设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(4),1474-1482
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124152
˜aäkéêš‚5‘©ê
{ZÅ•§ÛÜ·½5
 AAA
2²ŒÆêƆ&E‰ÆÆ,2À2²
ÂvFϵ2023c313F¶¹^Fϵ2023c49F¶uÙFϵ2023c419F
Á‡
©Ì‡•Ääkéêš‚5‘©ê{ZÅÄ•§u
tt
+(−∆)
s
u+(−∆)
s
u
t
= uln|u|Ð>Š
¯K§ Ù¥s∈(0,1)"Žf(−∆)
s
•©êLaplaceŽf§Cc5§TŽf¤•ÔnÆ!7Kê
Æ!6NÄåÆƉ+•¥ïÄ9:"©3?¿Ð©Uþe§|^Galerkin%C{ÚØ
Nn§y²T•§)ÛÜ·½5"
'…c
{ZÅÄ•§§©êLaplaceŽf§éêš‚5‘§ÛÜ·½5
LocalWell-PosednessforaClass
ofFractionalDampedWaveEquations
withLogarithmicNonlinearity
LingnaLin
SchoolofMathematicsandInformationScience,GuangzhouUniversity,GuangzhouGuangdong
Received:Mar.13
th
,2023;accepted:Apr.9
th
,2023;published:Apr.19
th
,2023
©ÙÚ^: A.˜aäkéêš‚5‘©ê{ZÅ•§ÛÜ·½5[J].A^êÆ?Ð,2023,12(4):
1474-1482.DOI:10.12677/aam.2023.124152
 A
Abstract
Inthispaper,wemainlydealwiththeinitial-boundaryvalueproblemforthefrac-
tionaldampedwaveequationsu
tt
+ (−∆)
s
u+ (−∆)
s
u
t
=uln|u|,wheres∈(0,1).The
operator(−∆)
s
isthefractionalLaplaceoperator.Inrecentyears,thisoperatorhas
becomearesearchhotspotinphysics,financialmathematics,fluiddynamicsandoth-
erdisciplines.Atthearbitraryinitialenergylevels,thelocalwell-posednessofweak
solutionstoaboveproblemisprovedbyusingGalerkinapproximationmethodand
contractionmappingprincipleundersomecertainconditions.
Keywords
DampedWaveEquations,FractionalLaplaceOperator,LogarithmicNonlinearity,
LocalWell-Posedness
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3Ln›c¥,©êuЕ§®¤•ˆ‡‰Æ+•¥-‡g,.,Úå¯õÆö
'5.3êÆþ,©êuЕ§Œ±^žm©êê5£ã,X*ѯK!õš0Ÿ•§!tµ
y–¶•Œ±^˜m©êê5£ã,XþfåÆ!À/Ô*Ñ!%>DÂ.
Š˜J´,Cc5©ê.Ê.dŽf(−∆)
s
3ÔnÆ!7KêÆ!6NÄåÆ•¡k
•\2•A^.lêÆÝ5w,¹kùaŽf ‡©•§Œ^5£ãNõE,y–, ¿¼
´LnؤJ(ë©z[1–3]9Ùë•©z).éêš‚5‘uln|u|3ÔnÆÓäkN
õkïÄ,§Œ±g,/^u‡é¡|Ø,þfåÆÚØÔn[4,5]¥.Galerkin•{3 ‡©•
§ïÄ¥A^š~2•[6–8],3•Ä ‡©•§)•35ž§·‚Ï ~¬|^d•{òE,
 ‡©•§=z•~‡©•§?1¦).Ø Nn3y²•§)•3•˜5ž§Óä
kÞv”-Š^.
©·‚•ÄXe‘kéêš‚5‘©ê{ZÅÄ•§Ð>НK
DOI:10.12677/aam.2023.1241521475A^êÆ?Ð
 A



u
tt
+(−∆)
s
u+(−∆)
s
u
t
= uln|u|,(x,t) ∈Ω×(0,T),
u(x,t) = 0,(x,t) ∈(R
n
\Ω)×[0,T),
u(x,0) = u
0
(x),u
t
(x,0) = u
1
(x),x∈Ω,
(1.1)
Ù¥Ω´R
n
(n≥2s)¥‘k1w>.∂Ωk .«•,s∈(0,1);©êLaplaceŽf(−∆)
s
dXeÛ
ÉÈ©½Â
(−∆)
s
u(x) = −
C(n,s)
2
Z
R
n
u(x+y)+u(x−y)−2u(x)
|y|
n+2s
dy,x∈R
n
,
Ù¥C(n,s)=

R
R
n
1−cosξ
1
|ξ|
n+2s
dξ

−1
´˜‡8˜z~ê.3ùp,·‚•ĽÂ3Ωþ©ê
LaplaceŽf(−∆)
s
,´Ùéu¤½Â*Ð)|ŽX¯K,ù¿›X
(−∆)
s
u(x) = −
C(n,s)
2
Z
R
n
u(x+y)+u(x−y)−2u(x)
|y|
n+2s
dy,x∈Ω.
Ïd,Ð>НK(1.1))|ŽX êâ´3R
n
\ΩþŠ•NÈå‰Ñ,Ø==´3∂Ωþ,ù
†Žf(−∆)
s
šÛÜA˜—.
©‰ÑÐ>НK(1.1)3?¿Ð©Uþe)ÛÜ·½5y²,ùò•?˜Úïį
K(1.1))Û•35!ìC1•Ú»JøÄ:.
2.ý•£9̇(J
3ù˜!,Äk•ã†Ð>НK(1.1)ƒ'©êSobolev˜m½ÂÚ‰ê5Ÿ,•õ
[!Œ±ë©z[9].
·‚Q=R
2n
\O,Ù¥O=(CΩ) ×(CΩ)⊂R
2n
,CΩ=R
n
\Ω,K˜mX:R
n
→R´˜
‡LebesgueŒÿ‚5˜m,…÷v•›3Ωþu∈Xáu˜mL
2
(Ω)§=¦
Z
Q
|u(x)−u(y)|
2
|x−y|
n+2s
dxdy<∞,
Ù˜mX‰ê½Â•
kuk
X
=

Z
Ω
|u(x)|
2
dx+
Z
Q
|u(x)−u(y)|
2
|x−y|
n+2s
dxdy

1
2
.(2.1)
?˜Ú§½Â©êSobolev˜mX
0
•
X
0
= {u∈X:u= 0 a.e.inR
n
\Ω}.
Dƒ‰ê
kuk
X
0
=

Z
Q
|u(x)−u(y)|
2
|x−y|
n+2s
dxdy

1
2
,(2.2)
DOI:10.12677/aam.2023.1241521476A^êÆ?Ð
 A
…SÈL«•
(u,v)
X
0
=
Z
Q
(u(x)−u(y))(v(x)−v(y))
|x−y|
n+2s
dxdy.
,,éu?¿u∈X
0
,·‚kXe'Xª¤á
((−∆)
s
u,v)
L
2
(R
n
)
=

(−∆)
s
2
u,(−∆)
s
2
v

L
2
(R
n
)
=
1
2
C(n,s)(u,v)
X
0
,(2.3)
v= už,
((−∆)
s
u,u)
L
2
(R
n
)
= k(−∆)
s
2
uk
2
L
2
(R
n
)
=
1
2
C(n,s)kuk
2
X
0
.(2.4)
e5§·‚‰Ñ˜mX
0
→L
2
∗
Sobolevi\½n,ÙQãXe.
Ún2.1.s∈(0,1)…u∈X
0
.@o,•3˜‡†nÚsƒ'•Zi\~êB
2n
n−2s
,¦
kuk
2
L
2
∗
(Ω)
= kuk
2
L
2
∗
(R
n
)
≤B
2
2n
n−2s
Z
Q
|u(x)−u(y)|
2
|x−y|
n+2s
dxdy= B
2
2n
n−2s
kuk
2
X
0
,(2.5)
Ù¥2
∗
=
2n
n−2s
.
©̇(ØXe:
½n2.1.(ÛÜ·½5)eu
0
(x)∈X
0
,u
1
(x)∈L
2
(Ω),K•3˜‡žmT>0,¦¯K(1.1)•3
˜‡•˜f)u,÷v
u∈L
∞
([0,T],X
0
)…u
t
∈L
∞
([0,T],L
2
)∩L
2
([0,T],X
0
).
3.ÛÜ·½5
ù˜!·‚ò3?¿Ð©Uþe§y²¯K(1.1)ÛÜ)•3•˜5.••Bå„,˜‡
½T>0,½ÂXe˜m
D:=

u∈L
∞
([0,T],X
0
)…u
t
∈L
∞
([0,T],L
2
)∩L
2
([0,T],X
0
)

,(3.1)
…Dƒ‰ê
kuk
2
D
=max
t∈[0,T]

1
2
C(n,s)ku(t)k
2
X
0
+ku
t
(t)k
2
2

.(3.2)
d,·‚‰ÑXe'…5Ún,§éy²!̇(ØåXš~-‡Š^.
Ún3.1.éu∀T>0Úu∈D,•3•˜˜‡
z∈D…z
tt
∈L
∞
([0,T],Y
0
),
(3.3)
DOI:10.12677/aam.2023.1241521477A^êÆ?Ð
 A
…÷vXe‚5Ð>НK









z
tt
+(−∆)
s
z+(−∆)
s
z
t
= uln|u|,(x,t) ∈Ω×[0,T),
z(x,t) = 0,(x,t) ∈(R
n
\Ω)×[0,T),
z(x,0) = u
0
(x),z
t
(x,0) = u
1
(x),x∈Ω,
(3.4)
Ù¥Y
0
´X
0
éó˜m,u
0
(x)Úu
1
(x)®3Ð>НK(1.1)¥½Â.
y².Äk,·‚ò|^IOGalerkin•{,y²z•35.-{ω
k
(x)}
∞
k=1
´X
0
¥(−∆)
s
˜|Ä
¼ê,÷v
(−∆)
s
ω
k
(x) = λ
k
ω
k
(x),
Ù¥λ
k
´éAAŠ.·‚½Â
u
k
0
=
m
X
k=1

Z
Ω
u
0
ω
k
dx

ω
k
,u
k
1
=
m
X
k=1

Z
Ω
u
1
ω
k
dx

ω
k
.
Ïd,k→∞ž,3X
0
þku
k
0
→u
0
,3L
2
(Ω)þku
k
1
→u
1
.éu¤kk≥1,·‚Œ±é˜¼
êd
1
m
,...,d
k
m
∈C
2
[0,T],¦Cq)z
m
(x,t)÷v¯K(3.4).z
m
(x,t)Œ¤:
z
m
(x,t) =
m
X
k=1
d
k
m
(t)ω
k
,(3.5)
…÷vXe‚5¯K



R
Ω
(¨z
m
+(−∆)
s
z
m
+(−∆)
s
˙z
m
−uln|u|)ηdx= 0,(x,t) ∈Ω×[0,T),
z
m
(0) = u
m
0
,˙z
m
(0) = u
m
1
,x∈Ω,
(3.6)
Ù¥˙z
m
=
dz
m
dt
,η∈X
0
.3¯K(3.6)¥,-η= ω
k
,Œ
(¨z
m
,ω
k
) =
¨
d
k
m
(t),(3.7)
((−∆)
s
z
m
,ω
k
) = λ
k
d
k
m
(t),(3.8)
((−∆)
s
˙z
m
,ω
k
) = λ
k
˙
d
k
m
(t).(3.9)
ù,·‚Œ±˜‡äk™•¼êd
k
m
‚5~‡©•§Њ¯Kµ



¨
d
k
m
(t)+λ
k
d
k
m
(t)+λ
k
˙
d
k
m
(t) =
R
Ω
u(t)ln|u(t)|ω
k
dx,(x,t) ∈Ω×[0,T),
d
k
m
(0) =
R
Ω
u
0
ω
k
dx,
˙
d
k
m
(0) =
R
Ω
u
1
ω
k
dx,x∈Ω.
(3.10)
DOI:10.12677/aam.2023.1241521478A^êÆ?Ð
 A
Ïd,þã¯Ké¤kkÑŒ˜‡•˜ÛÜ)d
k
m
∈C
2
[0,T],ùÒ¿›X•3•˜d
ªf(3.5)½Âz
m
÷v(3.6).e5,‰Ñ
R
Ω
(uln|u|)
2
dxO.ÏL†OކÚn2.1¥
Sobolevi\,Œ
Z
Ω
(uln|u|)
2
dx=
Z
{x∈Ω;|u(x)|≤1}
(uln|u|)
2
dx+
Z
{x∈Ω;|u(x)|>1}
(uln|u|)
2
dx
≤e
−2
|Ω|+

n−2s
2s

2
Z
{x∈Ω;|u(x)|>1}
u
2n
n−2s
dx
≤e
−2
|Ω|+

n−2s
2s

2
kuk
2n
n−2s
L
2n
n−2s
≤e
−2
|Ω|+

n−2s
2s

2
B
2n
n−2s
2n
n−2s
kuk
2n
n−2s
X
0
,
(3.11)
Ù¥B
2n
n−2s
´Sobolevi\X
0
→L
2n
n−2s
(Ω)•Z~ê.
?˜Ú/,éu¤km≥1,3(3.6)¥η=˙z
m
(t),¿…3[0,t]⊂[0,T]þ?1È©,(ܪ
f(3.11),·‚Œ±
k˙z
m
k
2
+
1
2
C(n,s)kz
m
k
2
X
0
+C(n,s)
Z
t
0
k˙z
m
k
2
X
0
dτ
≤C(n,s)ku
m
0
k
2
X
0
+ku
m
1
k
2
+C+
Z
t
0
k˙z
m
k
2
dτ
≤C+
Z
t
0

k˙z
m
k
2
+
1
2
C(n,s)kz
m
k
2
X
0
+C(n,s)
Z
τ
0
k˙z
m
k
2
X
0
dς

dτ.
(3.12)
|^GronwallØª,´
k˙z
m
k
2
+
1
2
C(n,s)kz
m
k
2
X
0
+C(n,s)
Z
t
0
k˙z
m
k
2
X
0
dτ≤Ce
T
.(3.13)
,,ò(3.6)¥1˜‡•§ü>Ӟرkηk
X
0
,k
<¨z
m
,η>
kηk
X
0
=
(uln|u|,η)−((−∆)
s
z
m
,η)−((−∆)
s
˙z
m
,η)
kηk
X
0
.
d(3.11),(3.13)ÚH¨olderØª,Œ
<¨z
m
,η>
kηk
X
0
≤C(T).(3.14)
éuη∈X
0
\{0},(3.14)ü>Óžþ.,k
k¨z
m
k
Y
0
≤C(T).(3.15)
¤±,•3˜‡S{z
m
},¦
DOI:10.12677/aam.2023.1241521479A^êÆ?Ð
 A
{z
m
}3L
∞
([0,T],X
0
)þk.;
{˙z
m
}3L
∞
([0,T],L
2
(Ω))∩L
2
([0,T],X
0
)þk.;
{¨z
m
}3L
∞
([0,T],Y
0
)þk..
Ïd,Œ•3)z∈D∩C
2
([0,T],Y
0
)÷v¯K(3.4).
•,·‚y²T)•˜5.|^‡y{,b•3ü‡)vÚw,©O÷v¯K(3.4).“\
òü‡•§ƒ~,¿…†v
t
−w
t
‰SÈ,Œ
kv
t
−w
t
k
2
+
1
2
C(n,s)kv−wk
2
X
0
+C(n,s)
t
Z
0
kv
τ
−w
τ
k
2
X
0
dτ= 0,
ù`²v≡w.Ún3.1y²..
y3,·‚‰ÑÐ>НK(1.1)ÛÜ·½5y².
½n2.1y².R
2
=
1
2
C(n,s)ku
0
k
2
X
0
+ku
1
k
2
,…
B
T
= {u∈D: u(x,0) = u
0
,u
t
(x,0) = u
1
,kuk
D
≤R},∀T>0.(3.16)
ÏLÚn3.1,·‚•éu∀u∈B
T
,•3•˜)z¦¯K(3.4)¤á.3ùp,·‚òy² éu
˜‡·T≥0,Ψ´˜‡Ø N,=Ψ(B
T
) ⊂B
T
.
Äk,ò¯K(3.4)¥1˜‡•§3Ω×[0,t)þ†z
t
‰SÈ,
kz
t
k
2
+
1
2
C(n,s)kzk
2
X
0
+C(n,s)
Z
t
0
kz
t
k
2
X
0
dτ
=
1
2
C(n,s)ku
0
k
2
X
0
+ku
1
k
2
+2
Z
t
0
Z
Ω
uln|u|z
t
dxdτ,
(3.17)
Ù¥z= Ψ(u)´u∈B
T
½ž,¯K(3.4)éA).|^Cauchy-SchwarzØªÚYoungØª,
k
2
Z
t
0
Z
Ω
uln|u|z
t
(τ)dxdτ≤2
Z
t
0
kuln|u|kkz
t
kdτ≤
Z
t
0
(2kuln|u|k
2
+
1
2
kz
t
k
2
)dτ,(3.18)
?˜Ú(Ü(3.11),´
2
Z
t
0
Z
Ω
uln|u|z
t
dxdτ≤CT(R
2n
n−2s
+1)+
1
2
C(n,s)
Z
t
0
kz
t
k
2
X
0
dτ,∀t∈(0,T].(3.19)
d(3.17)Ú(3.19),3[0,T]þ•ŒŠ,Œ
kzk
2
D
≤
1
2
R
2
+CT(R
2n
n−2s
+1).
(3.20)
Tvž,·‚kkzk
D
≤R,ù`²Ψ(B
T
) ⊂B
T
.
DOI:10.12677/aam.2023.1241521480A^êÆ?Ð
 A
bB
T
¥•3ü‡¼êw
1
Úw
2
.-z
1
= Ψ(w
1
),z
2
= Ψ(w
2
),¿…z= z
1
−z
2
.ò¯K(3.4)¥
1˜‡•§†z
t
ƒ¦3Ω×(0,t)þÈ©,Œ
Z
t
0
hz
tt
,z
t
idτ+
1
2
C(n,s)
Z
t
0
(z
t
,z)
X
0
dτ+
1
2
C(n,s)
Z
t
0
(z
t
,z
t
)
X
0
dτ
=
Z
t
0
Z
Ω
(w
1
ln|w
1
|−w
2
ln|w
2
|)z
t
dxdτ.
(3.21)
|^Lagrange½n,ÏL†OŽ,k
kz
t
k
2
+
1
2
C(n,s)kzk
2
X
0
+C(n,s)
Z
t
0
kz
t
k
2
X
0
dτ
= 2
Z
t
0
Z
Ω
(w
1
−w
2
)(|ξ|+1)z
t
dxdτ
≤C
Z
t
0
kw
1
−w
2
k

kz
t
k
2
+
1
2
C(n,s)kzk
2
X
0
+C(n,s)
Z
t
0
kz
t
k
2
X
0
dτ

1
2
dτ,
(3.22)
Ù¥0 ≤|ξ|≤ln|w
1
+w
2
|.dGronwallØª,Œ

kz
t
k
2
+
1
2
C(n,s)kzk
2
X
0
+C(n,s)
Z
t
0
kz
t
k
2
X
0
dτ

1
2
≤CTkw
1
−w
2
k
D
.
Ïd,·‚uy
kΨ(w
1
)−Ψ(w
2
)k
2
= kzk
2
D
≤C
2
T
2
kw
1
−w
2
k
2
D
≤σkw
1
−w
2
k
2
D
,
(3.23)
ù§·‚Tvž§oŒ±(• 3σ<1.ŠâØ Nn,Œy²Ð>НK(1.1)•
3•˜f).y..
4.o(†Ð"
©|^Galerkin%C{ÚØ Nn,y²3?¿Ð©Uþe,äkéêš‚5‘©ê
{ZÅÄ•§u
tt
+(−∆)
s
u+(−∆)
s
u
t
= uln|u|Ð>НK)äkÛÜ·½5.·‚ò3©
Ä:þ§?˜ÚïįK(1.1)3g.ЩUþÚ.ЩUþ^‡e,)Û•35!ìC
1•Ú»ƒ'5Ÿ.
ë•©z
[1]Bisci,G.M.,Radulescu,V.D.andServadei,R.(2016)VariationalMethodsforNonlocalFrac-
tionalProblems.In:EncyclopediaofMathematicsandItsApplications,Vol.162,Cambridge
UniversityPress,Cambridge.
DOI:10.12677/aam.2023.1241521481A^êÆ?Ð
 A
[2]Bucur,C.andValdinoci,E.(2016)NonlocalDiffusionandApplications.In:LectureNotesof
theUnioneMatematicaItaliana,Vol.20,Springer,Cham.
https://doi.org/10.1007/978-3-319-28739-3
[3]Dipierro,S.,Medina,M.andValdinoci,E.(2017)FractionalEllipticProblemswithCritical
Growthinthe Wholeof R
n
.In:Publications oftheScuola NormaleSuperiore, Vol.15, Edizioni
dellaNormale,Pisa.
[4]Barrow, J.D. andParsons, P. (1995)Inflationary Models with LogarithmicPotentials. Physical
ReviewD,52,5576-5587.https://doi.org/10.1103/PhysRevD.52.5576
[5]Enqvist,K.and McDonald,J. (1998)Q-Balls andBaryogenesis in the MSSM. PhysicsLetters,
425,309-321.https://doi.org/10.1016/S0370-2693(98)00271-8
[6]Liu,W.J.,Yu,J.Y.andLi,G.(2021)GlobalExistence,ExponentialDecayandBlow-Upof
Solutions for a Class ofFractional Pseudo-Parabolic Equations withLogarithmic Nonlinearity.
Discrete&ContinuousDynamicalSystemsS,14,4337-4366.
https://doi.org/10.3934/dcdss.2021121
[7]Lian,W.andXu,R.Z.(2019)GlobalWell-Posedness ofNonlinearWaveEquationwithWeak
andStrongDampingTermsandLogarithmicSourceTerm.AdvancesinNonlinearAnalysis,
9,613-632.https://doi.org/10.1515/anona-2020-0016
[8]Xu,R.Z.,Lian,W.,Kong,X.K.andYang,Y.B.(2019)FourthOrderWaveEquationwith
NonlinearStrain andLogarithmicNonlinearity.AppliedNumerical Mathematics, 141, 185-205.
https://doi.org/10.1016/j.apnum.2018.06.004
[9]DiNezza,E.,Palatucci,G.andValdinoci,E.(2012)Hitchhiker’sGuidetotheFractional
SobolevSpaces.BulletindesSciencesMath´ematiques,136,521-573.
https://doi.org/10.1016/j.bulsci.2011.12.004
DOI:10.12677/aam.2023.1241521482A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.