设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(4),1474-1482
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124152
˜
a
ä
k
é
ê
š
‚
5
‘
©
ê
{
Z
Å
•
§
Û
Ü
·
½
5
AAA
2
²
Œ
Æ
ê
Æ
†
&
E
‰
ÆÆ
,
2
À
2
²
Â
v
F
Ï
µ
2023
c
3
13
F
¶
¹
^
F
Ï
µ
2023
c
4
9
F
¶
u
Ù
F
Ï
µ
2023
c
4
19
F
Á
‡
©
Ì
‡
•
Ä
ä
k
é
ê
š
‚
5
‘
©
ê
{
Z
Å
Ä
•
§
u
tt
+(
−
∆)
s
u
+(
−
∆)
s
u
t
=
u
ln
|
u
|
Ð
>
Š
¯
K
§
Ù
¥
s
∈
(0
,
1)
"
Ž
f
(
−
∆)
s
•
©
ê
Laplace
Ž
f
§
C
c
5
§
T
Ž
f
¤
•
Ô
n
Æ
!
7
K
ê
Æ
!
6
N
Ä
å
Æ
Æ
‰
+
•
¥
ï
Ä
9
:
"
©
3
?
¿
Ð
©
U
þ
e
§
|
^
Galerkin
%
C
{
Ú
Ø
N
n
§
y
²
T
•
§
)
Û
Ü
·
½
5
"
'
…
c
{
Z
Å
Ä
•
§
§
©
ê
Laplace
Ž
f
§
é
ê
š
‚
5
‘
§
Û
Ü
·
½
5
LocalWell-PosednessforaClass
ofFractionalDampedWaveEquations
withLogarithmicNonlinearity
LingnaLin
SchoolofMathematicsandInformationScience,GuangzhouUniversity,GuangzhouGuangdong
Received:Mar.13
th
,2023;accepted:Apr.9
th
,2023;published:Apr.19
th
,2023
©
Ù
Ú
^
:
A
.
˜
a
ä
k
é
ê
š
‚
5
‘
©
ê
{
Z
Å
•
§
Û
Ü
·
½
5
[J].
A^
ê
Æ
?
Ð
,2023,12(4):
1474-1482.DOI:10.12677/aam.2023.124152
A
Abstract
Inthispaper,wemainlydealwiththeinitial-boundaryvalueproblemforthefrac-
tionaldampedwaveequations
u
tt
+ (
−
∆)
s
u
+ (
−
∆)
s
u
t
=
u
ln
|
u
|
,where
s
∈
(0
,
1)
.The
operator
(
−
∆)
s
isthefractionalLaplaceoperator.Inrecentyears,thisoperatorhas
becomearesearchhotspotinphysics,financialmathematics,fluiddynamicsandoth-
erdisciplines.Atthearbitraryinitialenergylevels,thelocalwell-posednessofweak
solutionstoaboveproblemisprovedbyusingGalerkinapproximationmethodand
contractionmappingprincipleundersomecertainconditions.
Keywords
DampedWaveEquations,FractionalLaplaceOperator,LogarithmicNonlinearity,
LocalWell-Posedness
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
L
n
›
c
¥
,
©
ê
u
Ð
•
§
®
¤
•
ˆ‡
‰
Æ
+
•
¥
-
‡
g
,
.
,
Ú
å
¯
õ
Æ
ö
'
5
.
3
ê
Æ
þ
,
©
ê
u
Ð
•
§
Œ
±
^
ž
m
©
ê
ê
5
£
ã
,
X
*
Ñ
¯
K
!
õ
š
0
Ÿ
•
§
!
t
µ
y–
¶
•
Œ
±
^
˜
m
©
ê
ê
5
£
ã
,
X
þ
f
å
Æ
!
À
/
Ô
*
Ñ
!
%
>
D
Â
.
Š
˜
J
´
,
C
c
5
©
ê
.
Ê
.
dŽ
f
(
−
∆)
s
3
Ô
n
Æ
!
7
K
ê
Æ
!
6
N
Ä
å
Æ
•
¡
k
•
\
2
•
A^
.
l
ê
Æ
Ý
5
w
,
¹
k
ù
a
Ž
f
‡
©•
§
Œ
^
5
£
ã
N
õ
E
,
y–
,
¿
¼
´
L
n
Ø
¤
J
(
ë
©
z
[1–3]
9
Ù
ë
•
©
z
).
é
ê
š
‚
5
‘
u
ln
|
u
|
3
Ô
n
Æ
Ó
ä
k
N
õ
k
ï
Ä
,
§
Œ
±
g
,
/
^u
‡
é
¡|
Ø
,
þ
f
å
Æ
ÚØ
Ô
n
[4,5]
¥
.Galerkin
•{
3
‡
©•
§
ï
Ä
¥
A^
š
~
2
•
[6–8],
3
•
Ä
‡
©•
§
)
•
3
5
ž
§
·
‚
Ï
~
¬
|
^
d
•{
ò
E
,
‡
©•
§
=
z
•
~
‡
©•
§
?
1
¦
)
.
Ø
N
n
3
y
²
•
§
)
•
3
•
˜
5
ž
§
Ó
ä
k
Þ
v
”
-
Š
^
.
©·
‚
•
Ä
X
e
‘
k
é
ê
š
‚
5
‘
©
ê
{
Z
Å
Ä
•
§
Ð
>
Š
¯
K
DOI:10.12677/aam.2023.1241521475
A^
ê
Æ
?
Ð
A
u
tt
+(
−
∆)
s
u
+(
−
∆)
s
u
t
=
u
ln
|
u
|
,
(
x,t
)
∈
Ω
×
(0
,T
)
,
u
(
x,t
) = 0
,
(
x,t
)
∈
(
R
n
\
Ω)
×
[0
,T
)
,
u
(
x,
0) =
u
0
(
x
)
,u
t
(
x,
0) =
u
1
(
x
)
,x
∈
Ω
,
(1.1)
Ù
¥
Ω
´
R
n
(
n
≥
2
s
)
¥
‘
k
1
w
>
.
∂
Ω
k
.
«
•
,
s
∈
(0
,
1);
©
ê
Laplace
Ž
f
(
−
∆)
s
d
X
e
Û
É
È
©
½
Â
(
−
∆)
s
u
(
x
) =
−
C
(
n,s
)
2
Z
R
n
u
(
x
+
y
)+
u
(
x
−
y
)
−
2
u
(
x
)
|
y
|
n
+2
s
dy,x
∈
R
n
,
Ù
¥
C
(
n,s
)=
R
R
n
1
−
cos
ξ
1
|
ξ
|
n
+2
s
dξ
−
1
´
˜
‡
8
˜
z
~
ê
.
3ù
p
,
·
‚
•
Ä
½
Â
3
Ω
þ
©
ê
Laplace
Ž
f
(
−
∆)
s
,
´
Ù
é
u
¤
½
Â
*
Ð
)
|
Ž
X
¯
K
,
ù
¿
›
X
(
−
∆)
s
u
(
x
) =
−
C
(
n,s
)
2
Z
R
n
u
(
x
+
y
)+
u
(
x
−
y
)
−
2
u
(
x
)
|
y
|
n
+2
s
dy,x
∈
Ω
.
Ï
d
,
Ð
>
Š
¯
K
(1.1)
)
|
Ž
X
ê
â
´
3
R
n
\
Ω
þ
Š
•
N
È
å
‰
Ñ
,
Ø
==
´
3
∂
Ω
þ
,
ù
†
Ž
f
(
−
∆)
s
š
Û
Ü
A
˜
—
.
©
‰
ÑÐ
>
Š
¯
K
(1.1)
3
?
¿
Ð
©
U
þ
e
)
Û
Ü
·
½
5
y
²
,
ù
ò
•
?
˜
Ú
ï
Ä
¯
K
(1.1)
)
Û
•
3
5
!
ì
C
1
•
Ú
»
J
ø
Ä
:
.
2.
ý
•
£
9
Ì
‡
(
J
3ù
˜
!
,
Ä
k
•
ã
†
Ð
>
Š
¯
K
(1.1)
ƒ
'
©
ê
Sobolev
˜
m
½
Â
Ú
‰
ê
5
Ÿ
,
•
õ
[
!
Œ
±
ë
©
z
[9].
·
‚
Q
=
R
2
n
\O
,
Ù
¥
O
=(
C
Ω)
×
(
C
Ω)
⊂
R
2
n
,
C
Ω=
R
n
\
Ω,
K
˜
m
X
:
R
n
→
R
´
˜
‡
Lebesgue
Œ
ÿ
‚
5
˜
m
,
…
÷
v
•
›
3
Ω
þ
u
∈
X
á
u
˜
m
L
2
(Ω)
§
=
¦
Z
Q
|
u
(
x
)
−
u
(
y
)
|
2
|
x
−
y
|
n
+2
s
dxdy<
∞
,
Ù
˜
m
X
‰
ê
½
Â
•
k
u
k
X
=
Z
Ω
|
u
(
x
)
|
2
dx
+
Z
Q
|
u
(
x
)
−
u
(
y
)
|
2
|
x
−
y
|
n
+2
s
dxdy
1
2
.
(2.1)
?
˜
Ú
§
½
Â
©
ê
Sobolev
˜
m
X
0
•
X
0
=
{
u
∈
X
:
u
= 0
a.e.in
R
n
\
Ω
}
.
D
ƒ
‰
ê
k
u
k
X
0
=
Z
Q
|
u
(
x
)
−
u
(
y
)
|
2
|
x
−
y
|
n
+2
s
dxdy
1
2
,
(2.2)
DOI:10.12677/aam.2023.1241521476
A^
ê
Æ
?
Ð
A
…
S
È
L
«
•
(
u,v
)
X
0
=
Z
Q
(
u
(
x
)
−
u
(
y
))(
v
(
x
)
−
v
(
y
))
|
x
−
y
|
n
+2
s
dxdy.
,
,
é
u
?
¿
u
∈
X
0
,
·
‚
k
X
e
'
X
ª
¤
á
((
−
∆)
s
u,v
)
L
2
(
R
n
)
=
(
−
∆)
s
2
u,
(
−
∆)
s
2
v
L
2
(
R
n
)
=
1
2
C
(
n,s
)(
u,v
)
X
0
,
(2.3)
v
=
u
ž
,
((
−
∆)
s
u,u
)
L
2
(
R
n
)
=
k
(
−
∆)
s
2
u
k
2
L
2
(
R
n
)
=
1
2
C
(
n,s
)
k
u
k
2
X
0
.
(2.4)
e
5
§
·
‚
‰
Ñ
˜
m
X
0
→
L
2
∗
Sobolev
i
\
½
n
,
Ù
Q
ã
X
e
.
Ú
n
2.1.
s
∈
(0
,
1)
…
u
∈
X
0
.
@
o
,
•
3
˜
‡
†
n
Ú
s
ƒ
'
•
Z
i
\
~
ê
B
2
n
n
−
2
s
,
¦
k
u
k
2
L
2
∗
(Ω)
=
k
u
k
2
L
2
∗
(
R
n
)
≤
B
2
2
n
n
−
2
s
Z
Q
|
u
(
x
)
−
u
(
y
)
|
2
|
x
−
y
|
n
+2
s
dxdy
=
B
2
2
n
n
−
2
s
k
u
k
2
X
0
,
(2.5)
Ù
¥
2
∗
=
2
n
n
−
2
s
.
©
Ì
‡
(
Ø
X
e
:
½
n
2.1.
(
Û
Ü
·
½
5
)
e
u
0
(
x
)
∈
X
0
,
u
1
(
x
)
∈
L
2
(Ω)
,
K
•
3
˜
‡
ž
m
T>
0
,
¦
¯
K
(1.1)
•
3
˜
‡
•
˜
f
)
u
,
÷
v
u
∈
L
∞
([0
,T
]
,X
0
)
…
u
t
∈
L
∞
([0
,T
]
,L
2
)
∩
L
2
([0
,T
]
,X
0
)
.
3.
Û
Ü
·
½
5
ù
˜
!
·
‚
ò
3
?
¿
Ð
©
U
þ
e
§
y
²
¯
K
(1.1)
Û
Ü
)
•
3
•
˜
5
.
•
•
B
å
„
,
˜
‡
½
T>
0,
½
Â
X
e
˜
m
D
:=
u
∈
L
∞
([0
,T
]
,X
0
)
…
u
t
∈
L
∞
([0
,T
]
,L
2
)
∩
L
2
([0
,T
]
,X
0
)
,
(3.1)
…
D
ƒ
‰
ê
k
u
k
2
D
=max
t
∈
[0
,T
]
1
2
C
(
n,s
)
k
u
(
t
)
k
2
X
0
+
k
u
t
(
t
)
k
2
2
.
(3.2)
d
,
·
‚
‰
Ñ
X
e
'
…
5
Ú
n
,
§
é
y
²
!
Ì
‡
(
Ø
å
X
š
~
-
‡
Š
^
.
Ú
n
3.1.
é
u
∀
T>
0
Ú
u
∈
D
,
•
3
•
˜
˜
‡
z
∈
D
…
z
tt
∈
L
∞
([0
,T
]
,Y
0
)
,
(3.3)
DOI:10.12677/aam.2023.1241521477
A^
ê
Æ
?
Ð
A
…
÷
v
X
e
‚
5
Ð
>
Š
¯
K
z
tt
+(
−
∆)
s
z
+(
−
∆)
s
z
t
=
u
ln
|
u
|
,
(
x,t
)
∈
Ω
×
[0
,T
)
,
z
(
x,t
) = 0
,
(
x,t
)
∈
(
R
n
\
Ω)
×
[0
,T
)
,
z
(
x,
0) =
u
0
(
x
)
,z
t
(
x,
0) =
u
1
(
x
)
,x
∈
Ω
,
(3.4)
Ù
¥
Y
0
´
X
0
é
ó
˜
m
,
u
0
(
x
)
Ú
u
1
(
x
)
®
3
Ð
>
Š
¯
K
(1.1)
¥
½
Â
.
y
²
.
Ä
k
,
·
‚
ò
|
^
I
O
Galerkin
•{
,
y
²
z
•
3
5
.
-
{
ω
k
(
x
)
}
∞
k
=1
´
X
0
¥
(
−
∆)
s
˜
|
Ä
¼
ê
,
÷
v
(
−
∆)
s
ω
k
(
x
) =
λ
k
ω
k
(
x
)
,
Ù
¥
λ
k
´
é
A
A
Š
.
·
‚
½
Â
u
k
0
=
m
X
k
=1
Z
Ω
u
0
ω
k
dx
ω
k
,u
k
1
=
m
X
k
=1
Z
Ω
u
1
ω
k
dx
ω
k
.
Ï
d
,
k
→∞
ž
,
3
X
0
þ
k
u
k
0
→
u
0
,
3
L
2
(Ω)
þ
k
u
k
1
→
u
1
.
é
u
¤
k
k
≥
1,
·
‚
Œ
±
é
˜
¼
ê
d
1
m
,...,d
k
m
∈
C
2
[0
,T
],
¦
C
q
)
z
m
(
x,t
)
÷
v
¯
K
(3.4).
z
m
(
x,t
)
Œ
¤
:
z
m
(
x,t
) =
m
X
k
=1
d
k
m
(
t
)
ω
k
,
(3.5)
…
÷
v
X
e‚
5
¯
K
R
Ω
(¨
z
m
+(
−
∆)
s
z
m
+(
−
∆)
s
˙
z
m
−
u
ln
|
u
|
)
ηdx
= 0
,
(
x,t
)
∈
Ω
×
[0
,T
)
,
z
m
(0) =
u
m
0
,
˙
z
m
(0) =
u
m
1
,x
∈
Ω
,
(3.6)
Ù
¥
˙
z
m
=
dz
m
dt
,
η
∈
X
0
.
3
¯
K
(3.6)
¥
,
-
η
=
ω
k
,
Œ
(¨
z
m
,ω
k
) =
¨
d
k
m
(
t
)
,
(3.7)
((
−
∆)
s
z
m
,ω
k
) =
λ
k
d
k
m
(
t
)
,
(3.8)
((
−
∆)
s
˙
z
m
,ω
k
) =
λ
k
˙
d
k
m
(
t
)
.
(3.9)
ù
,
·
‚
Œ
±
˜
‡
ä
k
™
•
¼
ê
d
k
m
‚
5
~
‡
©•
§
Ð
Š
¯
K
µ
¨
d
k
m
(
t
)+
λ
k
d
k
m
(
t
)+
λ
k
˙
d
k
m
(
t
) =
R
Ω
u
(
t
)ln
|
u
(
t
)
|
ω
k
dx,
(
x,t
)
∈
Ω
×
[0
,T
)
,
d
k
m
(0) =
R
Ω
u
0
ω
k
dx,
˙
d
k
m
(0) =
R
Ω
u
1
ω
k
dx,x
∈
Ω
.
(3.10)
DOI:10.12677/aam.2023.1241521478
A^
ê
Æ
?
Ð
A
Ï
d
,
þ
ã
¯
K
é
¤
k
k
Ñ
Œ
˜
‡
•
˜
Û
Ü
)
d
k
m
∈
C
2
[0
,T
],
ù
Ò
¿
›
X
•
3
•
˜
d
ª
f
(3.5)
½
Â
z
m
÷
v
(3.6).
e
5
,
‰
Ñ
R
Ω
(
u
ln
|
u
|
)
2
dx
O
.
Ï
L
†
O
Ž
†
Ú
n
2.1
¥
Sobolev
i
\
,
Œ
Z
Ω
(
u
ln
|
u
|
)
2
dx
=
Z
{
x
∈
Ω;
|
u
(
x
)
|≤
1
}
(
u
ln
|
u
|
)
2
dx
+
Z
{
x
∈
Ω;
|
u
(
x
)
|
>
1
}
(
u
ln
|
u
|
)
2
dx
≤
e
−
2
|
Ω
|
+
n
−
2
s
2
s
2
Z
{
x
∈
Ω;
|
u
(
x
)
|
>
1
}
u
2
n
n
−
2
s
dx
≤
e
−
2
|
Ω
|
+
n
−
2
s
2
s
2
k
u
k
2
n
n
−
2
s
L
2
n
n
−
2
s
≤
e
−
2
|
Ω
|
+
n
−
2
s
2
s
2
B
2
n
n
−
2
s
2
n
n
−
2
s
k
u
k
2
n
n
−
2
s
X
0
,
(3.11)
Ù
¥
B
2
n
n
−
2
s
´
Sobolev
i
\
X
0
→
L
2
n
n
−
2
s
(Ω)
•
Z
~
ê
.
?
˜
Ú
/
,
é
u
¤
k
m
≥
1,
3
(3.6)
¥
η
=˙
z
m
(
t
),
¿
…
3
[0
,t
]
⊂
[0
,T
]
þ
?
1
È
©
,
(
Ü
ª
f
(3.11),
·
‚
Œ
±
k
˙
z
m
k
2
+
1
2
C
(
n,s
)
k
z
m
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
˙
z
m
k
2
X
0
dτ
≤
C
(
n,s
)
k
u
m
0
k
2
X
0
+
k
u
m
1
k
2
+
C
+
Z
t
0
k
˙
z
m
k
2
dτ
≤
C
+
Z
t
0
k
˙
z
m
k
2
+
1
2
C
(
n,s
)
k
z
m
k
2
X
0
+
C
(
n,s
)
Z
τ
0
k
˙
z
m
k
2
X
0
dς
dτ.
(3.12)
|
^
Gronwall
Ø
ª
,
´
k
˙
z
m
k
2
+
1
2
C
(
n,s
)
k
z
m
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
˙
z
m
k
2
X
0
dτ
≤
Ce
T
.
(3.13)
,
,
ò
(3.6)
¥
1
˜
‡
•
§
ü
>
Ó
ž
Ø
±
k
η
k
X
0
,
k
<
¨
z
m
,η>
k
η
k
X
0
=
(
u
ln
|
u
|
,η
)
−
((
−
∆)
s
z
m
,η
)
−
((
−
∆)
s
˙
z
m
,η
)
k
η
k
X
0
.
d
(3.11),(3.13)
Ú
H¨older
Ø
ª
,
Œ
<
¨
z
m
,η>
k
η
k
X
0
≤
C
(
T
)
.
(3.14)
é
u
η
∈
X
0
\{
0
}
,(3.14)
ü
>
Ó
ž
þ
.
,
k
k
¨
z
m
k
Y
0
≤
C
(
T
)
.
(3.15)
¤
±
,
•
3
˜
‡
S
{
z
m
}
,
¦
DOI:10.12677/aam.2023.1241521479
A^
ê
Æ
?
Ð
A
{
z
m
}
3
L
∞
([0
,T
]
,X
0
)
þ
k
.
;
{
˙
z
m
}
3
L
∞
([0
,T
]
,L
2
(Ω))
∩
L
2
([0
,T
]
,X
0
)
þ
k
.
;
{
¨
z
m
}
3
L
∞
([0
,T
]
,Y
0
)
þ
k
.
.
Ï
d
,
Œ
•
3
)
z
∈
D
∩
C
2
([0
,T
]
,Y
0
)
÷
v
¯
K
(3.4).
•
,
·
‚
y
²
T
)
•
˜
5
.
|
^
‡
y
{
,
b
•
3
ü
‡
)
v
Ú
w
,
©
O
÷
v
¯
K
(3.4).
“
\
ò
ü
‡
•
§
ƒ
~
,
¿
…
†
v
t
−
w
t
‰
S
È
,
Œ
k
v
t
−
w
t
k
2
+
1
2
C
(
n,s
)
k
v
−
w
k
2
X
0
+
C
(
n,s
)
t
Z
0
k
v
τ
−
w
τ
k
2
X
0
dτ
= 0
,
ù
`
²
v
≡
w
.
Ú
n
3.1
y
²
.
.
y
3
,
·
‚
‰
ÑÐ
>
Š
¯
K
(1.1)
Û
Ü
·
½
5
y
²
.
½
n
2.1
y
²
.
R
2
=
1
2
C
(
n,s
)
k
u
0
k
2
X
0
+
k
u
1
k
2
,
…
B
T
=
{
u
∈
D
:
u
(
x,
0) =
u
0
,u
t
(
x,
0) =
u
1
,
k
u
k
D
≤
R
}
,
∀
T>
0
.
(3.16)
Ï
L
Ú
n
3.1,
·
‚
•
é
u
∀
u
∈
B
T
,
•
3
•
˜
)
z
¦
¯
K
(3.4)
¤
á
.
3ù
p
,
·
‚
ò
y
²
é
u
˜
‡
·
T
≥
0,Ψ
´
˜
‡
Ø
N
,
=
Ψ(
B
T
)
⊂
B
T
.
Ä
k
,
ò
¯
K
(3.4)
¥
1
˜
‡
•
§
3
Ω
×
[0
,t
)
þ
†
z
t
‰
S
È
,
k
z
t
k
2
+
1
2
C
(
n,s
)
k
z
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
z
t
k
2
X
0
dτ
=
1
2
C
(
n,s
)
k
u
0
k
2
X
0
+
k
u
1
k
2
+2
Z
t
0
Z
Ω
u
ln
|
u
|
z
t
dxdτ,
(3.17)
Ù
¥
z
= Ψ(
u
)
´
u
∈
B
T
½
ž
,
¯
K
(3.4)
é
A
)
.
|
^
Cauchy-Schwarz
Ø
ª
Ú
Young
Ø
ª
,
k
2
Z
t
0
Z
Ω
u
ln
|
u
|
z
t
(
τ
)
dxdτ
≤
2
Z
t
0
k
u
ln
|
u
|kk
z
t
k
dτ
≤
Z
t
0
(2
k
u
ln
|
u
|k
2
+
1
2
k
z
t
k
2
)
dτ,
(3.18)
?
˜
Ú
(
Ü
(3.11),
´
2
Z
t
0
Z
Ω
u
ln
|
u
|
z
t
dxdτ
≤
CT
(
R
2
n
n
−
2
s
+1)+
1
2
C
(
n,s
)
Z
t
0
k
z
t
k
2
X
0
dτ,
∀
t
∈
(0
,T
]
.
(3.19)
d
(3.17)
Ú
(3.19),
3
[0
,T
]
þ
•
Œ
Š
,
Œ
k
z
k
2
D
≤
1
2
R
2
+
CT
(
R
2
n
n
−
2
s
+1)
.
(3.20)
T
v
ž
,
·
‚
k
k
z
k
D
≤
R
,
ù
`
²
Ψ(
B
T
)
⊂
B
T
.
DOI:10.12677/aam.2023.1241521480
A^
ê
Æ
?
Ð
A
b
B
T
¥
•
3
ü
‡
¼
ê
w
1
Ú
w
2
.
-
z
1
= Ψ(
w
1
),
z
2
= Ψ(
w
2
),
¿
…
z
=
z
1
−
z
2
.
ò
¯
K
(3.4)
¥
1
˜
‡
•
§
†
z
t
ƒ
¦
3
Ω
×
(0
,t
)
þ
È
©
,
Œ
Z
t
0
h
z
tt
,z
t
i
dτ
+
1
2
C
(
n,s
)
Z
t
0
(
z
t
,z
)
X
0
dτ
+
1
2
C
(
n,s
)
Z
t
0
(
z
t
,z
t
)
X
0
dτ
=
Z
t
0
Z
Ω
(
w
1
ln
|
w
1
|−
w
2
ln
|
w
2
|
)
z
t
dxdτ.
(3.21)
|
^
Lagrange
½
n
,
Ï
L
†
O
Ž
,
k
k
z
t
k
2
+
1
2
C
(
n,s
)
k
z
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
z
t
k
2
X
0
dτ
= 2
Z
t
0
Z
Ω
(
w
1
−
w
2
)(
|
ξ
|
+1)
z
t
dxdτ
≤
C
Z
t
0
k
w
1
−
w
2
k
k
z
t
k
2
+
1
2
C
(
n,s
)
k
z
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
z
t
k
2
X
0
dτ
1
2
dτ,
(3.22)
Ù
¥
0
≤|
ξ
|≤
ln
|
w
1
+
w
2
|
.
d
Gronwall
Ø
ª
,
Œ
k
z
t
k
2
+
1
2
C
(
n,s
)
k
z
k
2
X
0
+
C
(
n,s
)
Z
t
0
k
z
t
k
2
X
0
dτ
1
2
≤
CT
k
w
1
−
w
2
k
D
.
Ï
d
,
·
‚
u
y
k
Ψ(
w
1
)
−
Ψ(
w
2
)
k
2
=
k
z
k
2
D
≤
C
2
T
2
k
w
1
−
w
2
k
2
D
≤
σ
k
w
1
−
w
2
k
2
D
,
(3.23)
ù
§
·
‚
T
v
ž
§
o
Œ
±
(
•
3
σ<
1.
Š
â
Ø
N
n
,
Œ
y
²
Ð
>
Š
¯
K
(1.1)
•
3
•
˜
f
)
.
y
.
.
4.
o
(
†
Ð
"
©
|
^
Galerkin
%
C
{
Ú
Ø
N
n
,
y
²
3
?
¿
Ð
©
U
þ
e
,
ä
k
é
ê
š
‚
5
‘
©
ê
{
Z
Å
Ä
•
§
u
tt
+(
−
∆)
s
u
+(
−
∆)
s
u
t
=
u
ln
|
u
|
Ð
>
Š
¯
K
)ä
k
Û
Ü
·
½
5
.
·
‚
ò
3
©
Ä
:
þ
§
?
˜
Ú
ï
Ä
¯
K
(1.1)
3
g
.
Ð
©
U
þ
Ú
.
Ð
©
U
þ
^
‡
e
,
)
Û
•
3
5
!
ì
C
1
•
Ú
»
ƒ
'
5
Ÿ
.
ë
•
©
z
[1]Bisci,G.M.,Radulescu,V.D.andServadei,R.(2016)VariationalMethodsforNonlocalFrac-
tionalProblems.In:
EncyclopediaofMathematicsandItsApplications
,Vol.162,Cambridge
UniversityPress,Cambridge.
DOI:10.12677/aam.2023.1241521481
A^
ê
Æ
?
Ð
A
[2]Bucur,C.andValdinoci,E.(2016)NonlocalDiffusionandApplications.In:
LectureNotesof
theUnioneMatematicaItaliana
,Vol.20,Springer,Cham.
https://doi.org/10.1007/978-3-319-28739-3
[3]Dipierro,S.,Medina,M.andValdinoci,E.(2017)FractionalEllipticProblemswithCritical
Growthinthe Wholeof
R
n
.In:
Publications oftheScuola NormaleSuperiore
, Vol.15, Edizioni
dellaNormale,Pisa.
[4]Barrow, J.D. andParsons, P. (1995)Inflationary Models with LogarithmicPotentials.
Physical
ReviewD
,
52
,5576-5587.https://doi.org/10.1103/PhysRevD.52.5576
[5]Enqvist,K.and McDonald,J. (1998)Q-Balls andBaryogenesis in the MSSM.
PhysicsLetters
,
425
,309-321.https://doi.org/10.1016/S0370-2693(98)00271-8
[6]Liu,W.J.,Yu,J.Y.andLi,G.(2021)GlobalExistence,ExponentialDecayandBlow-Upof
Solutions for a Class ofFractional Pseudo-Parabolic Equations withLogarithmic Nonlinearity.
Discrete&ContinuousDynamicalSystemsS
,
14
,4337-4366.
https://doi.org/10.3934/dcdss.2021121
[7]Lian,W.andXu,R.Z.(2019)GlobalWell-Posedness ofNonlinearWaveEquationwithWeak
andStrongDampingTermsandLogarithmicSourceTerm.
AdvancesinNonlinearAnalysis
,
9
,613-632.https://doi.org/10.1515/anona-2020-0016
[8]Xu,R.Z.,Lian,W.,Kong,X.K.andYang,Y.B.(2019)FourthOrderWaveEquationwith
NonlinearStrain andLogarithmicNonlinearity.
AppliedNumerical Mathematics
,
141
, 185-205.
https://doi.org/10.1016/j.apnum.2018.06.004
[9]DiNezza,E.,Palatucci,G.andValdinoci,E.(2012)Hitchhiker’sGuidetotheFractional
SobolevSpaces.
BulletindesSciencesMath´ematiques
,
136
,521-573.
https://doi.org/10.1016/j.bulsci.2011.12.004
DOI:10.12677/aam.2023.1241521482
A^
ê
Æ
?
Ð