设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(4),1567-1573
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124161
˜
a
‘
C
Ò
Kirchhoff
•
§
)
•
3
5
•••
sss
±±±
=
²
n
ó
Œ
Æ
n
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
3
19
F
¶
¹
^
F
Ï
µ
2023
c
4
15
F
¶
u
Ù
F
Ï
µ
2023
c
4
24
F
Á
‡
©
ï
Ä
˜
a
ä
k
C
Ò
Kirchhoff
•
§
−
(
a
+
b
Z
R
3
|∇
u
|
2
dx
)∆
u
+
u
=
V
(
x
)
|
u
|
p
−
1
ux
∈
R
3
,
)
•
3
5
,
Ù
¥
a,b>
0
,
3
<p<
5
,
V
(
x
)
´
˜
‡
ë
Y
C
Ò
…
lim
|
x
|→∞
V
(
x
) =
V
∞
<
0
.
'
…
c
Kirchhoff
•
§
§
š
Û
Ü
‘
§
C
©{
§
C
Ò
ExistenceofSolutionfor
KirchhoffEquationwith
Sign-ChangingWeight
LipingChen
CollegeofScience,LanzhouUniversityofTechnology,LanzhouGansu
©
Ù
Ú
^
:
•
s
±
.
˜
a
‘
C
Ò
Kirchhoff
•
§
)
•
3
5
[J].
A^
ê
Æ
?
Ð
,2023,12(4):1567-1573.
DOI:10.12677/aam.2023.124161
•
s
±
Received:Mar.19
th
,2023;accepted:Apr.15
th
,2023;published:Apr.24
th
,2023
Abstract
Inthispaper,wedealwiththeexistenceresultofKirchhoffequationwithsign-
changingweight
−
(
a
+
b
Z
R
3
|∇
u
|
2
dx
)∆
u
+
u
=
V
(
x
)
|
u
|
p
−
1
ux
∈
R
3
,
where
a,b>
0
,
3
<p<
5
,
V
(
x
)
isacontinuousandsign-changingfunctionsuchthat
lim
|
x
|→∞
V
(
x
) =
V
∞
<
0
.
Keywords
KirchhoffEquation,NonlocalTerm,VariationMethods,Sign-ChangingWeight
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Ú
Ì
‡
(
J
3
©
¥
,
•
Ä
e
¡
Kirchhoff
•
§
)
•
3
5
−
(
a
+
b
Z
R
3
|∇
u
|
2
dx
)∆
u
+
u
=
V
(
x
)
|
u
|
p
−
1
ux
∈
R
3
,
(1)
Ù
¥
a,b>
0,3
<p<
5,
V
´
˜
‡
C
Ò¼
ê
…
÷
v
:
(
V
)
V
(
x
)
∈
C
(
R
3
,
R
)
Ú
V
∞
=lim
|
x
|→∞
V
(
x
)
<
0.
¯
K
(1)
5
g
u
˜
„
Kirchhoff
•
§
−
(
a
+
b
Z
Ω
|∇
u
|
2
dx
)∆
u
=
f
(
x,u
)
,
(2)
DOI:10.12677/aam.2023.1241611568
A^
ê
Æ
?
Ð
•
s
±
ù
†
±
e
Kirchhoff
.
•
§
·
[
k
'
u
tt
−
(
a
+
b
Z
Ω
|∇
u
|
2
dx
)∆
u
=
f
(
x,u
)
.
(3)
·
‚
5
¿
,
Š
•
é
Í
¶
D’Alembert
Å
Ä
•
§
'
u
5
u
g
d
Ä
˜
‡
í
2
,Kirchhoff
3
©
z
[1]
¥
Ä
g
Ú
\
•
§
(3).
é
u
Kirchhoff
a
.
¯
K
•
õ
µ
,
·
‚
Œ
±
ë
•
©
z
[2].
g
Lions
3
©
z
[3]
k
°
5
ó
Š
±
5
,
®
²
N
õ
'
u
Kirchhoff
.
¯
K
(
J
,
Œ
±
ë
•
©
z
[4–21]
Ú
Ù
¥
ë
•
©
z
.
,
,
â
·
‚
¤
•
,
é
k
Ø
©
•
Ä
ä
k
C
Ò
Kirchhoff
•
§
)
•
3
5
(
J
.
•
C
,Yu
3
[22]
¥
•
Ä
±
e
Schr¨odinger-Poisson
X
Ú
−
∆
u
+
u
+
φu
=
a
(
x
)
|
u
|
p
−
1
u,x
∈
R
3
,
−
∆
φ
=
k
(
x
)
u
2
,x
∈
R
3
,
(4)
Ù
¥
3
≤
p<
5,
a
(
x
)
3
R
3
¥
´
˜
‡
ë
Y
C
Ò¼
ê
…
lim
|
x
|→∞
a
(
x
)=
a
∞
<
0,
k
(
x
)
´
ë
Y
¿
…
k
(
x
)
∈
L
2
(
R
3
).
|
^
ì
´
Ú
n
[23],
Š
ö
y
²
T
¯
K
–
k
˜
‡
š
²
…
)
.
É
þ
ã
ó
Š
é
u
,
·
‚
ï
Ä
Kirchhoff
¯
K
(1)
š
²
…
)
•
3
5
,
Ì
‡
(
J
X
e
µ
½
n
1
.
1
e
V
(
x
)
÷
v
^
‡
(
V
),
•
§
(1)
–
•
3
˜
‡
š
²
…
)
.
2.
Ì
‡
(
J
y
²
H
1
(
R
3
)
´
Sobolev
˜
m
Ù
S
È
Ú
‰
ê
X
e
(
u,v
) =
Z
R
3
∇
u
∇
v
+
uv,
k
u
k
= (
u,u
)
1
/
2
.
•
§
(1)
)
´
±
e
¼
ê
.
:
Γ(
u
) =
1
2
(
a
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
|
u
|
2
dx
)+
b
4
(
Z
R
3
|∇
u
|
2
dx
)
2
−
1
p
+1
Z
R
3
V
(
x
)
|
u
|
p
+1
dx.
-
V
(
x
) =
V
+
(
x
)
−
V
−
(
x
)
,
(5)
Ù
¥
V
+
(
x
) =
V
(
x
)
,
X
J
V
(
x
)
≥
0
,
0
,
X
J
V
(
x
)
<
0
,
(6)
Ú
V
−
(
x
) =
0
,
X
J
V
(
x
)
≥
0
,
−
V
(
x
)
,
X
J
V
(
x
)
<
0
.
(7)
DOI:10.12677/aam.2023.1241611569
A^
ê
Æ
?
Ð
•
s
±
e
¡
,
·
‚
ò
y
²
•
¼
Γ
÷
v
(
PS
)
c
^
‡
.
Ú
n
2
.
1
•
¼
Γ
÷
v
(
PS
)
c
^
‡
.
y
²
:
{
u
n
}∈
H
1
(
R
3
),
n
→∞
ž
k
Γ(
u
n
)
≤
c,
Γ
0
(
u
n
)
→
0
.
(8)
‡
y
²
ù
‡
Ú
n
,
•
I
y
²
{
u
n
}
3
H
1
(
R
3
)
¥
k
˜
‡
r
Â
ñ
f
=
Œ
.
Ä
k
y
²
{
u
n
}
k
.
.
Ï
L
(8),
é
N
´
Ñ
a
Z
R
3
|∇
u
n
|
2
dx
+
Z
R
3
|
u
n
|
2
dx
+
b
(
Z
R
3
|∇
u
n
|
2
dx
)
2
−
Z
R
3
V
(
x
)
|
u
n
|
p
+1
dx
=
o
(1)
k
u
n
k
,
(9)
Ú
a
2
Z
R
3
|∇
u
n
|
2
dx
+
1
2
Z
R
3
|
u
n
|
2
dx
+
b
4
(
Z
R
3
|∇
u
n
|
2
dx
)
2
−
1
p
+1
Z
R
3
V
(
x
)
|
u
n
|
p
+1
dx
≤
c.
(10)
|
^
(9)
Ú
(10),
k
(
1
2
−
1
p
+1
)[
Z
R
3
(
a
|∇
u
n
|
2
+
|
u
n
|
2
)
dx
]+
b
(
1
4
−
1
p
+1
)(
Z
R
3
|∇
u
n
|
2
dx
)
2
≤
c
+
o
(1)
k
u
n
k
.
(11)
du
p>
3,
Œ
±
(
1
2
−
1
p
+1
)
min
{
a,
1
}k
u
n
k
2
≤
c
+
o
(1)
k
u
n
k
.
(12)
¤
±
k
k
u
n
k≤
C
.
Ï
d
,
·
‚
b
3
H
1
(
R
3
)
¥
u
n
*u
Ú
n
→∞
ž
Z
R
3
|∇
u
n
|
2
dx
→
A
(13)
Š
â
(5),(9)
±
9
k
u
n
k≤
C
,
k
a
Z
R
3
|∇
u
n
|
2
dx
+
Z
R
3
|
u
n
|
2
dx
+
b
(
Z
R
3
|∇
u
n
|
2
dx
)
2
+
Z
R
3
V
−
(
x
)
|
u
n
|
p
+1
dx
=
Z
R
3
V
+
(
x
)
|
u
n
|
p
+1
dx
+
o
(1)
.
(14)
d
Γ
0
(
u
n
)
→
0
Œ
a
Z
R
3
∇
u
∇
vdx
+
Z
R
3
uvdx
+
bA
Z
R
3
∇
u
∇
vdx
+
Z
R
3
V
−
(
x
)
|
u
|
p
−
1
uvdx
=
Z
R
3
V
+
(
x
)
|
u
|
p
−
1
uvdx,
∀
v
∈
H
1
(
R
3
)
.
(15)
DOI:10.12677/aam.2023.1241611570
A^
ê
Æ
?
Ð
•
s
±
3
(15)
¥
v
=
u
,
Œ
±
a
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
u
2
dx
+
bA
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
V
−
(
x
)
|
u
|
p
+1
dx
=
Z
R
3
V
+
(
x
)
|
u
|
p
+1
dx.
(16)
Š
â
b
^
‡
(
V
),
•
V
+
(
x
)
k
˜
‡
;
|
8
,
l
Œ
Z
R
3
V
+
(
x
)
|
u
n
|
p
+1
dx
=
Z
R
3
V
+
(
x
)
|
u
|
p
+1
dx
+
o
(1)
.
(17)
(
Ü
(14),(16)
±
9
(17),
Œ
±
a
Z
R
3
|∇
u
n
|
2
dx
+
Z
R
3
u
2
n
dx
+
b
(
Z
R
3
|∇
u
n
|
2
dx
)
2
+
Z
R
3
V
−
(
x
)
|
u
n
|
p
+1
dx
=
a
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
u
2
dx
+
bA
2
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
V
−
(
x
)
|
u
|
p
+1
dx
+
o
(1)
.
(18)
b
u
n
9
u
,
K
k
k
u
k
+
o
(1)
<
k
u
n
k
.
?
k
u
k
L
2
+
o
(1)
<
k
u
n
k
L
2
Ú
k∇
u
k
L
2
+
o
(1)
<
k∇
u
n
k
L
2
–
k
˜
‡
´
¤
á
.
Ï
d
·
‚
Œ
±
í
ä
Ñ
a
Z
R
3
|∇
u
n
|
2
dx
+
Z
R
3
u
2
n
dx>a
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
u
2
dx
+
o
(1)
.
(19)
Š
â
(13),(19)
Ú
Fatou
Ú
n
•
a
Z
R
3
|∇
u
n
|
2
dx
+
Z
R
3
u
2
n
dx
+
b
(
Z
R
3
|∇
u
n
|
2
dx
)
2
+
Z
R
3
V
−
(
x
)
|
u
n
|
p
+1
dx
>a
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
u
2
dx
+
bA
2
Z
R
3
|∇
u
|
2
dx
+
Z
R
3
V
−
(
x
)
|
u
|
p
+1
dx
+
o
(1)
,
ù
†
(18)
g
ñ
.
¤
±
,
3
H
1
(
R
3
)
¥
u
n
→
u
.
½
n
1
.
1
y
²
:
˜
•
¡
,
d
Sobolev
Ø
ª
Ú
3
<p<
5,
·
‚
Œ
±
Γ(
u
)
≥
1
2
min
{
a,
1
}k
u
k
2
−k
V
k
L
∞
k
u
k
p
+1
,
(20)
l
•
3
~
ê
α,ρ>
0
¦
Γ
|
B
ρ
≥
α>
0.
,
˜
•
¡
,
À
J
ϕ
∈
H
1
(
R
3
)
¦
suppϕ
⊂
suppa
+
,
K
k
Γ(
tϕ
) =
t
2
2
Z
R
3
(
a
|∇
ϕ
|
2
dx
+
ϕ
2
)
dx
+
t
4
4
(
Z
R
3
|∇
ϕ
|
2
dx
)
2
−
t
p
+1
p
+1
Z
R
3
V
+
|
ϕ
|
p
+1
dx.
(21)
du
p>
3,
•
3
t
0
¦
Γ(
t
0
ϕ
)
<
0.
Ï
d
,
·
‚
y
²
¼
ê
Γ
ä
k
ì
´
A
Û
(
.
?
d
Ú
n
2
.
1
Œ
•
•
§
(1)
–
k
˜
‡
š
²
…
)
.
DOI:10.12677/aam.2023.1241611571
A^
ê
Æ
?
Ð
•
s
±
3.
o
(
©
Ì
‡
|
^
ì
´
Ú
n
y
²
˜
a
‘
C
Ò
Kirchhoff
•
§
)
•
3
5
.
ä
N
5
`
,
ò
y
²
•
§
š
²
…
)
•
3
5
¯
K
=
z
•
¦
)
•
§
é
A
•
¼
.
:
¯
K
,
X
y
²
•
¼
÷
v
(PS)
^
‡
,
•
(
Ü
Sobolev
Ø
ª
y
²
T
•
§
–
•
3
˜
‡
š
²
…
)
.
ë
•
©
z
[1]Kirchhoff,G.(1883)Mechanik.Teubner,Leipzig.
[2]Oplinger,D.W.(1960)FrequencyResponseofaNonlinearStretchedString.
TheJournalof
theAcousticalSocietyofAmerica
,
32
,1529-1538.https://doi.org/10.1121/1.1907948
[3]Lions,J.L.(1978)OnSomeQuestionsinBoundaryValueProblemsofMathematicalPhysics.
In:
North-HollandMathematicsStudies
,Vol.30,North-Holland,Amsterdam,NewYork,284-
346.https://doi.org/10.1016/S0304-0208(08)70870-3
[4]Alves, C.O.and Figueiredo, G.M.(2016) Multi-Bump Solutions fora Kirchhoff-TypeProblem.
AdvancesinNonlinearAnalysis
,
5
,1-26.https://doi.org/10.1515/anona-2015-0101
[5]Deng,Y.B.,Peng,S.J.andShuai,W.(2015)ExistenceandAsymptoticBehaviorofNodal
SolutionsfortheKirchhoff-TypeProblemsin
R
3
.
JournalofFunctionalAnalysis
,
269
,3500-
3527.https://doi.org/10.1016/j.jfa.2015.09.012
[6]Deng,Y.B.andShuai,W.(2018)Sign-ChangingMulti-BumpSolutionsforKirchhoff-Type
Equationsin
R
3
.
DiscreteandContinuousDynamicalSystems
,
38
,3139-3168.
https://doi.org/10.3934/dcds.2018137
[7]Figueiredo,G.M.,Ikoma,N.andSantosJr.,J.R.(2014)ExistenceandConcentrationResult
for the Kirchhoff Type Equations with GeneralNonlinearities.
ArchiveforRationalMechanics
andAnalysis
,
213
,931-979.https://doi.org/10.1007/s00205-014-0747-8
[8]Guo,Z. (2015)GroundStatefor Kirchhoff Equationswithout CompactCondition.
Journalof
DifferentialEquations
,
259
,2884-2902.https://doi.org/10.1016/j.jde.2015.04.005
[9]He,X.M.andZou,W.M.(2012)ExistenceandConcentrationBehaviorofPositiveSolutions
foraKirchhoffEquationin
R
3
.
JournalofDifferentialEquations
,
252
,1813-1834.
https://doi.org/10.1016/j.jde.2011.08.035
[10]He,Y.,Li,G.B.andPeng,S.J.(2014)ConcentratingBoundStatesforKirchhoffTypeProb-
lemsin
R
3
InvolvingCriticalSobolevExponents.
AdvancedNonlinearStudies
,
14
,483-510.
https://doi.org/10.1515/ans-2014-0214
[11]He,Y.andLi,G.B.(2015)StandingWavesforaClassofKirchhoffTypeProblemsin
R
3
In-
volving Critical Sobolev Exponents.
CalculusofVariationsandPartialDifferentialEquations
,
54
,3067-3106.https://doi.org/10.1007/s00526-015-0894-2
DOI:10.12677/aam.2023.1241611572
A^
ê
Æ
?
Ð
•
s
±
[12]He,Y.(2016)ConcentratingBoundedStatesforaClassofSingularlyPerturbedKirchhoff
TypeEquationswithaGeneralNonlinearity.
JournalofDifferentialEquations
,
261
,6178-
6220.https://doi.org/10.1016/j.jde.2016.08.034
[13]Li,G.B.andYe,H.Y.(2014)ExistenceofPositiveGroundStateSolutionsfortheNonlinear
KirchhoffTypeEquationsin
R
3
.
JournalofDifferentialEquations
,
257
,566-600.
https://doi.org/10.1016/j.jde.2014.04.011
[14]Li,Y.H.,Li,F.Y.andShi,J.P.(2012)ExistenceofaPositiveSolutiontoKirchhoffType
ProblemswithoutCompactness Conditions.
JournalofDifferentialEquations
,
253
, 2285-2294.
https://doi.org/10.1016/j.jde.2012.05.017
[15]Mao,A.andChang,H.(2016)KirchhoffTypeProblemsin
R
N
withRadialPotentialsand
LocallyLipschitzFunctional.
AppliedMathematicsLetters
,
62
,49-54.
https://doi.org/10.1016/j.aml.2016.06.014
[16]Naimen,D.(2014)TheCriticalProblemofKirchhoffTypeEllipticEquationsinDimension
Four.
JournalofDifferentialEquations
,
257
,1168-1193.
https://doi.org/10.1016/j.jde.2014.05.002
[17]Sun,J.T. andWu,T.F.(2014)Ground StateSolutionsfor anIndefiniteKirchhoff TypeProb-
lemwithSteepPotentialWell.
JournalofDifferentialEquations
,
256
,1771-1792.
https://doi.org/10.1016/j.jde.2013.12.006
[18]Tang,X.H.andCheng,B.(2016)GroundStateSign-ChangingSolutionsforKirchhoffType
ProblemsinBoundedDomains.
JournalofDifferentialEquations
,
261
,2384-2402.
https://doi.org/10.1016/j.jde.2016.04.032
[19]Wang,D.B.(2020)LeastEnergySign-ChangingSolutionsofKirchhoff-TypeEquationwith
CriticalGrowth.
JournalofMathematicalPhysics
,
61
,ArticleID:011501.
https://doi.org/10.1063/1.5074163
[20]Wang,J.,Tian,L.X.,Xu,J.X.andZhang,F.B.(2012)MultiplicityandConcentrationof
PositiveSolutionsforaKirchhoffTypeProblemwithCriticalGrowth.
JournalofDifferential
Equations
,
253
,2314-2351.https://doi.org/10.1016/j.jde.2012.05.023
[21]Xie,Q.L., Ma,S.W. andZhang, X.(2016) BoundStateSolutions ofKirchhoff TypeProblems
withCriticalExponent.
JournalofDifferentialEquations
,
261
,890-924.
https://doi.org/10.1016/j.jde.2016.03.028
[22]Yu,X.(2010)ExistenceResultsforaSchr¨odinger-PoissonEquation.
MathematicaApplicata
,
23
,648-652.
[23]Willem,M.(1996)MinimaxTheorems.Birkh¨auser,Boston.
DOI:10.12677/aam.2023.1241611573
A^
ê
Æ
?
Ð