设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(4),1804-1809
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124187
˜
a
ÚÑ
Œ
+
Ä
O
‘‘‘¦¦¦
©©©
ú
ô
“
‰
Œ
Æ
ê
Æ
‰
ÆÆ
§
ú
ô
7
u
Â
v
F
Ï
µ
2023
c
3
24
F
¶
¹
^
F
Ï
µ
2023
c
4
18
F
¶
u
Ù
F
Ï
µ
2023
c
4
28
F
Á
‡
©
Ï
L
Zhang
O
È
©•{
ï
Ä
ÚÑ
Œ
+
F
−
1
e
i
[
xξ
+(
ξ
n
+
ξ
)
t
]
F
3
n
•
Û
ê
…
k
.
ž
˜
‘
P
~
O
¯
K
,
Ð
«
T
È
©
O
•{
3
ï
Ä
Œ
+
P
~
¯
K
¥
-
‡
5
.
'
…
c
/
StationarySet
0
O
§
È
©
§
L
p
0
−
L
p
O
BasicEstimatesforaClassofDispersive
Semigroups
HuiwenHuang
DepartmentofMathematics,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Mar.24
th
,2023;accepted:Apr.18
th
,2023;published:Apr.28
th
,2023
Abstract
Inthispaper,westudytheproblemofone-dimensionalattenuationestimationofdis-
persionsemigroups
F
−
1
e
i
[
xξ
+(
ξ
n
+
ξ
)
t
]
F
whennisoddandboundedbyusingtheestimated
oscillatoryintegrationmethodobtainedbyZhang.Theimportanceoftheestimated
©
Ù
Ú
^
:
‘¦
©
.
˜
a
ÚÑ
Œ
+
Ä
O
[J].
A^
ê
Æ
?
Ð
,2023,12(4):1804-1809.
DOI:10.12677/aam.2023.124187
‘¦
©
oscillatoryintegrationmethodinthestudyofsemigroupattenuationisdemonstrated.
Keywords
///
StationarySet
000
Estimate,OscillationIntegral,
L
p
0
−
L
p
Estimates
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Strichartz
.
O
(
ž
m
õ
˜
m
O
)
3
ï
Ä
ÚÑ
•
§
)
K
5
¯
K
¥
ä
k
2
•
A^
.
<
‚
é
ÚÑ
•
§
)
Strichartz
.
O
k
X
¿
©
ï
Ä
.
3
[1]
¥
,Strichartz
•
Ä
…
O
©
Ù
Fdµ
F
p
“
C
†
O
,
d
„
ï
Ä
d’Alembertian
Å
•
§
!
Klein-Gordon
•
§
Ú
Schr¨odinger
•
§
)
P
~
O
.
3
[2]
¥
,Ben-Artzi
•
Ä
R
∞
0
e
−
i
(
xλ
+
t
m
λ
m
)
a
(
λ
)
dλ
L
∞
O
,
3
T
(
Ø
Ä
:
þ
2
Â
Airy
•
§
½
Schr¨odinger
•
§
!
‚
5
[
‡
©•
§
)
P
~
O
.
?
˜
Ú
,
3
[3]
¥
,Ben-Artzi
ï
Ä
/
X
R
∞
0
ξ
α
e
it
(
P
(
ξ
)
−
xξ
)
dξ
È
©
˜
—
O
,
|
^
T
O
p
‚
5
Kadomtsev-Petviashvili
•
§
)
P
~
O
.
3
[4]
¥
,Cui
|
^
[5]
!
[6]
¥
È
©
½
n
í
Ñ
/
X
∂
t
u
−
iP
(
−
i∂
x
)
u
=
f
(
x,t
)
•
§
)
Strichartz
O
.
3
[7]
¥
,Wang
ï
Ä
ÚÑ
Œ
+
F
−
1
e
itP
(
ξ
)
F
L
1
−
L
∞
O
,
Ä
u
T
O
U
?
Klein-Gordon
•
§
Ú
Bean
•
§
P
~
(
J
.
Strichartz
.
O
¥
•
-
‡
˜
Ú
´
Œ
+
L
p
0
−
L
p
O
.
†
Œ
+
L
p
0
−
L
p
O
ƒ
'
È
©
Ž
f
O
•
´
˜
†
É
'
5
9
:
¯
K
,
3
ï
Ä
ù
a
¯
K
¥
•
~
^
Ä
ó
ä
´
Vander
Corput
Ú
n
.2021
c
Zhang
<
3
[8]
¥
í
/
StationarySet
0
O
½
n
3
˜
½
§
Ý
þ
í
2
VanderCorput
Ú
n
^
‡
.
3
[7]
¥
,
·
‚
u
y
Wang
3
ï
Ä
P
(
ξ
)
•
š
à
g
¼
êž
,
k
ò
P
(
ξ
)
{
z
•
»
•
¼
ê
,
2
|
^
VanderCorput
Ú
n
?
n
Œ
+
3
˜
‘
˜
m
¥
P
~
O
¯
K
.
u
´
,
·
‚
•
Ä
3
ï
Ä
/
X
P
(
ξ
)=
ξ
n
+
ξ
š
à
g
¼
ê
Œ
+
P
~
O
¯
K
ž
,
|
^
[8]
¥
/
Stationary
Set
0
O
½
n
,
Ø
I
‡
ò
š
à
g
¼
ê
{
z
•
»
•
¼
ê
.
·
‚
k
X
e
(
J
µ
U
(
t
) =
F
−
1
e
itP
(
ξ
)
F,t
∈
R
+
,P
(
ξ
)=
ξ
n
+
ξ,ξ
∈
R
,
Ù
¥
p
≥
2
,
1
p
+
1
p
0
= 1
,n
•
k
.
Û
ê
,
K
e
¡
O
¤
á
µ
k
U
(
t
)
u
0
k
L
p
[0
,c
]
.
t
2
p
−
1
k
u
0
k
L
p
0
.
Wang
3
[7]
¥
P
(
ξ
)
©
O
•
p
1+
ξ
2
,
p
1+
ξ
4
,ξ
4
+
ξ
2
ù
A
a
Œ
+
3
˜
‘
˜
m
¥
P
~
O
(
J
.
w
,
,
©
Ì
‡
(
J
Ø
•
¹
3
[7]
¥
.Wang
3
?
n
š
à
g
œ
/
P
(
ξ
)
ž
,
ò
Ù
{
z
•
»
•
¼
ê
,
¿
…
÷
v
(
H
1)
−
(
H
4)
o
‡
^
‡
,
Ù
¥
(
H
1)
!
(
H
3)
´
p
ª
^
‡
,(
H
2)
!
(
H
4)
´
$
ª
^
DOI:10.12677/aam.2023.1241871805
A^
ê
Æ
?
Ð
‘¦
©
‡
,
©
†
|
^
/
StationarySet
0
O
½
n
Ø
I
‡
ò
Ù
=
†
•
»
•
¼
ê
.
2.
½
n
1.1
y
²
Š
•
O
,
·
‚
{
‡
£
/
StationarySet
0
O
½
n
,
ä
N
S
NX
e
µ
[8]
d,k
≥
1
,Q
(
ξ
)
´
C
þ
ξ
∈
[0
,
1]
d
¥
k
.
Œ
“
ê
¼
ê
,
Ù
E
,
5
≤
k
,
K
Z
[0
,
1]
d
e
iQ
(
ξ
)
dξ
.
d,k
sup
µ
∈
R
|{
ξ
∈
[0
,
1]
d
:
µ
≤
Q
(
ξ
)
≤
µ
+1
}|
.
Ù
¥
,
Û
¹
~
ê
=
†
d
Ú
k
k
'
,
d
´
‘
ê
.
·
‚
3
A^
þ
ã
½
n
ž
=
I
Q
(
ξ
)
´
g
ê
k
.
õ
‘
ª
,
w
,
½
n
1.1
¥
P
(
ξ
)
÷
v
^
‡
.
Ä
u
þ
ã
½
n
,
e
¡
y
²
½
n
1.1.
½
n
1.1
y
²
.
d
Young
Ø
ª
Œ
k
U
(
t
)
u
0
k
L
∞
≤k
F
−
1
e
it
(
ξ
n
+
ξ
)
k
L
∞
k
u
0
k
L
1
≤
(
J
1
+
J
2
+
J
3
+
J
4
)
k
u
0
k
L
1
.
(1)
Ù
¥
J
1
=
Z
c
0
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
;
J
2
=
Z
+
∞
c
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
;
J
3
=
Z
0
−
c
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
;
J
4
=
Z
−
c
−∞
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
.
d
Plancherel
½
n
Œ
k
U
(
t
)
u
0
k
2
=
k
F
−
1
e
itP
(
ξ
)
Fu
o
k
2
=
k
u
0
k
2
.
(2)
é
(1)
Ú
(2)
|
^
Riesz-Thorin
Š
½
n
,
·
‚
é
÷
v
1
p
+
1
p
0
= 1
?
Û
p
≥
2,
k
k
U
(
t
)
u
0
k
L
p
.
(
J
1
+
J
2
+
J
3
+
J
4
)
(1
−
2
p
)
k
u
0
k
L
p
0
.
Ä
k
,
•
Ä
J
1
O
,
-
η
=
ξ
c
,
|
^
Stationaryset
O
½
n
Œ
Z
c
0
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
c
Z
1
0
e
i
[
t
(
η
·
c
)
n
+(
t
+
x
)
η
·
c
]
dη
.
k
sup
µ
∈
R
c
|{
η
∈
[0
,
1] :
µ
≤
t
(
η
·
c
)
n
+(
t
+
x
)
η
·
c
≤
µ
+1
}|
.
k
sup
µ
∈
R
|{
ξ
∈
[0
,c
] :
µ
≤
tξ
n
+(
t
+
x
)
ξ
≤
µ
+1
}|
.
(3)
DOI:10.12677/aam.2023.1241871806
A^
ê
Æ
?
Ð
‘¦
©
l
A
Û
ã
/
¿Â
Ý
?
˜
Ú
•
Ä
ÿ
Ý
O
,
ù
p
r
ÿ
Ý
|{
ξ
∈
[0
,c
] :
µ
≤
[
tξ
n
+(
t
+
x
)
ξ
]
≤
µ
+1
}|
w
‰
´
d
Š
•
•
1
ü
^
†
‚
ƒ
•
¼
ê
f
(
ξ
)=
tξ
n
+ (
t
+
x
)
ξ
ξ
‰
Œ
•
Ý
.
´
•
f
0
3
[0
,c
]
4
O
,
K
f
0
min
=
t
+
x.
Š
â
Ç
½
Â
,
x
∈
[0
,c
]
ž
,
Œ
J
1
≤
1
t
+
x
.
1
t
.
Ù
g
,
•
Ä
J
2
O
,
-
η
=
ξ
−
c
,
d
(3)
ª
Œ
Z
+
∞
c
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
lim
a
−→
+
∞
Z
a
c
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
lim
a
−→
+
∞
Z
a
−
c
0
e
i
[
t
(
η
+
c
)
n
+(
t
+
x
)(
η
+
c
)]
dη
.
lim
a
−→
+
∞
sup
µ
∈
R
|{
η
∈
[0
,a
−
c
] :
µ
≤
t
(
η
+
c
)
n
+(
t
+
x
)(
η
+
c
)
≤
µ
+1
}|
.
lim
a
−→
+
∞
sup
µ
∈
R
|{
η
+
c
∈
[
c,a
] :
µ
≤
t
(
η
+
c
)
n
+(
t
+
x
)(
η
+
c
)
≤
µ
+1
}|
.
lim
a
−→
+
∞
sup
µ
∈
R
|{
ξ
∈
[
c,a
] :
µ
≤
tξ
n
+(
t
+
x
)
ξ
≤
µ
+1
}|
.
(4)
´
•
f
0
3
[
c,a
]
4
O
,
K
f
0
min
= (1+
nc
n
−
1
)
t
+
x.
Š
â
Ç
½
Â
,
x
∈
[0
,c
]
ž
,
Œ
J
2
≤
lim
a
−→
+
∞
1
(1+
nc
n
−
1
)
t
+
x
.
1
t
.
,
,
•
Ä
J
3
O
,
-
η
=
−
ξ
c
,
d
(3)
ª
Œ
Z
0
−
c
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
−
c
Z
1
0
e
−
i
[
t
(
η
·
c
)
n
+(
t
+
x
)
η
·
c
]
dη
.
k
sup
µ
∈
R
c
|{
η
∈
[0
,
1] :
µ
≤−
[
t
(
η
·
c
)
n
+(
t
+
x
)
η
·
c
]
≤
µ
+1
}|
.
k
sup
µ
∈
R
|{
ξ
∈
[
−
c,
0] :
µ
≤
tξ
n
+(
t
+
x
)
ξ
≤
µ
+1
}|
.
(5)
´
•
f
0
3
[
−
c,
0]
4
~
,
K
f
0
min
=
t
+
x.
Š
â
Ç
½
Â
,
x
∈
[0
,c
]
ž
,
Œ
J
3
≤
1
t
+
x
.
1
t
.
•
,
•
Ä
J
4
O
,
-
η
=
ξ
+
c
,
d
(3)
ª
Œ
Z
−
c
−∞
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
lim
b
−→−∞
Z
−
c
b
e
i
[
tξ
n
+(
t
+
x
)
ξ
]
dξ
=
lim
b
−→−∞
Z
0
b
+
c
e
i
[
t
(
η
−
c
)
n
+(
t
+
x
)(
η
−
c
)]
dη
.
lim
b
−→−∞
sup
µ
∈
R
|{
η
∈
[
b
+
c,
0] :
µ
≤
t
(
η
−
c
)
n
+(
t
+
x
)(
η
−
c
)
≤
µ
+1
}|
.
lim
b
−→−∞
sup
µ
∈
R
|{
η
−
c
∈
[
b,
−
c
] :
µ
≤
t
(
η
−
c
)
n
+(
t
+
x
)(
η
−
c
)
≤
µ
+1
}|
.
lim
b
−→−∞
sup
µ
∈
R
|{
ξ
∈
[
b,
−
c
] :
µ
≤
tξ
n
+(
t
+
x
)
ξ
≤
µ
+1
}|
.
(6)
DOI:10.12677/aam.2023.1241871807
A^
ê
Æ
?
Ð
‘¦
©
´
•
f
0
3
[
b,
−
c
]
4
~
,
K
f
0
min
= (1+
nc
n
−
1
)
t
+
x.
Š
â
Ç
½
Â
,
x
∈
[0
,c
]
ž
,
Œ
J
4
≤
lim
b
−→−∞
1
(1+
nc
n
−
1
)
t
+
x
.
1
t
.
k
U
(
t
)
u
0
k
L
p
[0
,c
]
.
(
J
1
+
J
2
+
J
3
+
J
4
)
(1
−
2
p
)
k
u
0
k
L
p
0
.
t
2
p
−
1
k
u
0
k
L
p
0
.
Ù
¥
,
L
p
[0
,c
]
L
«
¼
ê
C
þ
3
[0
,c
]
‰
Œ
þ
L
p
˜
m
.
3.
o
(
†
Ð
"
©
l
Wang[8]
ï
Ä
š
à
g
œ
/
Œ
+
O
•{
¥
¼
é
u
,
±
/
StationarySet
0
O
½
n
•
Ì
‡
ó
ä
,
ï
Ä
Œ
+
F
−
1
e
it
(
ξ
n
+
ξ
)
F
3
˜
‘
˜
m
L
p
0
−
L
p
O
,
¿
…
T
(
J
Ø
•
¹
3
[8]
®
k
(
Ø
¥
.
3
e
˜
Ú
ï
Ä
¥
,
·
‚
ò
^
©
ï
Ä
•{
r
(
J
í
2
p
‘
˜
m
.
ë
•
©
z
[1]Strichartz,R.S.(1977) RestrictionsofFourier TransformstoQuadratic Surfacesand Decay of
SolutionsofWaveEquations.
DukeMathematicalJournal
,
44
,705-714.
https://doi.org/10.1215/S0012-7094-77-04430-1
[2]Ben-Artzi,M.andTreves,F.(1994)UniformEstimatesforaClassofEvolutionEquations.
JournalofFunctionalAnalysis
,
120
,264-299.https://doi.org/10.1006/jfan.1994.1033
[3]Ben-Artzi,M.andSaut,J.-C.(1999)UniformDecayEstimatesforaClassofOscillatory
IntegralsandApplications.
DifferentialIntegralEquations
,
12
,137-145.
https://doi.org/10.57262/die/1367265625
[4]Cui,S.andTao,S.(2005)StrichartzEstimatesforDispersiveEquationsandSolvabilityof
theKawaharaEquation.
JournalofMathematicalAnalysisandApplications
,
304
,683-702.
https://doi.org/10.1016/j.jmaa.2004.09.049
[5]Kenig,C.E.,Ponce,G.andVega,L.(1991)OscillatoryIntegralsandRegularityofDispersive
Equations.
IndianaUniversityMathematicsJournal
,
40
,33-69.
https://doi.org/10.1512/iumj.1991.40.40003
[6]Kenig, C.E.,Ponce, G.and Vega, L.(1989)Onthe(Generalized)Korteweg-deVriesEquations.
DukeMathematicalJournal
,
59
,585-610.https://doi.org/10.1215/S0012-7094-89-05927-9
DOI:10.12677/aam.2023.1241871808
A^
ê
Æ
?
Ð
‘¦
©
[7]Wang,B.,Huo,Z.,Hao,C.andGuo,Z.(2011)HarmonicAnalysisMethodforNonlinear
EvolutionEquations,I.WorldScientific,Singapore,Hackensack,NJ.
https://doi.org/10.1142/8209
[8]Basu,S.,Guo,S.,Zhang,R.andZorin-Kranich,P.(2021)AStationarySetMethodfor
EstimatingOscillatoryIntegrals.arXivpreprintarXiv:2103.08844
DOI:10.12677/aam.2023.1241871809
A^
ê
Æ
?
Ð