设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(4),1732-1743
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124180
&Ò-`zŽ{9Ù3ã¡¡E¥A^
ƒƒƒ
1
§§§HHH‡‡‡
1
§§§šššöööSSS
2∗
1
®>f‰EÆ>f†Ï&ó§X§®
2
§ŒÆêƆÚOÆ§ìÀ§
ÂvFϵ2023c324F¶¹^Fϵ2023c418F¶uÙFϵ2023c427F
Á‡
©?˜Ú•Ä&Ò-† ã”D¯K`z•{"•d§JÑ˜«ÄuaqArmijo‚|¢
#.Ž{§•[y²TŽ{ÛÂñ5ÚO(1/k
2
)g‚5Âñ„Ç"•§ÏLDÕ&Ò¡
EÚã”Dꊢy¤JŽ{k5Ú`5"
'…c
&Ò-ïÚã”D¯K§Ž{§ÛÂñ§g‚5Âñ„Ý
AnOptimizationAlgorithmonSignal
ReconstructionandItsApplicationin
ImageRestoration
ZunyangWang
1
,ChaoGuo
1
,HongchunSun
2∗
1
Department of Electronic and Communication Engineering, Beijing Institute of Electronic Science
andTechnology,Beijing
2
SchoolofMathematicsandStatistics,LinyiUniversity,LinyiShandong
Received:Mar.24
th
,2023;accepted:Apr.18
th
,2023;published:Apr.27
th
,2023
∗ÏÕŠö"
©ÙÚ^:ƒ,H‡,šöS.&Ò-`zŽ{9Ù3ã¡¡E¥A^[J].A^êÆ?Ð,2023,12(4):
1732-1743.DOI:10.12677/aam.2023.124180
ƒ
Abstract
In thispaper, we furtherconsider anoptimizationmethodfor solvingthesignal recon-
struction and imagedenoising problem.To this end, a new algorithmwith Armijo-like
line search is proposed.Global convergence results of the new algorithmis established
in detail.Furthermore, we also show that the method is sublinearly convergent rate of
O(1/k
2
).Finally,theefficiencyoftheproposedalgorithmisillustratedthroughsome
numericalexamplesonsparsesignalrecoveryandimagedenoising.
Keywords
TheSignalReconstructionandImageDenoisingProblem,Algorithm,Global
Convergence,SublinearlyConvergentRate
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‘Xêi‰EׄuÐ,3&Ò?n+•ÑyØ a•nØ‹»DÚ&Òæ„LJ
¦,¦&E•;!?nÚDÑ¤ŒŒü$.Ø a•|^©&ÒDÕ5A:,lu&
Òƒ‡êÿþÑu,ÏL¦)DÕ`z¯K5?E©DÕ&Ò,´&Ò?n+•˜
Œ€·5¤J.&Ò?EL§´˜‡`zOŽL§,^u |¢Ú¼DÕ½ŒØ &Ò,²
L`zOަ&Òƒ-,??E&ÒŸ!Eã–.3&Ò?nÚã–EïÄ¥,®•*
ÿêâz∈R
m
5gDÕ&Ò,†*•{´¦)e¡4z`
1
-‰ê¯K:¦DÕ&Ò¯x∈R
n
¦

min
x∈R
n
F(x) := f(x)+ρϕ(x),(1.1)
Ù¥f(x):=
1
2
kAx−zk
2
2
,ϕ(x)=kxk
1
,ρ>0´˜ëê,A∈R
m×n
(mn)´DaÝ,•
þx`
1
-‰êÚ`
2
-䐩OLǥkxk
1
=
P
n
i=1
|x
i
|Úkxk
2
= (
P
n
i=1
x
2
i
)
1/2
.
w,,(1.1)´˜‡Ãåà`z¯K,®kNõ¦)T¯KŽ{,XÚî.•{!ÝFÝ
.Ž{IO•{.,,‘X‘ênO\,éu¯K(1.1),ùŽ{OŽÇC$.Cc
DOI:10.12677/aam.2023.1241801733A^êÆ?Ð
ƒ
5,é¦)¯K (1.1)ꊎ{®2•&Ä,¿JÑNõkŽ{.X¦f
O••{([1][2])!¦fé¡O••{([3])!¦fPeaceman-Rachford©lŽ{([4][5][6])!
Douglas-Rachford©lŽ{([7]).ÏLCþ©Eâ,¯K(1.1)U=z•1w`z¯K.éù
=z,•JÑ˜k Ž{.XXiaoÚZhu([8])‰ÑÝFÝ{¦)¯K(1.1)åüN•§
|=†/ª.Sun([9])JÑ˜«CqŽ{¦)¯K(1.1)•C©Øª=†/ª.•3‘
êO\ž¼•ÐêŠ5UÄÅ,©?˜Úg•˜«g‚5Âñ„Ç•O(1/k
2
)#Ž{.
©Ù§Ü©|„Xe.312!¥,Äk‰Ñ˜ƒ'ý5Ÿ.Ùg,é¯
K(1.1),JÑ˜«ÄuaqArmijo‚|¢#.`zŽ{,¿•[y²TŽ{äkÛÂñ5
ÚO(1/k
2
)g‚5Âñ„Ç.313!¥§‰Ñ¯K(1.1)DÕ&Ò¡Eꊢ.3ØÓDÕ&
Ò!ØÓ‘Ý!&ÒpdxD(D•¡,|^¤JŽ{?1`zOŽÚꊢ,^±yŽ
{k5Ú`5.
©¦^˜ÎÒ‰Xe`².^R
N
L«˜‡äkIOSÈN‘îAp˜m.éu?
¿ü‡•þx,y∈R
M
¥,^hx,yiL«IOSÈ.
2.Ž{9ÙÂñ5
!J ј«¦)¯K(1.1)˜«#.`zŽ{§ ¿• [y²Ž{ÛÂñ5±9g‚5
ÂñÇ.•d,‰Ñe¡˜ý•£.
½Â2.1([10])bf : R
N
→R´à.f3x:g‡©½Â•
∂f(x) = {ξ∈R
N
|f(y) ≥f(x)+hξ,y−xi,∀y∈R
N
}.
éu¯K(1.1)¥F(x),ïáe¡gCq:
Q
L
(x,y) :=

f(y)+hx−y,∇f(y)i+
L
2
kx−yk
2

+ρϕ(x),∀L>0.(2.1)
-
p
L
(y) = argmin{Q
L
(x,y)},(2.2)
…ïá(2.2)d=†:
p
L
(y) = argmin
(
ρϕ(x)+
L
2




x−

y−
1
L
∇f(y)





2
)
.(2.3)
e5£e¡Ún´C
1,1
a¥1w¼êÄ5Ÿ.
Ún2.1(Lemma 3.2. [11]) -f:R
N
→R´ëYŒ‡,ÙFÝ´Lipschitz ëY…Lipschitz~
ê•L
f
.Kéu?¿L≥L
f
,k
f(x) ≤[f(y)+hx−y,∇f(y)i+
L
2
kx−yk
2
],∀x,y∈R
N
.(2.4)
DOI:10.12677/aam.2023.1241801734A^êÆ?Ð
ƒ
dÚn2.1,eL≥L
f
,Kéu?¿y∈R
n
,k
F(p
L
(y))= f(p
L
(y))+ρϕ(p
L
(y))
≤
h
f(y)+hp
L
(y)−y,∇f(y)i+
L
2
kp
L
(y)−yk
2
i
+ρϕ(p
L
(y))
= Q
L
(p
L
(y),y).
(2.5)
y3,‰Ñ¦)¯K(1.1)˜«`zŽ{.
Ž{2.1.
Ú0.À≥0,η>1,γ∈(0,1),σ,%∈[1,+∞),τ
1
=1,β>%ηkA
>
Ak,Щ:x
0
∈R
n
,y
1
=x
0
,
-k:= 0.
Ú1.éuk= 1,2,···,•#e˜‡S“:x
k
,ÏL
(x
k
)
i
=














y
k
−
1
L
k
∇f(y
k
)

i
+
ρ
L
k
e

y
k
−
1
L
k
∇f(y
k
)

i
<−
ρ
L
k
0e




y
k
−
1
L
k
∇f(y
k
)

i



<
ρ
L
k

y
k
−
1
L
k
∇f(y
k
)

i
−
ρ
L
k
e

y
k
−
1
L
k
∇f(y
k
)

i
>
ρ
L
k
(2.6)
Ù¥L
k
= η
m
k
β,…m
k
´÷ve¡Øª•šKê
f(x
k
) ≤f(y
k
)−γ

x
k
−y
k
,∇f(y
k
)

(2.7)
0 ≤(1+γ)

x
k
−y
k
,∇f(y
k
)

+
η
m
β
2


x
k
−y
k


2
.(2.8)
ëêτ
k+1
ÏLe¡•§•#
τ
2
k+1
−στ
k+1
−%τ
2
k
= 0,(2.9)
•#y
k+1
,ÏL
y
k+1
= x
k
+
τ
k
−σ
τ
k+1
(x
k
−x
k−1
).(2.10)
Ú2.ekF(x
k
)−F(x
k−1
)k≤,ÊŽ.Kx
k
´¯K(1.1)).ÄK,=Ú1,-k
4
= k+1.
52.1ý銼ê|t|g‡©•
∂(|t|) =







−1ift<0,
[−1,1]ift= 0,
1ift>0.
(Ü(2.6),ke¡(J.
DOI:10.12677/aam.2023.1241801735A^êÆ?Ð
ƒ
e(y
k
−
1
L
k
∇f(y
k
))
i
<−
ρ
L
k
,K(x
k
)
i
= (y
k
−
1
L
k
∇f(y
k
))
i
+
ρ
L
k
<0,=
(x
k
)
i
= (y
k
−
1
L
k
∇f(y
k
))
i
−
ρ
L
k
∂ϕ(x
k
)
∂x
i
,
Ù¥
∂ϕ(x
k
)
∂x
i
= −1.
e(y
k
−
1
L
k
∇f(y
k
))
i
>
ρ
L
k
,K(x
k
)
i
= (y
k
−
1
L
k
∇f(y
k
))
i
−
ρ
L
k
>0,=
(x
k
)
i
= (y
k
−
1
L
k
∇f(y
k
))
i
−
ρ
L
k
∂ϕ(x
k
)
∂x
i
,
Ù¥
∂ϕ(x
k
)
∂x
i
= 1.
e|(y
k
−
1
L
k
∇f(y
k
))
i
|≤
ρ
L
k
,K|(y
k
−
1
L
k
∇f(y
k
))
i
|/
ρ
L
k
≤1.d(x
k
)
i
= 0,
(x
k
)
i
= 0 = (y
k
−
1
L
k
∇f(y
k
))
i
+
ρ
L
k
(y
k
−
1
L
k
∇f(y
k
))
i
/
ρ
L
k
= (y
k
−
1
L
k
∇f(y
k
))
i
−
ρ
L
k
∂ϕ(x
k
)
∂x
i
,
Ù¥
∂ϕ(x
k
)
∂x
i
= (y
k
−
1
L
k
∇f(y
k
))
i
/
ρ
L
k
.
Äu±þ©Û,kx
k
= y
k
−
1
L
k
∇f(y
k
)−
ρ
L
k
ξ
k
,=
ρξ
k
+∇f(y
k
)+L
k
(x
k
−y
k
) = 0.(2.11)
Ù¥ξ
k
∈∂ϕ(x
k
).g•e¡à`z¯K
min
(
ρϕ(x)+
L
k
2




x−

y
k
−
1
L
k
∇f(y
k
)





2
)
,(2.12)
Äuƒ'•`5nØ([10]),•T¯K)8†§-½:8´˜—.(Ü(2.11),Œ
•x
k
´(2.12)),=
x
k
:= argmin
(
ρϕ(x)+
L
k
2




x−

y
k
−
1
L
k
∇f(y
k
)





2
)
,(2.13)
52.2dL
k
=η
m
k
βÚη>1,kL
k
≥β.,,ÏL
k
/ηØ÷v(2.7)½(2.8),(ÜÚn2.1,
kL
k
<ηkA
>
Ak.Ïd,k
β≤L
k
<ηkA
>
Ak.(2.14)
e5§?ØŽ{2.1Âñ5±9Âñ„Ý.•d,‰Ñ±eÚn.
Ún2.2éu?¿x∈R
n
,k
F(x)−F(x
k
) ≥
L
k
2


x
k
−y
k


2
+L
k

x−y
k
,y
k
−x
k

,∀k≥1.(2.15)
DOI:10.12677/aam.2023.1241801736A^êÆ?Ð
ƒ
y².d(2.5),
F(p
L
k
(y
k
)) ≤Q
L
k
(p
L
k
(y
k
),y
k
).(2.16)
d(2.13),x
k
= p
L
k
(y
k
).(Ü(2.16),Œ
F(x)−F(x
k
) ≥F(x)−Q
L
k
(x
k
,y
k
).(2.17)
ÏfÚϕÑ´à,Œ
F(x)= f(x)+ρϕ(x)
≥[f(y
k
)+hx−y
k
,∇f(y
k
)i]+[ρϕ(x
k
)+ρhx−x
k
,ξ
k
)i],
(2.18)
Ù¥ξ
k
∈∂ϕ(x
k
).A^(2.1)…-x= x
k
,y= y
k
,
Q
L
k
(x
k
,y
k
) = [f(y
k
)+

x
k
−y
k
,∇f(y
k
)

+
L
k
2


x
k
−y
k


2
]+ρϕ(x
k
).(2.19)
A^(2.18),(2.19)Ú(2.17),Œ
F(x)−F(x
k
)≥F(x)−Q
L
k
(x
k
,y
k
)
≥

x−x
k
,∇f(y
k
)+ρξ
k

−
L
k
2


x
k
−y
k


2
= L
k

x−x
k
,y
k
−x
k

−
L
k
2


x
k
−y
k


2
= L
k

(x−y
k
)+(y
k
−x
k
),y
k
−x
k

−
L
k
2


x
k
−y
k


2
= L
k

x−y
k
,y
k
−x
k

+
L
k
2


x
k
−y
k


2
.
(2.20)
Ù¥1˜‡ª¤á´Äu(2.11).
Ún2.3bx
∗
´(1.1)?¿˜),{x
k
}Ú{y
k
}´Ž{2.1)S.K
%ηkA
>
Ak
β
2
L
k
τ
2
k
α
k
1
−
2
L
k+1
τ
2
k+1
α
k+1
1
≥


α
k+1
2


2
−


α
k
2


2
,(2.21)
Ù¥α
k
1
:= F(x
k
)−F(x
∗
),α
k
2
:= τ
k
x
k
−(τ
k
−σ)x
k−1
−σx
∗
.
y².éu?¿x∈R
n
,d(2.15)ke¡Øª¤á
F(x)−F(x
k+1
) ≥
L
k+1
2


x
k+1
−y
k+1


2
+L
k+1

x−y
k+1
,y
k+1
−x
k+1

.(2.22)
3(2.22)¥,©O-x:= x
k
Úx:= x
∗
,Œ
F(x
k
)−F(x
k+1
) ≥
L
k+1
2


x
k+1
−y
k+1


2
+L
k+1

x
k
−y
k+1
,y
k+1
−x
k+1

(2.23)
DOI:10.12677/aam.2023.1241801737A^êÆ?Ð
ƒ
Ú
F(x
∗
)−F(x
k+1
) ≥
L
k+1
2


x
k+1
−y
k+1


2
+L
k+1

x
∗
−y
k+1
,y
k+1
−x
k+1

(2.24)
dα
k
1
½Â,(2.23)Ú(2.24)U•
2
L
k+1
(α
k
1
−α
k+1
1
) ≥


x
k+1
−y
k+1


2
+2

x
k
−y
k+1
,y
k+1
−x
k+1

(2.25)
Ú
−
2
L
k+1
α
k+1
1
≥


x
k+1
−y
k+1


2
+2

x
∗
−y
k+1
,y
k+1
−x
k+1

(2.26)
3(2.25)ü>¦±τ
k+1
−σ
(τ
k+1
−σ)
2
L
k+1
(α
k
1
−α
k+1
1
)
≥(τ
k+1
−σ)


x
k+1
−y
k+1


2
+2(τ
k+1
−σ)

x
k
−y
k+1
,y
k+1
−x
k+1

(2.27)
3(2.26)ü>Ó¦±σ
−σ
2
L
k+1
α
k+1
1
≥σ


x
k+1
−y
k+1


2
+2σ

x
∗
−y
k+1
,y
k+1
−x
k+1

(2.28)
(2.27)\(2.28)
2
L
k+1
((τ
k+1
−σ)α
k
1
−τ
k+1
α
k+1
1
)≥τ
k+1


x
k+1
−y
k+1


2
+2

τ
k+1
y
k+1
−(τ
k+1
−σ)x
k
−σx
∗
,x
k+1
−y
k+1

(2.29)
3(2.29)ü>Ó¦±τ
k+1
,…A^(2.9),Œ
2
L
k+1
(%τ
2
k
α
k
1
−τ
2
k+1
α
k+1
1
)≥τ
2
k+1


x
k+1
−y
k+1


2
+2τ
k+1

τ
k+1
y
k+1
−(τ
k+1
−σ)x
k
−σx
∗
,x
k+1
−y
k+1

(2.30)
-a:= τ
k+1
y
k+1
,b:= τ
k+1
x
k+1
9c:= (τ
k+1
−σ)x
k
+σx
∗
.dPythagoras'X
kb−ak
2
+2hb−a,a−ci= kb−ck
2
−ka−ck
2
,
Ú(2.30),Œ
2
L
k+1
(%τ
2
k
α
k
1
−τ
2
k+1
α
k+1
1
)≥


τ
k+1
x
k+1
−(τ
k+1
−σ)x
k
−σx
∗


2
−


τ
k+1
y
k+1
−(τ
k+1
−σ)x
k
−σx
∗


2
(2.31)
DOI:10.12677/aam.2023.1241801738A^êÆ?Ð
ƒ
d(2.10),w,Œτ
k+1
y
k+1
= τ
k+1
x
k
+(τ
k
−σ)(x
k
−x
k−1
).Šâ(2.31)Úα
k
2
½Â,Œ
2
L
k+1
(%τ
2
k
α
k
1
−τ
2
k+1
α
k+1
1
) ≥


α
k+1
2


2
−


α
k
2


2
.(2.32)
2(Ü(2.14),Œ
%ηkA
>
Ak
β
2
L
k
τ
2
k
α
k
1
−
2
L
k+1
τ
2
k+1
α
k+1
1
≥


α
k+1
2


2
−


α
k
2


2
.(2.33)
Ún2.4d(2.9)ê{τ
k
}÷vτ
k
≥
k
2
(k≥1),Ù¥τ
1
= 1.
y².|^êÆ8B{y².k= 1ž,dτ
1
= 1,w,kτ
1
≥
1
2
.
bkž·K¤á,=τ
k
≥
k
2
.d(2.9),¿A^σ≥1,%≥1,Œ
τ
k+1
=
σ+
p
σ
2
+%τ
2
k
2
≥
σ+
√
%k
2
≥
1+k
2
.
ÏdUýÏ(J.
y3,y²Ž{2.1Âñ(J.
½n2.1bx
∗
´(1.1)?¿˜),{x
k
}Ú{y
k
}dŽ{2.1)S.Kk
F(x
k+1
)−F(x
∗
) ≤
c
(k+1)
2
.(2.34)
Ù¥c´~ê.
y².-a
k
=
2
L
k
τ
2
k
α
k
1
,b
k
=


α
k
2


2
,A^(2.21),
a
k+1
+b
k+1
≤
%ηkA
>
Ak
β
a
k
+b
k
.(2.35)
(Ü0 <
%ηkA
>
Ak
β
<1,ÏLOŽŒ
a
k+1
≤a
k+1
+b
k+1
≤a
k
+b
k
≤a
k−1
+b
k−1
≤···≤a
1
+b
1
,(2.36)
…a
1
=
2
L
1
(F(x
1
)−F(x
∗
)),b
1
=k(x
1
−x
0
)+σ(x
0
−x
∗
)k
2
.2(Ü(2.14),¿A^Ún2.4,Œ

F(x
k+1
)−F(x
∗
) ≤
2ηkA
>
Ak[
2
L
1
(F(x
1
)−F(x
∗
))+k(x
1
−x
0
)+σ(x
0
−x
∗
)k
2
]
(k+1)
2
.
-c= 2ηkA
>
Ak[
2
L
1
(F(x
1
)−F(x
∗
))+k(x
1
−x
0
)+σ(x
0
−x
∗
)k
2
],Kk(J¤á.
DOI:10.12677/aam.2023.1241801739A^êÆ?Ð
ƒ
3.ꊢ
!Jø˜'u¯K(1.1)êŠÿÁ,±y²Ž{2.1k5.¤k“è^MATLAB
9.2.0.538062?, ¿3Windows 10 PCÅþ$1,OŽÅ˜´AMDFX-7500Radeon R7,4C+6G
CPU,2.10GHzCPUÚ4GBS•.¢¥,-ρ=0.001,β=4,η=3,γ=0.5,σ=1.25,%=1.15,
…n= 2
N
(N∈Z
+
),m= floor(n/4),k= floor(m/8),dMATLAB©‡
[Q,R]=qr(A’,0);A=Q’
)ÿþÝA.dMATLAB©‡
p=randperm(n);x(p(1:k))=randn(k,1)
)©&Ò¯x.Ž{ªŽIO•
kF
k
−F
k−1
k
kF
k−1
k
<10
−10
,
Ù¥F
k
L«¯K(1.1)3S“:x
k
8I¼êŠ.3zgÿÁ¥,ÏLe¡úªOŽƒéØ
RelErr =
kˆx−¯xk
k¯xk
,
Ù¥ˆxL«£Â&Ò.
3.1.äk\5pdxD(DÕ&Ò¡E
!A^Ž{2.15 ¡E\5pdxD(‚¸[DÕ&Ò.-n=2
13
,m=2
11
,k=2
8
.ã
1‰Ñ©&Ò!ÿþ&ÒÚd2.1Ž{-&Ò(ù:IP).w,,lã11˜‡Ú1n‡ã
¥,©&Ò¥¤kƒÑù:Ñ,ùL²2.1Ž{Œ±éÐ/¡E©&Ò.
Figure1.SignalrecoveryonadditiveGaussianwhitenoise(n= 2
13
)
ã1.äk\5pdxD(DÕ&Ò¡E(n= 2
13
)
DOI:10.12677/aam.2023.1241801740A^êÆ?Ð
ƒ
,,éuØÓ‘ê!ØÓ&Ò¯K(1.1),A^Ž{2.1?1\5pdxD(‚¸[D
Õ&Ò¡E.CPUžm(CPUTime)!S“gê(Iter)ÚƒéØ(RelErr)3L1.lL¥Œ±w
Ñ,Ž{2.1UÐ¡EØÓ‘êDÕ&Ò,…CPUžm,•O(,é‘êO\دa.
L²Ž{2.1kÐ-½5.
Table1.SignalrecoveryonadditiveGaussianwhitenoisewiththedifferentdimension
L1.äkØÓ‘ê\5pdxD(DÕ&Ò¡E
‘êDÕ&ÒCPUTimeIterRelErr
10241×2
5
0.48441294.9128
20482×2
5
1.15621384.8728
30723×2
5
2.73431314.6985
40964×2
5
4.04681284.4007
51205×2
5
5.65121364.6486
61446×2
5
7.60931354.5438
71687×2
5
9.68751414.4214
81928×2
5
11.20311274.7165
3.2.äkpdD(㔡E
éuLena!BarbabaÚBaboonn‡ØÓ㔩ON\GaussianD(Y²0.7D(,ÏLŽ
{2.1¡E˜ßã”Xã2•˜¤«.Óž,Ž{2.1•I‡éžmÒŒ±¡Eã”,
ù¿©w«Ž{2.1㔡Ek5.
Figure2.ImagedenoisingonGaussiannoiselevel0.7
ã2.äkpdD(Y²0.7㔡E(J
DOI:10.12677/aam.2023.1241801741A^êÆ?Ð
ƒ
Ä7‘8
ìÀŽg,‰ÆÄ7‘8(ZR2021MA088),®½ŒÆ)M#M’‘8(X202210018030).
ë•©z
[1]Yang,J.F.andZhang,Y.(2011)AlternatingDirectionAlgorithmsfor`
1
-ProblemsinCom-
pressiveSensing.SIAMJournalonScientificComputing,33,250-278.
https://doi.org/10.1137/090777761
[2]Xiao, Y.H.andSong,H.N.(2012)AnInexactAlternatingDirectionsAlgorithmforConstrained
Total VariationRegularized Compressive SensingProblems. JournalofMathematicalImaging
andVision,44,114-127.https://doi.org/10.1007/s10851-011-0314-y
[3]He,B.S.,Ma,F.andYuan,X.M.(2016)ConvergenceStudyontheSymmetricVersionof
ADMMwithLargerStepSizes.SIAMJournalonImagingSciences,9,1467-1501.
https://doi.org/10.1137/15M1044448
[4]Sun,M.and Liu,J. (2016) An Inexact Generalized PRSMwith LQPRegularization forStruc-
turedVariationalInequalitiesandItsApplicationstoTrafficEquilibriumProblems.Journal
ofInequalitiesandApplications,2016,ArticleNo.150.
https://doi.org/10.1186/s13660-016-1095-z
[5]Sun,M.,Wang,Y.J.andLiu,J.(2017)GeneralizedPeaceman-RachfordSplittingMethodfor
Multiple-BlockSeparableConvexProgrammingwithApplicationstoRobustPCA.Calcolo,
54,77-94.https://doi.org/10.1007/s10092-016-0177-0
[6]Sun,M. andLiu,J. (2016) AProximalPeaceman-RachfordSplitting Method forCompressive
Sensing.JournalofAppliedMathematicsandComputing,50,349-363.
https://doi.org/10.1007/s12190-015-0874-x
[7]Yu,Y.C.,Peng,J.G.,Han,X.L.andCui,A.A.(2017)APrimalDouglas-RachfordSplitting
Methodfor the ConstrainedMinimization Problem inCompressive Sensing. Circuits,Systems,
andSignalProcessing,36,4022-4049.https://doi.org/10.1007/s00034-017-0498-5
[8]Xiao,Y.H.andZhu,H.(2013)AConjugateGradientMethodtoSolveConvexConstrained
MonotoneEquationswithApplicationsinCompressiveSensing.Journalof Mathematical Anal-
ysisandApplications,405,310-319.https://doi.org/10.1016/j.jmaa.2013.04.017
[9]SunHC,Sun MandZhangBH.(2018)AnInverseMatrix-FreeProximalPoint Algorithmfor
CompressiveSensing.ScienceAsia,44,311-318.
https://doi.org/10.2306/scienceasia1513-1874.2018.44.311
DOI:10.12677/aam.2023.1241801742A^êÆ?Ð
ƒ
[10]MasaoFukushima.š‚5•`zÄ:[M].Bu,È.®:‰ÆÑ‡,2011:5.
[11]Ortega J. M.and RheinboldtW. C. (2000)Iterative Solutionof Nonlinear Equationsin Several
Variables.In:ClassicsinAppliedMathematics,Vol.30,SIAM,Philadelphia.
DOI:10.12677/aam.2023.1241801743A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.