设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(4),917-934
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134097
V‚5©êgÈ©Žf34ŒC•IHerz
˜mþk.5
•••111###
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c318F¶¹^Fϵ2023c419F¶uÙFϵ2023c426F
Á‡
/ÏV‚5©êgÈ©Žf3C•ILeb esgue˜mþk.5§|^¼ê©©)ÚNÚ©Û
¢•{§V‚5©êgÈ©Žf34ŒC•IHerz˜mþk.5"
'…c
V‚5©êgÈ©Žf§4ŒC•IHerz˜m§k.5
BoundednessofBilinearFractional
IntegralOperatorsonGrand
VariableHerzSpaces
GuangjieFang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Mar.18
th
,2023;accepted:Apr.19
th
,2023;published:Apr.26
th
,2023
Abstract
BasedontheboundednessofbilinearfractionalintegrationoperatorsonLebesgue
©ÙÚ^:•1#.V‚5©êgÈ©Žf34ŒC•IHerz˜mþk.5[J].nØêÆ,2023,13(4):917-934.
DOI:10.12677/pm.2023.134097
•1#
spaceswithvariableexponent,byusinghierarchicaldecompositionoffunctionand
realmethodsinharmonicanalysis,theboundednessofbilinearfractionalintegral
operatorsisobtainedongrandvariableHerzspaces.
Keywords
BilinearFractionalIntegralOperator,GrandVariableHerzSpace,Boundedness
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó 9̇(J
3 ‡©•§¥, ••Ð/ïÄPossion•§∆u=f), Sobolev 31938cÚ\²;
©êgÈ©Žf, ¿y²TŽflL
p
(R
n
) L
q
(R
n
) k.5[1]. d, ©êgÈ©Žf3ˆa
¼ê˜mþk.5ISÆö2•ïÄ[2–6]. 1999 c, Keng[4]r©êgÈ©Žfí2
õ‚5œ/, ¿ïÄõ‚5©êgÈ©Žf3L
p
1
(R
n
)×···×L
p
m
(R
n
)L
p
(R
n
)k.5,
Ù¥
1
p(x)
=
1
p
1
(x)
+···+
1
p
m
(x)
−
β
n
.2008 c,Shi ÚTao[5]y²õ‚5©êgÈ©Žf3Herz ˜
mþk.5.
,˜•¡, C•I¼ê˜mØ=äk-‡nØ¿Â, …3š‚55å Æ!äkšIOO
•^‡ ‡©•§Ú㔡E+•A^›©2•[7,8].2010c,Izuki[9]Ú\C•IHerz
˜m, ˜ag‚5Žfk.5. 2020 c,Nafis [10]½Â4ŒC•IHerz ˜m, ¿y²
g‚5Žfk. 5. 2022 c, ¤+•Ú>V²?Øëê.Littlewood-Paley Žf34ŒC•
IHerz˜mþk.5[11].Éþãéu,©Ì‡?Ø4ŒC•IHerz˜mþV‚5©êgÈ
©Žfk.5.
½½½ÂÂÂ1[12]p(x) ∈P(R
n
),C•ILebesgue˜mL
p(·)
(R
n
)½Â•
L
p(·)
(R
n
) :=
n
f´Œÿ¼ê:•3~êλ>0, ¦
R
R
n

|f(x)|
λ

p(x)
dx<∞
o
,
Ù¥Luxemburg-Nakano ‰ê•
kfk
L
p(·)
(R
n
)
= inf
n
λ>0 :
Z
R
n

|f(x)|
λ

p(x)
dx61
o
.
^P(R
n
)L«R
n
þ¤k÷ve^‡Œÿ¼êp(x)|¤8Ü:
DOI:10.12677/pm.2023.134097918nØêÆ
•1#
p
−
:= essinf{p(x) : x∈R
n
}61,p
+
:= esssup{p(x) : x∈R
n
}<∞.
½½½ÂÂÂ2[10]p(·) ∈P(R
n
),e•3p(0) ∈(1,∞) 9~êC
0
>0,¦
|p(x)−p(0)|6
C
0
log|x|
,|x|6
1
2
,(1)
K¡p(·)3:?÷vlog-H¨olderëY,PŠp(·) ∈P
log
0
(R
n
);e•3p(∞) =lim
x→∞
p(x) >19~ê
C
∞
>0,¦
|p(x)−p(∞)|6
C
∞
log(e+|x|)
,x∈R
n
,(2)
K¡p(·)3á?÷vlog-H¨olderëY, PŠp(·) ∈P
log
∞
(R
n
).
½½½ÂÂÂ3[10]α(·)∈L
∞
(R
n
) : R
n
→R•Œÿ¼ê, 1<q<∞,p(·)∈P(R
n
). àgC•I
Herz˜m
˙
K
α(·),q
p(·)
(R
n
)½Â•
˙
K
α(·),q
p(·)
(R
n
) :=
n
f∈L
p(·)
loc
(R
n
\{0}) : kfk
˙
K
α(·),q
p(·)
(R
n
)
<∞
o
,
Ù¥
kfk
˙
K
α(·),q
p(·)
(R
n
)
=
n
∞
X
k=−∞
k2
kα(·)
fχ
k
k
q
L
p(·)
(R
n
)
o
1
q
.
ùpB
k
= {x∈R
n
: |x|62
k
},E
k
= B
k
\B
k−1
,χ
k
= χ
E
k
,k∈Z,χ
E
k
L«E
k
A¼ê.
½½½ÂÂÂ4[13]θ>0,α(·)∈L
∞
(R
n
),16q<∞,p(·)∈P(R
n
). àg4ŒC•IHerz ˜m
˙
K
α(·),q),θ
p(·)
(R
n
)½Â•
˙
K
α(·),q),θ
p(·)
(R
n
) :=
n
f∈L
p(·)
loc
(R
n
\{0}) : kfk
˙
K
α(·),q),θ
p(·)
(R
n
)
<∞
o
,
Ù¥
kfk
˙
K
α(·),q),θ
p(·)
(R
n
)
= sup
ε>0
ε
θ
X
k=Z
k2
kα(·)
fχ
k
k
q(1+ε)
L
p(·)
(R
n
)
!
1
q(1+ε)
= sup
ε>0
ε
θ
q(1+ε)
kfk
˙
K
α(·),q(1+ε)
p(·)
(R
n
)
.
·‚5¿, 0<q
1
6q
2
<∞ž, Kk
˙
K
α(·),q
1
p(·)
(R
n
)⊂
˙
K
α(·),q
2
p(·)
(R
n
) ¤á;α(·) •~êž,
k
˙
K
α(·),q
p(·)
(R
n
) ⊂
˙
K
α(·),q),θ
p(·)
(R
n
)¤á,Ù¥q>1,θ>0.
0 <β<2n, V‚5©êgÈ©ŽfBI
β
½Â•[3]
BI
β
(f
1
,f
2
)(x) =
Z
R
2n
f
1
(y
1
)f
2
(y
2
)
(|x−y
1
|+|x−y
2
|)
2n−β
dy
1
dy
2
.
©©©ÌÌ̇‡‡(((JJJXXXeee:
½½½nnn10 <β<2n,1 <p
−
i
6p
+
i
<∞,-
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
,
1
p(x)
=
1
p
1
(x)
+
1
p
2
(x)
−
β
n
,
DOI:10.12677/pm.2023.134097919nØêÆ
•1#
p(·),p
i
(·)∈P
log
0
(R
n
)
T
P
log
∞
(R
n
)¿…÷vp
i
(0)6p
i
(∞).θ>0,1<q
i
<∞,
1
q
=
1
q
1
+
1
q
2
,
α(x)=α
1
(x) +α
2
(x),α
i
(·)∈L
∞
(R)
T
P
log
0
(R
n
)
T
P
log
∞
(R
n
),e
β
2
−
n
p
i
(∞)
<α
i
(0)6α
i
(∞)<
n(1−
1
p
i
(0)
),K•3†f
i
Ã'~êC>0,¦é?¿f
i
∈
˙
K
α
i
(·),q
i
),θ
p
i
(·)
(R
n
),Ù¥i= 1,2. k
kBI
β
(f
1
,f
2
)k
˙
K
α(·),q),θ
p(·)
(R
n
)
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
©¥,CL«˜‡Ø•6u̇ëê~ê,ÙŠ3ØÓ/•ŒUئƒÓ.
2.½n y²
ÚÚÚnnn1[14]p(·) : R
n
→[1,∞), XJf∈L
p(·)
(R
n
),g∈L
p
0
(·)
(R
n
),@ok
Z
R
n
|f(x)g(x)|dx6r
p
kfk
L
p(·)
(R
n
)
kgk
L
p
0
(·)
(R
n
)
Ù¥r
p
= 1+
1
p
−
−
1
p
+
.
ÚÚÚnnn2[14]p(·),r
1
(·),r
2
(·) ∈P(R
n
),÷v
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,@of∈L
r
1
(·)
(R
n
),
g∈L
r
2
(·)
(R
n
)ž,kfg∈L
p(·)
(R
n
),¿…
kfgk
L
p(·)
(R
n
)
6Ckfk
L
r
1
(·)
(R
n
)
kgk
L
r
2
(·)
(R
n
)
.
ÚÚÚnnn3[15]D>1,p(·) ∈P
log
0
(R
n
)
T
P
log
∞
(R
n
),•3c
0
,c
∞
>1=•6u~êD,K
1
c
0
r
n
p
(0)
6kχ
B(0,D
r
)\B(0,r)
k
L
p(·)
(R
n
)
6c
0
r
n
p
(0)
, r∈(0,1],(3)
1
c
∞
r
n
p
(∞)
6kχ
B(0,D
r
)\B(0,r)
k
L
p(·)
(R
n
)
6c
∞
r
n
p
(∞)
, r∈[1,∞).(4)
ÚÚÚnnn4[16]1 <p
−
i
6p
+
i
<∞,p
i
(·) ∈P
log
0
(R
n
)
T
P
log
∞
(R
n
),
1
p(x)
=
1
p
1
(x)
+
1
p
2
(x)
−
β
n
.K
kBI
β
(f
1
,f
2
)k
L
p(·)
(R
n
)
6Ckf
1
k
L
p
1
(·)
(R
n
)
kf
2
k
L
p
2
(·)
(R
n
)
.
½½½nnn1yyy²²²f
i
∈
˙
K
α
i
(·),q
i
),θ
p
i
(·)
(R
n
),éf
i
?1Xe©)
f
i
(x) =
∞
X
l
i
=−∞
f
i
(x)χ
l
i
(x) =
∞
X
l
i
=−∞
f
l
i
(x), i= 1,2,l
i
∈Z.
DOI:10.12677/pm.2023.134097920nØêÆ
•1#
Kk
kBI
β
(f
1
,f
2
)k
˙
K
α(·),q),θ
p(·)
(R
n
)
= sup
ε>0
(
ε
θ
∞
X
k=−∞
k2
kα(·)
BI
β
(f
1
,f
2
)χ
k
k
q(1+ε)
L
p(·)
(R
n
)
)
1
q(1+ε)
6Csup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
∞
X
l
1
=−∞
∞
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
= C(V
1
+V
2
+···+V
9
),
Ù¥
V
1
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
2
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k−2
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
3
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
4
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k+1
X
l
1
=k−1
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
5
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k+1
X
l
1
=k−1
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
6
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
k+1
X
l
1
=k−1
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
7
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
∞
X
l
1
=k+2
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
8
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
∞
X
l
1
=k+2
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
,
V
9
= sup
ε>0
(
ε
θ
∞
X
k=−∞
2
kα(·)q(1+ε)
∞
X
l
1
=k+2
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
.
|^f
1
†f
2
é¡5Œ•, V
2
OaquV
4
O, V
3
OaqV
7
O, V
6
O
aquV
8
O,¤±•IOV
1
,V
2
,V
3
,V
5
,V
6
ÚV
9
=Œ.
DOI:10.12677/pm.2023.134097921nØêÆ
•1#
ÄkOV
1
.5¿k<0,x∈E
k
ž,k2
kα(x)
≈2
kα(0)
;k>0,x∈E
k
ž,k
2
kα(x)
≈2
kα(∞)
.|^MinkowskiØª, Œ
V
1
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
11
+V
12
.
l
i
6k−2,x∈E
k
,y
i
∈E
l
i
ž,k|x−y
i
|>|x|−|y
i
|>2
k−1
−2
l
i
>2
k−2
,Ù¥i= 1,2. K
|BI
β
(f
l
1
,f
l
2
)(x)|6
Z
R
n
Z
R
n
|f
l
1
(y
1
)||f
l
2
(y
2
)|
(|x−y
1
|+|x−y
2
|)
2n−β
dy
1
dy
2
6C2
−k(2n−β)
kf
l
1
k
L
1
(R
n
)
kf
l
2
k
L
1
(R
n
)
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
.|^H¨olderØª9Ún1-3, Œ
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
2
−k(2n−β)
kf
l
1
k
L
p
1
(·)
(R
n
)
kχ
l
1
k
L
p
0
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
kχ
l
2
k
L
p
0
2
(·)
(R
n
)
kχ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
2
−k(2n−β)
2
l
1
n
p
0
1
(0)
2
l
2
n
p
0
2
(0)
kf
l
1
k
L
p
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
kχ
k
k
L
r
1
(·)
(R
n
)
kχ
k
k
L
r
2
(·)
(R
n
)
6C
k−2
X
l
1
=−∞
k−2
X
l
2
=−∞
2
−k(2n−β)
2
l
1
n
p
0
1
(0)
2
l
2
n
p
0
2
(0)
2
kn
r
1
(0)
2
kn
r
2
(0)
kf
l
1
k
L
p
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
6C
k−2
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
k−2
X
l
2
=−∞
2
(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.(5)
|^H¨olderØªÚ®•^‡
1
q
=
1
q
1
+
1
q
2
,
V
11
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k−2
X
l
1
=−∞
2
kα
1
(0)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
k−2
X
l
2
=−∞
2
kα
2
(0)+(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
111
V
112
.
DOI:10.12677/pm.2023.134097922nØêÆ
•1#
dua
1
:= α
1
(0)+
n
p
1
(0)
−n<0 …2
−q
1
(1+ε)
<2
−q
1
,|^H¨olderØªÚFubini ½n,
V
111
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k−2
X
l
1
=−∞
2
a
1
(k−l
1
)
q
1
(1+ε)
2
2
l
1
α
1
(0)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
!
×
k−2
X
l
1
=−∞
2
a
1
(k−l
1
)
q
1
(1+ε)
0
2
!
q
1
(1+ε)
(q
1
(1+ε))
0
)
1
q
1
(1+ε)
6Csup
ε>0
ε
θ
−1
X
l
1
=−∞
2
l
1
α
1
(0)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
−1
X
k=l
1
+2
2
a
1
(k−l
1
)
q
1
(1+ε)
2
!
1
q
1
(1+ε)
6Csup
ε>0
ε
θ
−1
X
l
1
=−∞
2
l
1
α
1
(0)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
!
1
q
1
(1+ε)
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
.
ÓnŒV
112
6Ckf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
,ÏdV
11
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
2•ÄV
12
O.|^MinkowskiØª, Œ
V
12
6Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
−1
X
l
1
=−∞
−1
X
l
2
=−∞
kBI
α
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=0
k−2
X
l
2
=0
kBI
α
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
121
+V
122
.
aquV
11
O,dup
i
(0) 6p
i
(∞),^α
i
(∞)“α
i
(0),BŒV
122
O.
éV
121
.aquØª(5),dH¨olderØª, Ún1-3Úp
i
(0) 6p
i
(∞),Œ
−1
X
l
1
=−∞
−1
X
l
2
=−∞
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
−1
X
l
1
=−∞
−1
X
l
2
=−∞
2
−k(2n−β)
kf
l
1
k
L
p
1
(·)
(R
n
)
kχ
l
1
k
L
p
0
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
kχ
l
2
k
L
p
0
2
(·)
(R
n
)
kχ
k
k
L
p(·)
(R
n
)
6C
−1
X
l
1
=−∞
−1
X
l
2
=−∞
2
−k(2n−β)
2
l
1
n
p
0
1
(0)
2
l
2
n
p
0
2
(0)
2
kn
r
1
(∞)
2
kn
r
2
(∞)
kf
l
1
k
L
p
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
6C
−1
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
−1
X
l
2
=−∞
2
(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.(6)
DOI:10.12677/pm.2023.134097923nØêÆ
•1#
5¿
1
q
=
1
q
1
+
1
q
2
.|^H¨olderØª, 
V
121
6Csup
ε>0
(
ε
θ
∞
X
k=0
−1
X
l
1
=−∞
2
kα
1
(∞)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
−1
X
l
2
=−∞
2
kα
2
(∞)+(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= D
1
D
2
.
d®•^‡b
1
:= α
1
(0)+
n
p
1
(0)
−n<0. |^H¨olderØªÚFubini½n, Œ
D
1
6Csup
ε>0
(
ε
θ
∞
X
k=0
−1
X
l
1
=−∞
2
b
1
(k−l
1
)
q
1
(1+ε)
2
2
l
1
α
1
(∞)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
!
×
−1
X
l
1
=−∞
2
b
1
(k−l
1
)
q
1
(1+ε)
0
2
!
q
1
(1+ε)
(q
1
(1+ε))
0
)
1
q
1
(1+ε)
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
−l
1
b
1
q
1
(1+ε)
2
2
l
1
α
1
(∞)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
!
∞
X
k=0
2
kb
1
q
1
(1+ε)
2
!)
1
q
1
(1+ε)
6Csup
ε>0
ε
θ
−1
X
l
1
=−∞
2
l
1
α
1
(∞)q
1
(1+ε)
kf
l
1
k
q
1
(1+ε)
L
p
1
(·)
(R
n
)
!
1
q
1
(1+ε)
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
.
aquD
1
O,ØJD
2
O.(ÜV
11
ÚV
12
O,k
V
1
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
ÙgOV
2
.dMinkowskiØª, Œ
V
2
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
k−2
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
21
+V
22
.
l
1
6k−2, k−1 6l
2
6k+1, x∈E
k
,y
1
∈E
l
1
Úy
2
∈E
l
2
ž,k
|x−y
1
|+|x−y
2
|>|x−y
1
|>|x|−|y
1
|>2
k−2
,
DOI:10.12677/pm.2023.134097924nØêÆ
•1#
¤±
|BI
β
(f
l
1
,f
l
2
)(x)|6C2
−k(2n−β)
kf
l
1
k
L
1
(R
n
)
kf
l
2
k
L
1
(R
n
)
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
.aquØª(5),|^H¨olderØª9Ún1-3,Œ
k−2
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
−1
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
k+1
X
l
2
=k−1
2
(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
|^H¨older ØªÚ
1
q
=
1
q
1
+
1
q
2
,
V
21
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k−2
X
l
1
=−∞
2
kα
1
(0)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
k+1
X
l
2
=k−1
2
kα
2
(0)+(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
211
V
212
.
duV
211
= V
111
,•IOV
212
.
V
212
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα
2
(0)q
2
(1+ε)
k+1
X
l
2
=k−1
2
(k−l
2
)(
n
p
2
(0)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
k=−∞
2
kα
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
!
1
q
2
(1+ε)
6Ckf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
éV
22
OXe.dMinkowskiØª, Œ
V
22
6Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
−1
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=0
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
221
+V
222
.
DOI:10.12677/pm.2023.134097925nØêÆ
•1#
aquØª(6)O,|^H¨older Øª,p
2
(0) 6p
2
(∞)9Ún1-3,Œ
k−2
X
l
1
=−∞
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
−1
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
k+1
X
l
2
=k−1
2
(k−l
2
)(
n
p
2
(∞)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
5¿
1
q
=
1
q
1
+
1
q
2
.|^H¨older Øª,
V
221
6Csup
ε>0
(
ε
θ
∞
X
k=0
−1
X
l
1
=−∞
2
kα
1
(∞)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
k+1
X
l
2
=k−1
2
kα
2
(∞)+(k−l
2
)(
n
p
2
(∞)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= E
1
E
2
.
duE
1
duD
1
, •I^α
1
(∞) “Oα
1
(0); E
2
O†V
212
Oƒq, •I^α
2
(∞) Ú
p
2
(∞)©O“Oα
2
(0)Úp
2
(0).
éV
222
.|^H¨older Øª,Ún1-3 Úp
i
(0) 6p
i
(∞),Œ
k−2
X
l
1
=0
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=0
2
(k−l
1
)(
n
p
1
(∞)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
k+1
X
l
2
=k−1
2
(k−l
2
)(
n
p
2
(∞)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
dH¨older ØªÚ
1
q
=
1
q
1
+
1
q
2
,
V
222
6Csup
ε>0
(
ε
θ
∞
X
k=0
k−2
X
l
1
=0
2
kα
1
(∞)+(k−l
1
)(
n
p
1
(∞)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
k+1
X
l
2
=k−1
2
kα
2
(∞)+(k−l
2
)(
n
p
2
(∞)
−n)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= F
1
F
2
.
duF
2
= E
2
,F
1
O†V
212
Oƒq,ÏdV
22
O..(ÜV
21
ÚV
22
O,
V
2
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
DOI:10.12677/pm.2023.134097926nØêÆ
•1#
e¡OV
3
.
V
3
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
31
+V
32
.
l
1
6k−2, l
2
>k+2, x∈E
k
,y
1
∈E
l
1
9y
2
∈E
l
2
ž,k
|x−y
1
|>|x|−|y
1
|>2
k−2
,
Ú
|x−y
2
|>|y
2
|−|x|>2
l
2
−1
−2
k
>2
l
2
−1
−2
l
2
−2
>2
l
2
−2
,
¤±k
|BI
β
(f
l
1
,f
l
2
)(x)|6C2
−k(n−
β
2
)
kf
l
1
k
L
1
(R
n
)
2
−l
2
(n−
β
2
)
kf
l
2
k
L
1
(R
n
)
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
Úp
2
(0) 6p
2
(∞).dH¨older Øª9Ún1-3, 
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
2
−k(n−
β
2
)
kf
l
1
k
L
1
(R
n
)
2
−l
2
(n−
β
2
)
kf
l
2
k
L
1
(R
n
)
kχ
k
k
L
r
1
(·)
(R
n
)
kχ
k
k
L
r
2
(·)
(R
n
)
6C
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
2
−k(n−
β
2
)
2
l
1
n
p
0
1
(0)
2
−l
2
(n−
β
2
)
2
l
2
n
p
0
2
(∞)
2
kn
r
1
(0)
2
kn
r
2
(0)
kf
l
1
k
L
p
1
(·)
(R
n
)
kf
l
2
k
L
p
2
(·)
(R
n
)
6C
k−2
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
∞
X
l
2
=k+2
2
(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.(7)
kwV
31
.|^H¨older ØªÚ
1
q
=
1
q
1
+
1
q
2
,
V
31
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k−2
X
l
1
=−∞
2
kα
1
(0)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
2
=k+2
2
kα
2
(0)+(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
311
V
312
.
DOI:10.12677/pm.2023.134097927nØêÆ
•1#
duV
311
= V
111
,•IOV
312
.
V
312
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
−1
X
l
2
=k+2
2
(k−l
2
)(α
2
(0)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(0)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
+Csup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
2
=0
2
(k−l
2
)(α
2
(0)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(0)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= G
1
+G
2
.
d®•^‡d
2
:= α
2
(0)+
n
p
2
(∞)
−
β
2
>0.|^H¨older ØªÚFubini½n, Œ
G
1
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
−1
X
l
2
=k+2
2
l
2
α
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
2
(k−l
2
)d
2
q
2
(1+ε)
2
!
×
−1
X
l
2
=k+2
2
(k−l
2
)d
2
(q
2
(1+ε))
0
2
!
q
2
(1+ε)
(q
2
(1+ε))
0
)
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
k=−∞
−1
X
l
2
=k+2
2
l
2
α
2
(0)
2
(k−l
2
)d
2
q
2
(1+ε)
2
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
!
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
l
2
=−∞
2
l
2
α
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
l
2
−2
X
k=−∞
2
(k−l
2
)d
2
2
!
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
l
2
=−∞
2
l
2
α
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
!
1
q
2
(1+ε)
6Ckf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
éuG
2
.5¿d
2
>0,α
2
(0) 6α
2
(∞).dH¨older ØªÚFubini ½n,Œ
G
2
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
2
=0
2
l
2
α
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
2
(k−l
2
)d
2
q
2
(1+ε)
2
!
×
∞
X
l
2
=0
2
(k−l
2
)d
2
(q
2
(1+ε))
0
2
!
q
2
(1+ε)
(q
2
(1+ε))
0
)
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
k=−∞
∞
X
l
2
=0
2
l
2
α
2
(0)q
2
(1+ε)
kf
l
2
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
2
(k−l
2
)d
2
q
2
(1+ε)
2
!
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
k=−∞
∞
X
l
2
=0
2
(k−l
2
)d
2
q
2
(1+ε)
2
∞
X
j=l
2
2
jα
2
(∞)q
2
(1+ε)
kf
2
χ
j
k
q
2
(1+ε)
L
p
2
(·)
(R
n
)
!
1
q
2
(1+ε)
6Csup
ε>0
ε
θ
−1
X
k=−∞
∞
X
l
2
=0
2
(k−l
2
)d
2
q
2
(1+ε)
2
kf
2
k
q
2
(1+ε)
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
!
1
q
2
(1+ε)
6Ckf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
DOI:10.12677/pm.2023.134097928nØêÆ
•1#
ÏdV
312
O.(ÜV
311
ÚV
312
O,Œ
V
31
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
2OV
32
.
V
32
6Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
−1
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−2
X
l
1
=0
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
321
+V
322
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
Úp
1
(0) 6p
1
(∞).dH¨older Øª9Ún1-3, 
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
∞
X
l
2
=k+2
2
(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
dH¨older ØªÚ
1
q
=
1
q
1
+
1
q
2
,Œ
V
321
6Csup
ε>0
(
ε
θ
∞
X
k=0
−1
X
l
1
=−∞
2
(k−l
1
)(α
1
(∞)−
n
p
0
1
(0)
)
2
l
1
α
1
(∞)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(∞)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(∞)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= H
1
H
2
.
ϕH
1
= D
1
,H
2
O†V
312
Oƒq,•I^α
2
(∞)“Oα
2
(0).
éV
322
,5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
.dH¨older Øª9Ún1-3, 
k−2
X
l
1
=−∞
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k−2
X
l
1
=−∞
2
(k−l
1
)(
n
p
1
(∞)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
∞
X
l
2
=k+2
2
(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
DOI:10.12677/pm.2023.134097929nØêÆ
•1#
dH¨older Øª,
1
q
=
1
q
1
+
1
q
2
,Œ
V
322
6Csup
ε>0
(
ε
θ
∞
X
k=0
k−2
X
l
1
=0
2
(k−l
1
)(α
1
(∞)+
n
p
1
(∞)
−n)
2
l
1
α
1
(∞)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(∞)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(∞)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= S
1
S
2
.
ϕS
2
= H
2
,S
1
= F
1
,(ÜV
31
ÚV
32
O,k
V
3
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
éuV
5
.ÏLMinkowskiØª, Œ
V
5
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
k+1
X
l
1
=k−1
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−1
X
l
1
=k+1
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
51
+V
52
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
.|^Ún3-4,
k+1
X
l
1
=k−1
k+1
X
l
2
=k−1
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k+1
X
l
1
=k−1
kf
l
1
k
L
p
1
(·)
(R
n
)
!
k+1
X
l
2
=k−1
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
5¿
1
q
=
1
q
1
+
1
q
2
.|^H¨older Øª,
V
51
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k+1
X
l
1
=k−1
2
kα
1
(0)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
k+1
X
l
1
=k−1
2
kα
2
(0)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
aquV
51
O,•Iòα
i
(0)^α
i
(∞)“O,·‚BŒV
52
O,¤±
V
5
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
DOI:10.12677/pm.2023.134097930nØêÆ
•1#
25wV
6
.ÏLMinkowskiØª, Œ
V
6
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
k+1
X
l
1
=k−1
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
k−1
X
l
1
=k+1
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
!
q(1+ε)
)
1
q(1+ε)
:= V
61
+V
62
.
k−1 6l
1
6k+1,l
2
>k+2,x∈E
k
,y
1
∈E
l
1
9y
2
∈E
l
2
ž,k|x−y
2
|>|y
2
|−|x|>2
l
2
−2
.K
|BI
β
(f
l
1
,f
l
2
)(x)|6C2
−k(n−
β
2
)
kf
l
1
k
L
1
(R
n
)
2
−l
2
(n−
β
2
)
kf
l
2
k
L
1
(R
n
)
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
.dH¨older Øª,Ún1-3 9p
2
(0) 6p
2
(∞),
k+1
X
l
1
=k−1
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
k+1
X
l
1
=k−1
2
(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
∞
X
l
2
=k+2
2
(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
ÏLH¨older Øª,
1
q
=
1
q
1
+
1
q
2
,Œ
V
61
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
k+1
X
l
1
=k−1
2
kα
1
(0)+(k−l
1
)(
n
p
1
(0)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(0)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(0)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
611
V
612
.
5¿V
611
O†V
212
Oƒq, V
612
O†V
312
Oƒq, Ïd·‚B¤V
61

O.
éV
62
.Ón^α
i
(∞)“Oα
i
(0),^p
1
(∞)“Op
1
(0),Œ
V
62
6Csup
ε>0
(
ε
θ
∞
X
k=0
k+1
X
l
2
=k−1
2
kα
1
(∞)+(k−l
1
)(
n
p
1
(∞)
−n)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(∞)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(∞)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
621
V
622
.
DOI:10.12677/pm.2023.134097931nØêÆ
•1#
ϕV
621
O†F
1
Oƒq,V
622
O†S
2
Oƒq,¤±
V
6
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
•OV
9
.ÏLMinkowskiØª, Œ
V
9
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
2
kα(0)q(1+ε)
∞
X
l
1
=k+2
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
q(1+ε)
L
p(·)
(R
n
)
!)
1
q(1+ε)
+Csup
ε>0
(
ε
θ
∞
X
k=0
2
kα(∞)q(1+ε)
∞
X
l
1
=k+2
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
q(1+ε)
L
p(·)
(R
n
)
!)
1
q(1+ε)
:= V
91
+V
92
.
l
i
>k+2, x∈E
k
,y
i
∈E
l
i
ž,k|x−y
i
|>|y
i
|−|x|>C2
l
i
,Ù¥i= 1,2. K
|BI
β
(f
1
,f
2
)(x)|6C2
−l
1
(n−
β
2
)
kf
l
1
k
L
1
(R
n
)
2
−l
2
(n−
β
2
)
kf
l
2
k
L
1
(R
n
)
.
5¿
1
p(x)
=
1
r
1
(x)
+
1
r
2
(x)
,
1
r
i
(x)
=
1
p
i
(x)
−
β
2n
Úp
i
(0) 6p
i
(∞).dH¨older ØªÚÚn1-3, 
∞
X
l
1
=k+2
∞
X
l
2
=k+2
kBI
β
(f
l
1
,f
l
2
)χ
k
k
L
p(·)
(R
n
)
6C
∞
X
l
1
=k+2
2
(k−l
1
)(
n
p
1
(∞)
−
β
2
)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
×
∞
X
l
2
=k+2
2
(k−l
2
)(
n
p
2
(∞)
−
β
2
)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
.
|^H¨older ØªÚ
1
q
=
1
q
1
+
1
q
2
,Œ
V
91
6Csup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
1
=k+2
2
(k−l
1
)(α
1
(0)+
n
p
1
(∞)
−
β
2
)
2
l
1
α
1
(0)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
−1
X
k=−∞
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(0)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(0)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
911
V
912
.
aquV
312
O,ØJV
911
ÚV
912
O.
e¡OV
92
.
V
92
6Csup
ε>0
(
ε
θ
∞
X
k=0
∞
X
l
1
=k+2
2
(k−l
1
)(α
1
(∞)+
n
p
1
(∞)
−
β
2
)
2
l
1
α
1
(∞)
kf
l
1
k
L
p
1
(·)
(R
n
)
!
q
1
(1+ε)
)
1
q
1
(1+ε)
×sup
ε>0
(
ε
θ
∞
X
k=0
∞
X
l
2
=k+2
2
(k−l
2
)(α
2
(∞)+
n
p
2
(∞)
−
β
2
)
2
l
2
α
2
(∞)
kf
l
2
k
L
p
2
(·)
(R
n
)
!
q
2
(1+ε)
)
1
q
2
(1+ε)
:= V
921
V
922
.
DOI:10.12677/pm.2023.134097932nØêÆ
•1#
aquV
322
O,BŒV
921
ÚV
922
O,¤±
V
9
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
(ÜþãéV
i
(i= 1,2,···,9) O,k
kBI
β
(f
1
,f
2
)k
˙
K
α(·),q),θ
p(·)
(R
n
)
6Ckf
1
k
˙
K
α
1
(·),q
1
),θ
p
1
(·)
(R
n
)
kf
2
k
˙
K
α
2
(·),q
2
),θ
p
2
(·)
(R
n
)
.
½n1y..
ë•©z
[1]Stein,E.M.(1970)SingularIntegralsandDifferentiabilityPropertiesofFunctions.Princeton
UniversityPress,Princeton.
[2]Izuki,M.(2010)Fractional Integrals on Herz-Morrey SpaceswithVariable Exponent. Hiroshi-
maMathematicalJournal,40,343-355.https://doi.org/10.32917/hmj/1291818849
[3]Lu,G.H.andTao,S.P.(2022)Bilinearθ-TypeGeneralizedFractionalIntegralOperatorand
ItsCommutatoronSomeNon-HomogeneousSpaces.BulletindesSciencesMath´ematiques,
174,ArticleID:103094.https://doi.org/10.1016/j.bulsci.2021.103094
[4]Kenig,C.E.andStein,E.M.(1999)MultilinearEstimatesandFractionalIntegration.Mathe-
maticalResearchLetters,6,1-15.https://doi.org/10.4310/MRL.1999.v6.n1.a1
[5]Shi,Y.L.andTao,X.X.(2008)BoundednessforMultilinearFractionalIntegralOperators
onHerzTypeSpaces.AppliedMathematics—AJournalofChineseUniversities,23,437-446.
https://doi.org/10.1007/s11766-008-1995-x
[6]>V²,pJ.õ‚5©êgÈ©Ú4ŒŽf3Morrey˜mþ\O[J].ìÀŒÆÆ(n
Ƈ),2018,53(6):30-37.
[7]Fazio,G.D.,Hakim,D.I.andSawano,Y.(2017)EllipticEquationswithDiscontinuousCoef-
ficientsinGeneralizedMorreySpaces.EuropeanJournalofMathematics,3,728-762.
https://doi.org/10.1007/s40879-017-0168-y
[8]Fu,Y.Q.andZhang,X.(2011)VariableExponent FunctionSpacesandTheirApplicationsin
PartialDifferentialEquations.ScientificPress,Beijing.
[9]Izuki,M.(2010)Boundedness ofSublinearOperatorsonHerzSpaceswith VariableExponent
andApplictiontoWaveletCharacterization.AnalysisMathematica,36,33-50.
https://doi.org/10.1007/s10476-010-0102-8
[10]Nafis,H.,Rafeiro,H.andZaighum,M.A.(2020)ANoteontheBoundednessofSublinear
OperatorsonGrandVariableHerzSpaces.JournalofInequalitiesandApplications,2020,
ArticleNo.1.https://doi.org/10.1186/s13660-019-2265-6
DOI:10.12677/pm.2023.134097933nØêÆ
•1#
[11]¤+•,>V².4ŒC•IHerz˜mþëê.o÷ØLittlewood-PaleyŽf[J].ìÀŒÆÆ
(nƇ),2022,57(12):45-54.
[12]Izuki,M.(2010)CommutatorsofFractionalIntegralsonLebesgueandHerzSpaceswith
VariableExponent.RendicontidelCircoloMatematicodiPalermo,59,461-472.
https://doi.org/10.1007/s12215-010-0034-y
[13]Nafis,H.,Rafeiro,H.andZaighum,M.A.(2021)BoundednessoftheMarcinkiewiczIntegral
onGrandVariableHerzSpaces.JournalofMathematicalInequalities,15,739-753.
https://doi.org/10.7153/jmi-2021-15-52
[14]Nakal,E.andSawano,Y.(2012)HardySpaceswithVariableExponentsandGeneralized
CampanatoSpaces.JournalofFunctionalAnalysis,262,3665-3784.
https://doi.org/10.1016/j.jfa.2012.01.004
[15]Samko,S.G.(2013)VariableExponentHerzSpaces.MediterraneanJournalofMathematics,
10,2007-2025.https://doi.org/10.1007/s00009-013-0285-x
[16]Ç“.C•ê˜m¥õ‚5Žf[D]:[a¬Æ Ø©].Œë:Œë°¯ŒÆ,2015.
DOI:10.12677/pm.2023.134097934nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.