M.andWatanabe,T.(2014)Blow-UpPhenomenaandAsymptoticPro-
filesofGroundStatesofQuasilinearEllipticEquationswithH
1
-SupercriticalNonlinearities.
JournalofDifferentialEquations,256,1492-1514.https://doi.org/10.1016/j.jde.2013.11.004
[13]Adachi, S.,Shibata,M.andWatanabe, T.(2019) AsymptoticProperty of Ground Statesfora
ClassofQuasilinearSchr¨odingerEquationwithH
1
-CriticalGrowth.Calculus of Variations and
PartialDifferentialEquations,58, ArticleNo.88.https://doi.org/10.1007/s00526-019-1527-y
[14]Wang,Y.andLi,Z.(2018)ExistenceofSolutionstoQuasilinearSchr¨odingerEquationsIn-
volvingCriticalSobolevExponent.TaiwaneseJournalofMathematics,22,401-420.
https://doi.org/10.11650/tjm/8150
[15]Jeanjean,L.(1999)OntheExistenceofBoundedPalais-SmaleSequencesandApplicationto
aLandesman-LazerTypeProblem.ProceedingsoftheRoyalSocietyofEdinburgh.SectionA:
Mathematics,129,787-809.https://doi.org/10.1017/S0308210500013147
[16]Jeanjean,L.andTanaka,K.(2003)ARemarkonLeastEnergySolutionsinR
N
.Proceedings
oftheAmericanMathematicalSociety,131,2399-2408.
https://doi.org/10.1090/S0002-9939-02-06821-1
[17]Adachi,S.andWatanabe,T.(2011)G-InvariantPositiveSolutionsforaQuasilinear
Schr¨odingerEquation.AdvancesinDifferentialEquations,16,289-324.
https://doi.org/10.57262/ade/1355854310
DOI:10.12677/pm.2023.133072682nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.