设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(4),987-995
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134104
˜aŒNeumann¯K)
•35
œœœkkk
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2023c319F¶¹^Fϵ2023c420F¶uÙFϵ2023c427F
Á‡
©ïÄŒ¯K



−u
00
(t)+u(t) = λ(f(u(t))+w(t)),t∈[0,1],
u
0
(0) = u
0
(1) = 0
(P)
)•35§Ù¥λ•ëê§w∈C([0,1],R)÷v|w(t)|≤c,t∈[0,1],c•?¿~ê§
f∈C([0,∞),[0,∞))§…÷v‡‚ 5^‡§=f
0
:=lim
x→0
f(x)
x
=0f
∞
:=lim
x→∞
f(x)
x
=∞"ÏL$^
IþØÄ:½ny²•3~êλ
0
>0§0 <λ<λ
0
ž§¯K(P)•3˜‡)"
'…c
)§Œ§Neumann¯K§IþØÄ:½n
ExistenceofPositiveSolutionsfora
ClassofSemi-PositoneSecondOrder
NeumannProblems
LinyingShi
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Mar.19
th
,2023;accepted:Apr.20
th
,2023;published:Apr.27
th
,2023
©ÙÚ^:œk.˜aŒNeumann¯K)•35[J].nØêÆ,2023,13(4):987-995.
DOI:10.12677/pm.2023.134104
œk
Abstract
Weareconcernedwithexistenceofpositivesolutionsofsemi-positonesecondorder
problems



−u
00
(t)+u(t) = λ(f(u(t))+w(t)),t∈[0,1],
u
0
(0) = u
0
(1) = 0,
(P)
where λisapositiveparameter,w∈C([0,1],R),and|w(t)|≤c,t∈[0,1],cisapositive
constant, f∈C([0,∞),[0,∞)), andfissuperlinear,i.e,f
0
:=lim
x→0
f(x)
x
= 0,f
∞
:=lim
x→∞
f(x)
x
=
∞.Byusingfixedpointtheoremincones, weshowthatthereexistsaconstantλ
0
>0
suchthat (P)hasapositivesolutionfor 0 <λ<λ
0
.
Keywords
Positive Solution,Semi-Positone, NeumannProblems,FixedPoint Theoremin Cones
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‡©•§Neumann >НK)•35´˜a-‡¯K, ÚåNõÆö2•'
5, ¿®²¼˜)•35(J[1–7]. AO/, 2000 c,Jiang ÚLiu[8]$^IþØÄ:
½nïÄNeumann>НK



u
00
(t)+Mu(t) = f(t,u(t)),t∈(0,1),
u
0
(0) = u
0
(1) = 0
(1.1)
)•35,Xe(J
½nA([[8],½n1]) bf∈C([0,1]×[0,∞),[0,∞)),0 <M<
π
2
4
.ee¡^‡ƒ˜¤á,
(A1)lim
u→0
+
max
t∈[0,1]
f(t,u)
u
= 0,lim
u→+∞
max
t∈[0,1]
f(t,u)
u
= +∞;
(A2)lim
u→0
+
max
t∈[0,1]
f(t,u)
u
= +∞,lim
u→+∞
max
t∈[0,1]
f(t,u)
u
= 0.
K¯K(1.1)–k˜‡).
DOI:10.12677/pm.2023.134104988nØêÆ
œk
2006cƒŸ8[9]$^ÿÀÝnØïÄNeumann>НK



−u
00
(t)+η
2
u(t) = h(t)f(t,u(t)),t∈(0,1),
u
0
(0) = u
0
(1) = 0
(1.2)
)•35,Ù¥η>0,0 ≤δ<
1
2
,…b½e^‡:
(H1)f∈C([0,1]×[0,+∞),[0,+∞)) ´ëY¼ê,
(H2)h(t) ≥0,t∈[0,1]¿…0 <
R
1−δ
δ
h(t)dt≤
R
1
0
h(t)dt<+∞.
¼Xe(J:
½nB([[9], ½n2]) b½(H1)–(H2) ¤á.e•3êaÚb¦0 ≤ϕ(a) ≤aA,ψ(b) ≥B,
K¯K(1.2)–k˜‡)u
∗
÷vmin{a,b}≤||u
∗
||≤max{a,b},Ù¥,
A= [max
0≤t≤1
Z
1
0
G(t,s)h(s)ds]
−1
,B= [min
δ≤t≤1−δ
Z
1−δ
δ
G(t,s)h(s)ds]
−1
,
ϕ(r) = max{f(t,u) : (t,u) ∈[0,1]×[0,r]},ψ(r) = min{
f(t,u)
u
: (t,u) ∈[δ,1−δ]×[σr,r]},
G(t,s) •(1.2) éA‚5¯KGreen ¼ê,r•~ê.
Š5¿´, ©z[8,9]ïÄ‘Neumann >.^‡…š‚5‘fšK¯K)•3
5.˜‡g,¯K´, eš‚5‘•Œœ/,UÄ)•35(J? (ƒ/`,·‚•ÄŒ
Neumann¯K



−u
00
(t)+u(t) = λ(f(u(t))+w(t)),t∈[0,1],
u
0
(0) = u
0
(1) = 0
(1.3)
)•35,λ•ëê.
©¡ob½:
(H1)f∈C([0,∞),[0,∞));
(H2)f
0
:=lim
x→0
f(x)
x
= 0,f
∞
:=lim
x→∞
f(x)
x
= ∞;
(H3)w∈C([0,1],R), …|w(t)|≤c, c•?¿~ê.
©̇(JXe:
½n1.1b(H1)–(H3) ¤á,K•3~êλ
0
>0,¦0 <λ<λ
0
ž,¯K(1.3) –•3
˜‡).
5w(t)=0ž,¯K(1.3)Œòz•¯K(1.1) M=1žœ/.©b½|w(t)|≤c,-
h=f+ w, Ï•f≥0, ¤±h(t)≥−cáuŒœ/. ØJwÑ, w=0 ž, òz•Jiang Ú
Liu[8]óŠ.Ïd, ©í2JiangÚLiu[8]óŠ.
DOI:10.12677/pm.2023.134104989nØêÆ
œk
2.ý•£
-˜mX:= C[0,1], Ù3‰êkuk
∞
=max
t∈[0,1]
|u(t)|e¤Banach˜m, L
1
[0,1] 3‰êkyk
1
=
R
1
0
|y(t)|dte¤Banach˜m.
Ún2.1[10,11]X´˜‡Banach ˜m, …K´X¥˜‡I, =K⊂X. bΩ
1
, Ω
2
´
Xk.mf8,…k0 ∈Ω
1
,Ω
1
⊂Ω
2
.-
F: K∩(Ω
2
\Ω
1
) →K
´ëYŽf…÷v
(i)kAuk≤kuk,u∈K∩∂Ω
1
,…kAuk≥kuk,u∈K∩∂Ω
2
;
½
(ii)kAuk≥kuk,u∈K∩∂Ω
1
,…kAuk≤kuk,u∈K∩∂Ω
2
.
KA3K∩(Ω
1
\Ω
2
)¥k˜‡ØÄ:.
Ún2.2-z÷v



−z
00
(t)+z(t) = λg(t),t∈[0,1],
z
0
(0) = z
0
(1) = 0,
Ù¥g∈L
1
[0,1],…
R
1
0
g(t)dt>0,K
z(t) ≥λσ||z||
∞
,
Ù¥σ=
m
M
=
1
cosh1
2
,M=max
0≤t≤1
G(t,s) =
cosh1
2
sinh1
,m=min
0≤t≤1
G(t,s) =
1
sinh1
.
y²Šâ©z[12]Œ•,
z(t) = λ
Z
1
0
G(t,s)g(s)ds.
Ù¥
G(t,s) =



cosh(1−t)coshs
sinh1
,0 ≤s≤t≤1,
cosh(1−s)cosht
sinh1
,0 ≤t≤s≤1,
cosht=
e
−t
+e
t
2
,sinht=
e
t
−e
−t
2
,w,G(t,s) ≥0,t∈[0,1],Œ±
z(t) = λ
Z
1
0
G(t,s)g(s)ds≥λm
Z
1
0
g(s)ds
= λσ
Z
1
0
Mg(s)ds= λσmax
Z
1
0
G(t,s)g(s)ds
= λσ||z||
∞
.
DOI:10.12677/pm.2023.134104990nØêÆ
œk
Ún2.3-u∈C[0,1], ÷v



−u
00
(t)+u(t) ≥−λc,t∈[0,1],
u
0
(0) ≥0, u
0
(1) ≥0,
Ku≥0,b½||u||
∞
≥
Mc+λσMc
σ
,K
u(t) ≥λσ||u||
∞
−λMc−λ
2
σMc.
y²v
0
(t)´‡©•§



−u
00
(t)+u(t) = −λc,t∈[0,1],
u
0
(0) = u
0
(1) = 0
•˜),K
−v
0
(t) = λ
Z
1
0
G(t,s)cds≤λM
Z
1
0
cds≤λMc.
Ïd,
−v
0
(t) ≤λMc.
-y(t) = u(t)−v
0
(t),Ky(t) ÷v



−y
00
(t)+y(t) ≥0,t∈[0,1],
y
0
(0) ≥0,y
0
(1) ≥0.
dÚn2.2Œ•§
y(t) ≥λσ||y||
∞
,t∈[0,1].
é?¿t∈[0,1],k
u(t) = y(t)+v
0
(t)
≥λσ||y||
∞
−λMc
= λσ||u−v
0
||
∞
−λMc
≥λσ(||u||
∞
−||v
0
||
∞
)−λMc
≥λσ(||u||
∞
−λMc)−λMc
≥λσ||u||
∞
−λMc−λ
2
σMc,t∈[0,1].
DOI:10.12677/pm.2023.134104991nØêÆ
œk
3.̇(Jy²
½n1.1y²bf
0
= 0,f
∞
= ∞,…¯K



−u
00
(t)+u(t) = λ(f(u(t))+w(t)),t∈[0,1],
u
0
(0) = u
0
(1) = 0
du
u(t) = λ
Z
1
0
G(t,s)(f(u(s))+w(s))ds,t∈[0,1].
½Â
K= {u∈X|u(t) ≥λσ||u||
∞
−λMc−λ
2
σMc,t∈[0,1]}
du||u||
∞
≥
Mc+λσMc
σ
,¤±u(t) ≥0,KK•X¥I.eu∈K,(ÜÚn2.3Œ•,
Lu(t) = λ
Z
1
0
G(t,s)((f(u(s))+w(s)))ds
= λ
Z
1
0
G(t,s)(f(u(s)+w(s)+c)ds−λ
Z
1
0
G(t,s)cds
≥λm
Z
1
0
(f(u(s))+w(s)+c)ds−λMc
= λσ
Z
1
0
M(f(u(s)+w(s)+c)ds−λMc
≥λσ||Lu||
∞
+λσMc−λMc
≥λσ||Lu||
∞
−λMc−λ
2
σMc.
L(K) ⊂K,´•L´ëY, eyL´;Žf.
S⊂C[0,1] •k.8,df+wëY5•,•3D>0, k
f(u)+w≤D,u∈S.
éuu∈Sk
||Lu||
∞
=max
t∈[01]


λ
Z
1
0
G(t,s)((f(u(s))+w(s)))ds


≤λ
Z
1
0
MDds
≤λMD.
DOI:10.12677/pm.2023.134104992nØêÆ
œk
Ïd,L(S)3C[0,1]þ˜—k..é?¿t
1
,t
2
∈[0,1](t
1
<t
2
)k


Lu(t
1
)−Lu(t
2
)


=


λ
Z
1
0
G(t
1
,s)(f(u(s))+w(s))ds−λ
Z
1
0
G(t
2
,s)(f(u(s))+w(s))ds


≤λD
Z
1
0


G(t
1
,s)−G(t
2
,s)


ds.
dG(t,s) ëY5Œ•,é?¿ε>0,•3δ(ε) >0,¦e|t
1
−t
2
|<δ,K|Lu(t
1
)−Lu(t
2
)|<ε.
,L(S)3C[0,1]þÝëY. dArz`ela-Ascoli½n•,L(S) 3C[0,1]þ´ƒé;, Ïd,L´
ëY.
(a)ef
0
= 0,Ké?¿η>0, •3H
1
>1,1 <u≤H
1
ž,kf(u) ≤ηu, ÷v
λM(η+c) ≤1.
Ïd,eu∈K…||u||
∞
= H
1
,K


Lu(t)


=


λ
Z
1
0
G(t,s)((f(u(s))+w(s)))ds


≤λ
Z
1
0
G(t,s)


((f(u(s))+w(s))


ds
≤λM
Z
1
0
(


ηu(s)


+c)ds
≤λM
Z
1
0
(η||u||
∞
+c||u||
∞
)ds
≤||u||
∞
.(3.1)
=λ≤
1
M(η+c)
:= λ
0
.
-
Ω
1
:= {u∈X: ||u||
∞
<H
1
}.
d(3.1)•
||Lu||
∞
≤||u||
∞
,u∈K∩∂Ω
1
.(3.2)
(b)ef
∞
= ∞,Ké?¿µ>0, •3
b
H
2
>0,u≥
b
H
2
ž,kf(u) ≥µu,…÷v
λ
2
mµσ−λ
2
µmMc−λ
3
µm
2
c−λmc≥1.
-H
2
= max{2H
1
,
b
H
2
+λMc+λ
2
σMc
λσ
}…Ω
2
:= {u∈X: ||u||
∞
<H
2
},Ku∈K,||u||
∞
= H
2
,
u(t) ≥λσ||u||
∞
−λMc−λ
2
σMc≥
b
H
2
.
DOI:10.12677/pm.2023.134104993nØêÆ
œk
Ïd


Lu(t)


=


λ
Z
1
0
G(t,s)(f(u(s))+w(s))ds


≥λ


Z
1
0
G(t,s)(µu(s)−c)ds


≥λm
Z
1
0
[µ(λσ||u||
∞
−λMc−λ
2
σMc)−c]ds
= λ
2
µmσ||u||
∞
−λ
2
µmMc−λ
3
µm
2
c−λmc
≥λ
2
mµσ||u||
∞
−(µλ
2
mMc+λ
3
µm
2
c+λmc)||u||
∞
≥(λ
2
mµσ−λ
2
µmMc−λ
3
µm
2
c−λmc)||u||
∞
≥||u||
∞
.
Ïd
||Lu||
∞
≥||u||
∞
,u∈K∩∂Ω
2
.(3.3)
l,d(3.2),(3.3)ÚÚn2.1Œ•,L3K∩(Ω
2
\Ω
1
)¥k˜‡ØÄ:,¦H
1
≤||u||
∞
≤H
2
.
Ïd,0 ≤λ≤λ
0
žk˜‡).
4.A^
~•įK



−u
00
(t)+u(t) = λ(2u
2
+sin2t),t∈[0,1],
u
0
(0) = u
0
(1) = 0
(4.1)
)•35,Ù¥λ>0 •ëê.
)ùpf(u) = 2u
2
,w(t) = sin2t,w,f(u) ≥0,…f÷vf
0
= 0,f
∞
= ∞,^‡(H1)-(H2)
¤á,¿…|sin2t|≤1,t∈[0,1],^‡(H3) ¤á.
Šâ½n1.1•3~êλ
0
>0,¦0 <λ<λ
0
ž,¯K(4.1)•3˜‡).
Ä7‘8
I[g,‰ÆÄ7(1OÒ:12061064).
ë•©z
[1]Sun,J.P.,Li,W.T.and Cheng,S.S.(2004) Three PositiveSolution to Second-OrderNeumann
BoundaryValueProblem.AppliedMathematicsLetters,17,1079-1084.
DOI:10.12677/pm.2023.134104994nØêÆ
œk
https://doi.org/10.1016/j.aml.2004.07.012
[2]Hai,D.D.andShivaji,R.(2017)PositiveRadialSolutionsforaClassofSingularSuperlinear
ProblemsontheExteriorofaBallwithNonlinearBoundaryConditions.JournalofMathe-
maticalAnalysisandApplications,456,872-881.https://doi.org/10.1016/j.jmaa.2017.06.088
[3]Li, Z.L. (2010) Existenceof Positive Solution ofSuperlinear Second-OrderNeumann Boundary
ValueProblems.NonlinearAnalysis,72,3216-3221.https://doi.org/10.1016/j.na.2009.12.021
[4]Sun,Y.,Cho,Y.J.andO’Regan,D.(2009)PositiveSolutionforSingularSecondOrderNeu-
mannBoundaryValueProblemsviaaConeFixedPointTheorem.AppliedMathematicsand
Computation,210,80-86.https://doi.org/10.1016/j.amc.2008.11.025
[5]HŒ,š²k.š‚5È©•§[M].LH:ìÀ‰ÆEâч,1987.
[6]Chu,J.F.,Sun, Y.G.and Chen,H. (2008)Positive Solutionof NeumannProblem withSingu-
larities.JournalofMathematicalAnalysisandApplications,337,1267-1272.
https://doi.org/10.1016/j.jmaa.2007.04.070
[7]Ma,R.Y.andChen,R.P.(2012)ExistenceofOne-SignedSolutionsofNonlinearFour-Point
BoundaryValueProblems.CzechoslovakMathematicalJournal,62,593-612.
https://doi.org/10.1007/s10587-012-0052-3
[8]Jiang,D.Q.andLiu,H.Z.(2000)ExistenceofPositiveSolutiontoSecondOrderNeumann
BoundaryValueProblem.JournalofMathematicalResearchandExposition,20,360-364.
[9]ƒŸ8.š‚5Neumann>НK)[J].ó§êÆÆ,2006,23(5):939-942.
[10]Deimling,K.(1985)NonlinearFunctionAnalysis.Springer-Verlag,NewYork.
https://doi.org/10.1007/978-3-662-00547-7
[11]Krasnoselskii, M.A.(1964)PositiveSolution ofOperator Equation.Noordhoff, Groningen,381.
[12]Sun,J.P. and Li, W.T. (2003)Multiple Positive Solution to Second Order Neumann Boundary
ValueProblem.AppliedMathematicsandComputation,146,187-194.
https://doi.org/10.1016/S0096-3003(02)00535-0
DOI:10.12677/pm.2023.134104995nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.