设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(4),1704-1712
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124177
˜a©êŽ™õÑtXÚš²…)
•35
ŠŠŠïïï___
=²nóŒÆnÆ§[‹=²
ÂvFϵ2023c324F¶¹^Fϵ2023c418F¶uÙFϵ2023c427F
Á‡
©ïĘaäkCÒ©êŽ™õÑtXÚ







−(∆)
s
u+u+k(x)φu= a(x)|u|
p−1
u,x∈R
3
,
−(∆)
t
φ= k(x)u
2
,x∈R
3
,
š²…)•35,Ù¥
3s+4t
s+t
<p<
3+2s
3−2s
,s,t∈(0,1)…4s+ 2t>3,a(x)∈C(R
3
)CÒ…
lim
|x|→∞
a(x)=a
∞
<0,k(x)∈C(R
3
)∩L
6
4s+2t−3
(R
3
).A^ì´Ún,©TXÚ–•3
˜‡š²…).
'…c
©êŽ™õÑtXÚ§CÒ§š²…)
ExistenceofNontrivialSolutionforaClass
ofFractionalSchr¨odinger-PoissonSystem
JuanxiaMeng
©ÙÚ^:Šï_.˜a©êŽ™-ÑtXÚš²…)•35[J].A^êÆ?Ð,2023,12(4):1704-1712.
DOI:10.12677/aam.2023.124177
Šï_
CollegeofScience,LanzhouUniversityofTechnology,LanzhouGansu
Received:Mar.24
th
,2023;accepted:Apr.18
th
,2023;published:Apr.27
th
,2023
Abstract
Inthispaper,weareconcernedwiththeexistenceofnontrivialsolutionforaclassof
fractionalSchr¨odinger-Poissonsystem:





−(∆)
s
u+u+k(x)φu= a(x)|u|
p−1
u,x∈R
3
,
−(∆)
t
φ= k(x)u
2
,x∈R
3
,
where
3s+4t
s+t
<p<
3+2s
3−2s
,s,t∈(0,1)and4s+2t>3,a(x) ∈C(R
3
)isasign-changingfunction
withlim
|x|→∞
a(x) = a
∞
<0,k(x) ∈C(R
3
)∩L
6
4s+2t−3
(R
3
).Byusingmountainpasstheorem,
weobtainthatthissystemhasatleastonenontrivialsolution.
Keywords
FractionalSchr¨odinger-PoissonSystem,Sign-ChangingWeight,NontrivialSolution
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Cc5,Nõ©z•ÄXe©êŽ™õÑtXÚ





(−∆)
s
u+V(x)u+K(x)φu= f(x,u),x∈R
3
,
(−∆)
t
φ= K(x)u
2
,x∈R
3
,
(1)
DOI:10.12677/aam.2023.1241771705A^êÆ?Ð
Šï_
d?s,t∈(0,1),©êLaplacianŽf(−∆)
s
½Â•
(−∆)
s
v(x) = C
N,s
P.V.
Z
R
N
v(x)−v(y)
|x−y|
N+2s
dy,v∈S(R
N
),
d?P.V.L«…ÜÌŠ,C
N,s
IOz~ê,S(R
N
) ´d¯„P~¼ê|¤–]¼ê˜m.5
¿©êLaplacian Žf(−∆)
s
´3©z[1,2]ÄgÚ\.•õk'(−∆)
s
&E,žë•[3]9
Ù¥ë•©z.c,k'XÚ(1)?ØýŒõê´k')½CÒ)•35,õ)5(
J,X[4–15].Ù¥,©z[5,6,12,14]•ÄXÚ(1) ½aq¯KCÒ)•35;©z[4,10]ïÄ
XÚ(1) 3.^‡epUþ)•35;©z[7,13]?ØXÚ(1) )•3598¥5;©
z[8,9,11,15]•XÚ(1) Ä)•35½õ-5.,,ÏLÎnƒ'©zuy:éäkC
Ò©êÅ ½™-ÑtXÚ)•35¯KïÄ%š~.,˜•¡,·‚5¿,{¡Ÿ
3[16]¥•Ä±eŽ™-ÑtXÚ





−∆u+u+φu= a(x)|u|
p−1
u,x∈R
3
,
−∆φ= k(x)u
2
,x∈R
3
,
(2)
Ù¥3≤p<5,a(x)∈C(R
3
) CÒ…lim
|x|→∞
a(x)=a
∞
<0,k(x)∈C(R
3
)∩L
2
(R
3
).|^ì´Ú
n[17],Šö¼Ž™-ÑtXÚ(2)–k˜‡š²…)•35(J.ɱþ©zéu,
©•ÄXe©êŽ™-ÑtXÚ







−(∆)
s
u+u+k(x)φu= a(x)|u|
p−1
u, x∈R
3
−(∆)
t
φ= k(x)u
2
, x∈R
3
,
(3)
š²…)•35,Ù¥
3s+4t
s+t
<p<
3+2s
3−2s
,s,t∈(0,1) …4s+2t>3,a(x) Úk(x) ÷vµ
(A1)a(x) ∈C(R
3
,R)•˜aCÒ¼ê…÷va
∞
= lim
|x|→∞
a(x) <0.
(A2)k(x) ∈C(R
3
,R),k(x) ≥0 …k(x) ∈L
6
4s+2t−3
(R
3
).
©̇(J•Xe½n:
½n1.1.b(A1),(A2)¤á,K©êŽ™-ÑtXÚ(3) –•3˜‡š²…).
2½½½nnn1.1yyy²²²
éu½u∈H
s
(R
3
),½ÂD
t,2
(R
3
)þ‚5Žf
L
u
(v) =
Z
R
3
k(x)u
2
vdx,
DOI:10.12677/aam.2023.1241771706A^êÆ?Ð
Šï_
@oÒk
|L
u
(v)|≤
Z
R
3
k(x)u
2
|v|dx
≤(
Z
R
3
k(x)
6
4s+2t−3
dx)
4s+2t−3
6
(
Z
R
3
u
6
3−2s
)
3−2s
3
(
Z
R
3
v
2
∗
t
)
1
2
∗
t
≤Ckk(x)k
L
6
4s+2t−3
(R
3
)
kuk
2
H
s
(R
3
)
kvk
D
t,2
(R
3
)
.
ÏddRieszL«½nŒ•,•3•˜φ
u
∈D
t,2
(R
3
),¦
hφ
u
,vi
D
t,2
(R
3
)
= L
u
(v), ∀v∈D
t,2
(R
3
),
=
Z
R
3
(−∆)
t
2
φ
u
(−∆)
t
2
vdx=
Z
R
3
k(x)u
2
vdx, ∀v∈D
t,2
(R
3
),
•Ò´`φ
u
´(3)¥1‡•§f).òφ
u
‘\1˜‡•§Ò
−(∆)
s
u+u+k(x)φ
u
u= a(x)|u|
p−1
u.(4)
Ïd¦)•§(3)du¦)•§(4).•§(4))éAUþ•¼
F(u) =
1
2
Z
R
3
|(−∆)
s
2
u|
2
+u
2
dx+
1
4
Z
R
3
k(x)φ
u
u
2
dx
−
1
p+1
Z
R
3
a(x)|u|
p+1
dx, u∈H
s
(R
3
)
.:.
½ÂΦ:H
s
(R
3
) →D
t,2
(R
3
)•Φ(u) = φ
u
,Kke¡Ún.
Ún2.1
(i)Φ ëY.
(ii)Φ òk.8Nk.8.
(iii)e{u
n
}3H
s
(R
3
)¥k.…u
n
u,@ok
Z
R
3
k(x)φ
u
n
u
2
n
dx→
Z
R
3
k(x)φ
u
u
2
dx.
y:(i )é¤ku∈H
s
(R
3
),k
|L
u
|= kφ
u
k
D
t,2
(R
3
)
= kΦ(u)k
D
t,2
(R
3
)
DOI:10.12677/aam.2023.1241771707A^êÆ?Ð
Šï_
¤á.¤±,•y²Φ ëY,•Iy:u7→L
u
´ëY.
|L
u
n
(v)−L
u
(v)|≤
Z
R
3
k(x)|v||u
2
n
−u
2
|dx
≤Ckkk
L
6
4s+2t−3
(R
3
)
kvk
D
t,2
(R
3
)
ku
2
n
−u
2
k
L
6
3−2s
(R
3
)
Ï•v´?¿,n→∞,k|L
u
n
(v)−L
u
(v)|→0 .
(ii)Ï•kφ
u
k
D
t,2
(R
3
)
= |L
u
|≤Ckkk
L
6
4t+2s−3
(R
3
)
kuk
2
H
s
(R
3
)
.¤±Ún¥(ii)¤á.
(iii)3©z[16]¥®²y²φ
u
n
φ
u
,e¡y²
Z
R
3
k(x)φ
u
n
u
2
n
dx→
Z
R
3
k(x)φ
u
u
2
dx.
Äk·‚5¿duφ
u
n
φ
u
,¤±·‚k
Z
R
3
k(x)(φ
u
n
−φ
u
)u
2
dx→0.(5)
e¡y²
Z
R
3
k(x)φ
u
n
|u
2
n
−u
2
|dx→0.(6)
Ï•k(x)∈L
6
4s+2t−3
(R
3
) …ëY,Ïdé∀ε>0,∃ρ= ρ(ε)>0,¦|x|≥ρžk(x)≤ε,u´
·‚
Z
|x|≥ρ
k(x)φ
u
n
|u
2
n
−u
2
|dx≤ε[
Z
|x|≥ρ
φ
u
n
u
2
n
dx+
Z
|x|≥ρ
φ
u
n
u
2
dx]
≤εCkφ
u
n
k
D
t,2
(R
3
)
(ku
n
k
2
+kuk
2
)
≤Cε.
,˜•¡,bs,t∈(0,1),*XJ4s+ 2t>3,Kk2≤
12
3+2t
<
6
3−2s
,ÏdH
s
(R
3
)→
L
12
3+2t
(R
3
).k:
Z
|x|≤ρ
k(x)φ
u
n
|u
2
n
−u
2
|dx
≤kkk
L
∞
(R
3
)
[
Z
|x|≤ρ
φ
u
n
|u
2
n
−u
2
|dx]
≤kkk
L
∞(R
3
)
Ckφ
u
n
k
D
t,2
(R
3
)
[
Z
|x|≤ρ
|u
2
n
−u
2
|
12
3+2t
dx]
3+2t
6
→0.
ùÒy²(6),nÜ(5)Ú(6)·‚
R
R
3
k(x)φ
u
n
u
2
n
dx→
R
R
3
k(x)φ
u
u
2
dx.Úny..
DOI:10.12677/aam.2023.1241771708A^êÆ?Ð
Šï_
Ún2.2.•¼F÷v(PS)^‡.
y:u
n
⊂H
s
(R
3
)÷v|F(u
n
)|≤cÚF
0
(u
n
) →0 ,@ok
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+
Z
R
3
k(x)φ
u
n
u
2
n
dx−
Z
R
3
a(x)|u
n
|
p+1
dx= o(1)ku
n
k(7)
1
2
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+
1
4
Z
R
3
k(x)φ
u
n
u
2
n
dx−
1
p+1
Z
R
3
a(x)|u
n
|
p+1
dx≤c.
|^þ¡üª?˜Ú
[
1
2
−
1
p+1
]
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+[
1
4
−
1
p+1
]
Z
R
3
k(x)φ
u
n
u
2
n
≤c+o(1)ku
n
k.
ϕp>
3s+4t
s+t
,¤±k
[
1
2
−
1
p+1
]
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx≤c+o(1)ku
n
k.
dþª•u
n
k..Ïd·‚Œ±b½u
n
u,e¡y²u
n
→u.•Iy²ku
n
k→kuk.d•§(7)
·‚k
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+
Z
R
3
k(x)φ
u
n
u
2
n
+
Z
R
3
a
−
(x)|u
n
|
p+1
dx
=
Z
R
3
a
+
(x)|u
n
|
p+1
dx+o(1).
dulim
|x|→∞
a(x) = a
∞
<0 ,Ïda
+
(x)k;|8,|^¢ËÅi\½n•
Z
R
3
a
+
(x)|u
n
|
p+1
dx=
Z
R
3
a
+
(x)|u|
p+1
dx+o(1).
¤±
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+
Z
R
3
k(x)φ
u
n
u
2
n
dx+
Z
R
3
a
−
(x)|u
n
|
p+1
dx
=
Z
R
3
|(−∆)
s
2
u|
2
+u
2
dx+
Z
R
3
k(x)φ
u
u
2
dx+
Z
R
3
a
−
(x)|u|
p+1
dx+o(1).(8)
·‚äó
Z
R
3
a
−
(x)|u|
p+1
dx≤liminf
n→∞
Z
R
3
a
−
(x)|u
n
|
p+1
dx.
DOI:10.12677/aam.2023.1241771709A^êÆ?Ð
Šï_
¯¢þd
Z
R
3
a
−
(x)||u
n
|
p+1
−|u|
p+1
−|u
n
−u|
p+1
|dx
≤ka(x)k
L
∞
(R
3
)
Z
R
3
||u
n
|
p+1
−|u|
p+1
−|u
n
−u|
p+1
|dx
= o(1)
•
Z
R
3
a
−
(x)|u
n
|
p+1
dx=
Z
R
3
a
−
(x)|u|
p+1
dx+
Z
R
3
a
−
(x)|u
n
−u|
p+1
dx+o(1),
•Ò´äó¤á.
XJu
n
9u,@oku
n
k<kuk,2d
R
R
3
k(x)φ
u
n
u
2
n
dx→
R
R
3
k(x)φ
u
u
2
dxÚ
R
R
3
a
−
(x)|u|
p+1
dx≤
liminf
n→∞
R
R
3
a
−
(x)|u
n
|
p+1
dx.•
Z
R
3
|(−∆)
s
2
u
n
|
2
+u
2
n
dx+
Z
R
3
k(x)φ
u
n
u
2
n
dx+
Z
R
3
a
−
(x)|u
n
|
p+1
dx
>
Z
R
3
|(−∆)
s
2
u|
2
+u
2
dx+
Z
R
3
k(x)φ
u
u
2
dx+
Z
R
3
a
−
(x)|u|
p+1
dx+o(1),
ù†(8)ªgñ.Ïdu
n
→u,y..
½n1y²:Äky²•3α,ρ>0 ¦F
∂B
ρ
>α>0.¯¢þd¢ËÅi\½nk
F(u) ≥
1
2
kuk
2
−Ckak
L
∞
kuk
p+1
L
p+1
(R
3
)
,
dþªŒ••3ρ>0 ,¦F
∂B
ρ
>α>0 .
·‚2y²•3η∈H
s
(R
3
) ,kηk>ρ,¦F(η)<0 ,¯¢þ,À¼êϕ
θ
=θ
s+t
ϕ(θx)∈
H
s
(R
3
),θ∈R
+
,ϕ
θ
6= 0,¦suppϕ
θ
⊂suppa
+
,@oÒk
F(θ
s+t
ϕ(θx)) ≤
θ
4s+2t−3
2
kϕk
2
+kkk
∞
θ
4s+2t−3
4
Z
R
3
φ
ϕ
ϕ
2
dx−
θ
(p+1)(s+t)−3
p+1
Z
R
3
a
+
|ϕ|
p+1
dx.
ϕp>
3s+4t
s+t
,¤±(p+1)(s+t)−3 >4s+2t−3.θ→+∞ž,F(θ
s+t
ϕ(θx)) →−∞.Ïd,
é,‡θ
0
¿©Œž,-η= ϕ
θ
0
= θ
s+t
0
ϕ(θ
0
x),¤±kF(η) <0.½Â
Γ = {γ∈C([0,1],H
s
(R
3
)) : γ(0) = 0,γ(1) = η},
c=inf
γ∈Γ
sup
θ∈[0,1]
F(γ(θ)),
@odì´Ún•c´F˜‡š²….:,=©êŽ™-ÑtXÚ(3)–•3˜‡š²
…).
DOI:10.12677/aam.2023.1241771710A^êÆ?Ð
Šï_
3(((ØØØ
©ÏL|^ì´Ún,©êŽ™õÑtX Ú–•3˜‡š²…).Ù̇g´
´é˜‡k.(PS)S,¦TS÷v(PS)^‡,ddŒ±y²š²…)•35.
ë•©z
[1]Laskin,N. (2000)Fractional Quantum Mechanics andL´evyPath Integrals. PhysicsLettersA,
268,298-305.https://doi.org/10.1016/S0375-9601(00)00201-2
[2]Laskin,N.(2002)FractionalSchr¨odingerEquations.PhysicalReview,66,56-108.
https://doi.org/10.1103/PhysRevE.66.056108
[3]MolicaBisci,G.,R˘adulescu,V.D.andServadei,R.(2016)VariationalMethodsforNonlocal
FractionalProblems.In:EncyclopediaofMathematicsandItsApplications,162.Cambridge
UniversityPress,Cambridge.https://doi.org/10.1017/CBO9781316282397
[4]Chen, M.,Li, Q.andPeng,S.J.(2021)BoundStatesforFractionalSchr¨odinger-PoissonSystem
with CriticalExponent. DiscreteandContinuousDynamicalSystems-SeriesS,14,1819-1835.
https://doi.org/10.3934/dcdss.2021038
[5]Guo,L.(2018)Sign-ChangingSolutionsforFractionalSchr¨odinger-PoissonSysteminR
3
.
ApplicableAnalysis,98,2085-2104.
[6]Ianni,I.(2013)Sign-ChangingRadialSolutionsfortheSchr¨odinger-Poisson-SlaterProblem.
TopologicalMethodsinNonlinearAnalysis,41,365-385.
[7]Liu,Z.andZhang,J.(2017)MultiplicityandConcentrationofPositiveSolutionsforthe
FractionalSchr¨odinger-Poisson Systemswith CriticalGrowth.ESAIM:Control,Optimisation
andCalculusofVariations,23,1515-1542.https://doi.org/10.1051/cocv/2016063
[8]Luo,H.andTang,X.(2018)GroundStateandMultipleSolutionsfortheFractional
Schr¨odinger-PoissonSystemwithCriticalSobolevExponent. NonlinearAnalysis:RealWorld
Applications,42,24-52.https://doi.org/10.1016/j.nonrwa.2017.12.003
[9]Shen,L.andYao,X.(2018)LeastEnergySolutionsforaClassofFractionalSchr¨odinger-
PoissonSystems.JournalofMathematicalPhysics,59,ArticleID:081501.
https://doi.org/10.1063/1.5047663
[10]Sun,X.andTeng,K.M.(2020)PositiveBoundStatesforFractionalSchr¨odinger-Poisson
SystemwithCriticalExponent.CommunicationsonPureandAppliedAnalysis,19,3735-
3768.https://doi.org/10.3934/cpaa.2020165
DOI:10.12677/aam.2023.1241771711A^êÆ?Ð
Šï_
[11]Teng,K.M.(2016)ExistenceofGroundStateSolutionsfortheNonlinearFractional
Schr¨odinger-PoissonSystemswithCriticalSobolevExponent.JournalofDifferentialEqua-
tions,261,3061-3106.https://doi.org/10.1016/j.jde.2016.05.022
[12]Wang,D.B.,Zhang,H.,Ma,Y.andGuan,W.(2019)GroundStateSign-ChangingSolutions
foraClassofNonlinearFractionalSchr¨odinger-PoissonSystemwithPotentialVanishingat
Infinity.JournalofAppliedMathematicsandComputing,61,611-634.
https://doi.org/10.1007/s12190-019-01265-y
[13]Yu,Y.,Zhao,F.andZhao,L.(2017)TheConcentrationBehaviorofGroundStateSolutions
foraFractionalSchr¨odinger-PoissonSystem.CalculusofVariationsandPartialDifferential
Equations,56,ArticleNo.116.https://doi.org/10.1007/s00526-017-1199-4
[14]Yu,Y.,Zhao,F.andZhao,L.(2018)PositiveandSign-ChangingLeastEnergySolutions
foraFractionalSchr¨odinger-PoissonSystemwithCriticalExponent.ApplicableAnalysis,99,
2229-2257.
[15]Zhang,J.,do
´
O,J.M.andSquassina,M.(2016)FractionalSchr¨odinger-PoissonSystemswith
aGeneralSubcriticalorCriticalNonlinearity.AdvancedNonlinearStudies,16,15-30.
https://doi.org/10.1515/ans-2015-5024
[16]{¡Ÿ.˜aŽ™-Ñt•§)•35[J].A^êÆ,2010,23(3):648-652.
[17]Willem,M.(1996)MinimaxTheorems.Birkh¨auser,Bosten.
DOI:10.12677/aam.2023.1241771712A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.