设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(4),1567-1573
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124161
˜a‘CÒKirchhoff•§)
•35
•••sss±±±
=²nóŒÆnÆ§[‹=²
ÂvFϵ2023c319F¶¹^Fϵ2023c415F¶uÙFϵ2023c424F
Á‡
©ïĘaäkCÒKirchhoff•§
−(a+b
Z
R
3
|∇u|
2
dx)∆u+u= V(x)|u|
p−1
ux∈R
3
,
)•35,Ù¥a,b>0,3 <p<5,V(x) ´˜‡ëYCÒ…lim
|x|→∞
V(x) = V
∞
<0.
'…c
Kirchhoff•§§šÛÜ‘§C©{§CÒ
ExistenceofSolutionfor
KirchhoffEquationwith
Sign-ChangingWeight
LipingChen
CollegeofScience,LanzhouUniversityofTechnology,LanzhouGansu
©ÙÚ^:•s±.˜a‘CÒKirchhoff•§)•35[J].A^êÆ?Ð,2023,12(4):1567-1573.
DOI:10.12677/aam.2023.124161
•s±
Received:Mar.19
th
,2023;accepted:Apr.15
th
,2023;published:Apr.24
th
,2023
Abstract
Inthispaper,wedealwiththeexistenceresultofKirchhoffequationwithsign-
changingweight
−(a+b
Z
R
3
|∇u|
2
dx)∆u+u= V(x)|u|
p−1
ux∈R
3
,
wherea,b>0,3<p<5,V(x)isacontinuousandsign-changingfunctionsuchthat
lim
|x|→∞
V(x) = V
∞
<0.
Keywords
KirchhoffEquation,NonlocalTerm,VariationMethods,Sign-ChangingWeight
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.ÚóÚ̇(J
3©¥,•Äe¡Kirchhoff•§)•35
−(a+b
Z
R
3
|∇u|
2
dx)∆u+u= V(x)|u|
p−1
ux∈R
3
,(1)
Ù¥a,b>0,3 <p<5,V´˜‡CÒ¼ê…÷v:
(V)V(x) ∈C(R
3
,R) ÚV
∞
=lim
|x|→∞
V(x) <0.
¯K(1)5gu˜„Kirchhoff•§
−(a+b
Z
Ω
|∇u|
2
dx)∆u= f(x,u),(2)
DOI:10.12677/aam.2023.1241611568A^êÆ?Ð
•s±
ù†±eKirchhoff .•§·[k'
u
tt
−(a+b
Z
Ω
|∇u|
2
dx)∆u= f(x,u).(3)
·‚5¿,Š•éͶD’Alembert ÅÄ•§'u5ugdÄ˜‡í2,Kirchhoff 3©
z[1]¥ÄgÚ\•§(3).éuKirchhoffa.¯K•õµ,·‚Œ±ë•©z[2].gLions
3©z[3]k°5óб5,®²Nõ'uKirchhoff.¯K(J,Œ±ë•©z[4–21]Ú
Ù¥ë•©z.,,â·‚¤•,ékØ©•ÄäkCÒKirchhoff•§)•35(J.
•C,Yu 3[22]¥•Ä±eSchr¨odinger-PoissonXÚ



−∆u+u+φu= a(x)|u|
p−1
u,x∈R
3
,
−∆φ= k(x)u
2
,x∈R
3
,
(4)
Ù¥3≤p<5,a(x) 3R
3
¥´˜‡ëYCÒ¼ê…lim
|x|→∞
a(x)=a
∞
<0,k(x) ´ëY¿…
k(x) ∈L
2
(R
3
).|^ì´Ún[23],Šöy²T¯K–k˜‡š²…).ÉþãóŠéu,·
‚ïÄKirchhoff ¯K(1) š²…)•35,̇(JXeµ
½n1.1eV(x) ÷v^‡(V),•§(1) –•3˜‡š²…).
2.̇(Jy²
H
1
(R
3
)´Sobolev˜mÙSÈÚ‰êXe
(u,v) =
Z
R
3
∇u∇v+uv,kuk= (u,u)
1/2
.
•§(1))´±e¼ê.:
Γ(u) =
1
2
(a
Z
R
3
|∇u|
2
dx+
Z
R
3
|u|
2
dx)+
b
4
(
Z
R
3
|∇u|
2
dx)
2
−
1
p+1
Z
R
3
V(x)|u|
p+1
dx.
-
V(x) = V
+
(x)−V
−
(x),(5)
Ù¥
V
+
(x) =



V(x),XJV(x) ≥0,
0,XJV(x) <0,
(6)
Ú
V
−
(x) =



0,XJV(x) ≥0,
−V(x),XJV(x) <0.
(7)
DOI:10.12677/aam.2023.1241611569A^êÆ?Ð
•s±
e¡,·‚òy²•¼Γ ÷v(PS)
c
^‡.
Ún2.1•¼Γ÷v(PS)
c
^‡.
y²:{u
n
}∈H
1
(R
3
),n→∞žk
Γ(u
n
) ≤c,Γ
0
(u
n
) →0.(8)
‡y²ù‡Ún,•Iy²{u
n
}3H
1
(R
3
) ¥k˜‡rÂñf=Œ.Äky²{u
n
}k..
ÏL(8),éN´Ñ
a
Z
R
3
|∇u
n
|
2
dx+
Z
R
3
|u
n
|
2
dx+b(
Z
R
3
|∇u
n
|
2
dx)
2
−
Z
R
3
V(x)|u
n
|
p+1
dx= o(1)ku
n
k,(9)
Ú
a
2
Z
R
3
|∇u
n
|
2
dx+
1
2
Z
R
3
|u
n
|
2
dx+
b
4
(
Z
R
3
|∇u
n
|
2
dx)
2
−
1
p+1
Z
R
3
V(x)|u
n
|
p+1
dx≤c.(10)
|^(9)Ú(10),k
(
1
2
−
1
p+1
)[
Z
R
3
(a|∇u
n
|
2
+|u
n
|
2
)dx]+b(
1
4
−
1
p+1
)(
Z
R
3
|∇u
n
|
2
dx)
2
≤c+o(1)ku
n
k.(11)
dup>3,Œ±
(
1
2
−
1
p+1
)min{a,1}ku
n
k
2
≤c+o(1)ku
n
k.(12)
¤±kku
n
k≤C.Ïd,·‚b3H
1
(R
3
)¥u
n
*uÚn→∞ž
Z
R
3
|∇u
n
|
2
dx→A(13)
Šâ(5),(9)±9ku
n
k≤C,k
a
Z
R
3
|∇u
n
|
2
dx+
Z
R
3
|u
n
|
2
dx+b(
Z
R
3
|∇u
n
|
2
dx)
2
+
Z
R
3
V
−
(x)|u
n
|
p+1
dx
=
Z
R
3
V
+
(x)|u
n
|
p+1
dx+o(1).
(14)
dΓ
0
(u
n
) →0 Œ
a
Z
R
3
∇u∇vdx+
Z
R
3
uvdx+bA
Z
R
3
∇u∇vdx+
Z
R
3
V
−
(x)|u|
p−1
uvdx
=
Z
R
3
V
+
(x)|u|
p−1
uvdx,∀v∈H
1
(R
3
).
(15)
DOI:10.12677/aam.2023.1241611570A^êÆ?Ð
•s±
3(15)¥v= u,Œ±
a
Z
R
3
|∇u|
2
dx+
Z
R
3
u
2
dx+bA
Z
R
3
|∇u|
2
dx+
Z
R
3
V
−
(x)|u|
p+1
dx
=
Z
R
3
V
+
(x)|u|
p+1
dx.
(16)
Šâb^‡(V),•V
+
(x)k˜‡;|8,lŒ
Z
R
3
V
+
(x)|u
n
|
p+1
dx=
Z
R
3
V
+
(x)|u|
p+1
dx+o(1).(17)
(Ü(14),(16)±9(17),Œ±
a
Z
R
3
|∇u
n
|
2
dx+
Z
R
3
u
2
n
dx+b(
Z
R
3
|∇u
n
|
2
dx)
2
+
Z
R
3
V
−
(x)|u
n
|
p+1
dx
= a
Z
R
3
|∇u|
2
dx+
Z
R
3
u
2
dx+bA
2
Z
R
3
|∇u|
2
dx+
Z
R
3
V
−
(x)|u|
p+1
dx+o(1).
(18)
bu
n
9u, Kkkuk+o(1) <ku
n
k.?kuk
L
2
+o(1) <ku
n
k
L
2
Úk∇uk
L
2
+o(1) <k∇u
n
k
L
2
–k˜‡´¤á.Ïd·‚Œ±íäÑ
a
Z
R
3
|∇u
n
|
2
dx+
Z
R
3
u
2
n
dx>a
Z
R
3
|∇u|
2
dx+
Z
R
3
u
2
dx+o(1).(19)
Šâ(13),(19)ÚFatou Ún•
a
Z
R
3
|∇u
n
|
2
dx+
Z
R
3
u
2
n
dx+b(
Z
R
3
|∇u
n
|
2
dx)
2
+
Z
R
3
V
−
(x)|u
n
|
p+1
dx
>a
Z
R
3
|∇u|
2
dx+
Z
R
3
u
2
dx+bA
2
Z
R
3
|∇u|
2
dx+
Z
R
3
V
−
(x)|u|
p+1
dx+o(1),
ù†(18)gñ.¤±,3H
1
(R
3
)¥u
n
→u.
½n1.1 y²:˜•¡,dSobolevØªÚ3 <p<5,·‚Œ±
Γ(u) ≥
1
2
min{a,1}kuk
2
−kVk
L
∞
kuk
p+1
,(20)
l•3~êα,ρ>0¦Γ|
B
ρ
≥α>0.
,˜•¡,ÀJϕ∈H
1
(R
3
)¦suppϕ⊂suppa
+
,Kk
Γ(tϕ) =
t
2
2
Z
R
3
(a|∇ϕ|
2
dx+ϕ
2
)dx+
t
4
4
(
Z
R
3
|∇ϕ|
2
dx)
2
−
t
p+1
p+1
Z
R
3
V
+
|ϕ|
p+1
dx.(21)
dup>3,•3t
0
¦Γ(t
0
ϕ)<0.Ïd,·‚y²¼êΓ äkì´AÛ(.?dÚn2.1
Œ••§(1)–k˜‡š²…).
DOI:10.12677/aam.2023.1241611571A^êÆ?Ð
•s±
3.o(
©Ì‡|^ì´Úny²˜a‘CÒKirchhoff •§)•35.äN5`,òy²•§
š²…)•35¯K=z•¦)•§éA•¼.:¯K,Xy²•¼÷v(PS) ^‡,•
(ÜSobolev Øªy²T•§–•3˜‡š²…).
ë•©z
[1]Kirchhoff,G.(1883)Mechanik.Teubner,Leipzig.
[2]Oplinger,D.W.(1960)FrequencyResponseofaNonlinearStretchedString.TheJournalof
theAcousticalSocietyofAmerica,32,1529-1538.https://doi.org/10.1121/1.1907948
[3]Lions,J.L.(1978)OnSomeQuestionsinBoundaryValueProblemsofMathematicalPhysics.
In:North-HollandMathematicsStudies,Vol.30,North-Holland,Amsterdam,NewYork,284-
346.https://doi.org/10.1016/S0304-0208(08)70870-3
[4]Alves, C.O.and Figueiredo, G.M.(2016) Multi-Bump Solutions fora Kirchhoff-TypeProblem.
AdvancesinNonlinearAnalysis,5,1-26.https://doi.org/10.1515/anona-2015-0101
[5]Deng,Y.B.,Peng,S.J.andShuai,W.(2015)ExistenceandAsymptoticBehaviorofNodal
SolutionsfortheKirchhoff-TypeProblemsinR
3
.JournalofFunctionalAnalysis,269,3500-
3527.https://doi.org/10.1016/j.jfa.2015.09.012
[6]Deng,Y.B.andShuai,W.(2018)Sign-ChangingMulti-BumpSolutionsforKirchhoff-Type
EquationsinR
3
.DiscreteandContinuousDynamicalSystems,38,3139-3168.
https://doi.org/10.3934/dcds.2018137
[7]Figueiredo,G.M.,Ikoma,N.andSantosJr.,J.R.(2014)ExistenceandConcentrationResult
for the Kirchhoff Type Equations with GeneralNonlinearities. ArchiveforRationalMechanics
andAnalysis,213,931-979.https://doi.org/10.1007/s00205-014-0747-8
[8]Guo,Z. (2015)GroundStatefor Kirchhoff Equationswithout CompactCondition. Journalof
DifferentialEquations,259,2884-2902.https://doi.org/10.1016/j.jde.2015.04.005
[9]He,X.M.andZou,W.M.(2012)ExistenceandConcentrationBehaviorofPositiveSolutions
foraKirchhoffEquationinR
3
.JournalofDifferentialEquations,252,1813-1834.
https://doi.org/10.1016/j.jde.2011.08.035
[10]He,Y.,Li,G.B.andPeng,S.J.(2014)ConcentratingBoundStatesforKirchhoffTypeProb-
lemsinR
3
InvolvingCriticalSobolevExponents.AdvancedNonlinearStudies,14,483-510.
https://doi.org/10.1515/ans-2014-0214
[11]He,Y.andLi,G.B.(2015)StandingWavesforaClassofKirchhoffTypeProblemsinR
3
In-
volving Critical Sobolev Exponents. CalculusofVariationsandPartialDifferentialEquations,
54,3067-3106.https://doi.org/10.1007/s00526-015-0894-2
DOI:10.12677/aam.2023.1241611572A^êÆ?Ð
•s±
[12]He,Y.(2016)ConcentratingBoundedStatesforaClassofSingularlyPerturbedKirchhoff
TypeEquationswithaGeneralNonlinearity.JournalofDifferentialEquations,261,6178-
6220.https://doi.org/10.1016/j.jde.2016.08.034
[13]Li,G.B.andYe,H.Y.(2014)ExistenceofPositiveGroundStateSolutionsfortheNonlinear
KirchhoffTypeEquationsinR
3
.JournalofDifferentialEquations,257,566-600.
https://doi.org/10.1016/j.jde.2014.04.011
[14]Li,Y.H.,Li,F.Y.andShi,J.P.(2012)ExistenceofaPositiveSolutiontoKirchhoffType
ProblemswithoutCompactness Conditions.JournalofDifferentialEquations, 253, 2285-2294.
https://doi.org/10.1016/j.jde.2012.05.017
[15]Mao,A.andChang,H.(2016)KirchhoffTypeProblemsinR
N
withRadialPotentialsand
LocallyLipschitzFunctional.AppliedMathematicsLetters,62,49-54.
https://doi.org/10.1016/j.aml.2016.06.014
[16]Naimen,D.(2014)TheCriticalProblemofKirchhoffTypeEllipticEquationsinDimension
Four.JournalofDifferentialEquations,257,1168-1193.
https://doi.org/10.1016/j.jde.2014.05.002
[17]Sun,J.T. andWu,T.F.(2014)Ground StateSolutionsfor anIndefiniteKirchhoff TypeProb-
lemwithSteepPotentialWell.JournalofDifferentialEquations,256,1771-1792.
https://doi.org/10.1016/j.jde.2013.12.006
[18]Tang,X.H.andCheng,B.(2016)GroundStateSign-ChangingSolutionsforKirchhoffType
ProblemsinBoundedDomains.JournalofDifferentialEquations,261,2384-2402.
https://doi.org/10.1016/j.jde.2016.04.032
[19]Wang,D.B.(2020)LeastEnergySign-ChangingSolutionsofKirchhoff-TypeEquationwith
CriticalGrowth.JournalofMathematicalPhysics,61,ArticleID:011501.
https://doi.org/10.1063/1.5074163
[20]Wang,J.,Tian,L.X.,Xu,J.X.andZhang,F.B.(2012)MultiplicityandConcentrationof
PositiveSolutionsforaKirchhoffTypeProblemwithCriticalGrowth.JournalofDifferential
Equations,253,2314-2351.https://doi.org/10.1016/j.jde.2012.05.023
[21]Xie,Q.L., Ma,S.W. andZhang, X.(2016) BoundStateSolutions ofKirchhoff TypeProblems
withCriticalExponent.JournalofDifferentialEquations,261,890-924.
https://doi.org/10.1016/j.jde.2016.03.028
[22]Yu,X.(2010)ExistenceResultsforaSchr¨odinger-PoissonEquation.MathematicaApplicata,
23,648-652.
[23]Willem,M.(1996)MinimaxTheorems.Birkh¨auser,Boston.
DOI:10.12677/aam.2023.1241611573A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.