设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(4),1040-1048
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134109
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
A
5
ooo
|||
___
1
,
2
∗
,
………
ÖÖÖ
1
,
2
,
"""
ûûû
1
,
2
1
ž
h
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
,
#
õ
ž
w
2
ž
h
“
‰
Œ
Æ
A^
ê
Æï
Ä
¤
,
#
õ
ž
w
Â
v
F
Ï
µ
2023
c
3
20
F
¶
¹
^
F
Ï
µ
2023
c
4
21
F
¶
u
Ù
F
Ï
µ
2023
c
4
28
F
Á
‡
©
3
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
Ä
:
þ
,
(
Ü
Ä
u
Œ
˜
—
k
S
\
²
þ
Ž
f
A
:
,
?
Ø
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
â
Ê
Š
!
Ä
û
Ú
U
O
•
ê
.
'
…
c
Sugeno
ÿ
Ý
§
Choquet
È
©
§
â
Ê
Š
§
Ä
û
Ú
U
O
•
ê
TheCharacteroftheChoquetIntegralof
Semi-UninormBasedonSugenoMeasures
QiaoxiaLi
1
,
2
∗
,YuheYang
1
,
2
,ZhenXin
1
,
2
1
SchoolofMathematicsandStatistics,YiliNormalUniversity,Yining Xinjiang
2
InstituteofAppliedMathematics, YiliNormalUniversity,YiningXinjiang
Received:Mar.20
th
,2023;accepted:Apr.21
st
,2023;published:Apr.28
th
,2023
Abstract
Inthispap er,theShapley,thevetoandfavorindicesoftheChoquetIntegralofsemi-uninorm
basedonSugenomeasuresarediscussedandcombinethecharacteristicsofthethesemi-uninorm
orderedweightedaveragingoperators.
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
o
|
_
,
…
Ö
,
"
û
.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
A
5
[J].
n
Ø
ê
Æ
,2023,13(4):
1040-1048.DOI:10.12677/pm.2023.134109
o
|
_
Keywords
UgenoMeasures,ChoquetIntegral,TheShapley,TheVetoandFavorIndices
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
c
ó
à
Ü
Ž
f
´
ˆ‡
‰
Æ
+
•
r
Œ
ó
ä
,Choquet
È
©
Ï
Ù
Ï
^
5
ˆ
ü
X
-
‡
Ú
.
Š
˜
J
´
Choquet
È
©
[1]
í
2
ü
‡
Í
¶
Ž
fx
,
\
²
þ
£
WA)
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
[2].
¯¢
þ
,
3
&
E
8
¤
ž
,
\
²
þ
(WA)
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
´
Ø
Ó
.
\
²
þ
Ž
f
Š
â
z
‡
&
E
-
‡
5
(
á
5
-
)
5
\
3
X
Ú
¥
-
‡
5
,
k
S
\
²
þ
(OWA)
Ž
f
K
Š
â
§
‚
ƒ
é
˜
-
‡
5
(
˜
-
)
5
\
Ù
3
X
Ú
¥
-
‡
5
.
ü
ö3
Å
ì
<
!
Ü
6
›
›
ì
!
å
!
÷
¿
Ý
¯
K
!
õ
O
K
à
8
¯
K
•
¡
[3–5]
?
1
!
Ø
Ú
ï
Ä
.
,
é
õ
Æ
ö3
Ø
Ó
µ
e
ò
OWA
Ž
f
3
Ø
Ó
D
Š
8
¤
X
Ú
þ
?
˜
Ú
ÿ
Ð
!
?
Ø
Ú
ï
Ä
[6,7].2015
c
,Llamazares
J
Ñ
Ä
u
Œ
˜
—
k
S
\
²
þ
Ž
f
(SUOWA
Ž
f
)[8],
Ï
L
Œ
˜
—
ò
ü
|
-
•
þé
X
å
5
,
X
Ú
ï
Ä
Q
•
Ä
á
5
-
q
•
Ä
˜
-
8
¤
•{
,
¿
A^u
Ø
(
½õ
á
5
û
ü
¥
,
Ù
A
:
´
3
&
E
8
¤
Ž
f
¥
•
)ü
|
-
•
þ
[9].1974
c
,
F
Æ
ö
Sugeno
í
2
²
;
V
Ç
ÿ
Ý
Œ
Œ
\
5
,
±
å
^
‡
f
ü
N
5
“
²
;
V
Ç
¥
Œ
\
5
^
‡
,
J
Ñ
ÿ
Ý
V
g
,
ù
•·
‚
J
ø
˜
‡
U
k
£
ã
y
¢
¯
K
¥
•
3
ƒ
p
•
6
,
ƒ
p
'
é
y–
ó
ä
[10,11].2019
c
,
ý
!
o
/
Ï
u
Sugeno
ÿ
Ý
Ú
n
í
2
˜
—
Ú
Œ
˜
—
½
Â
,
J
Ñ
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
±
9
†
ƒ
ƒ
'
é
orness
ÿ
ݽ
Â
9
Ù
5
Ÿ
[12],
¿
é
Ù
?
1
Þ
~
`
²
.
©
é
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
â
Ê
Š
!
Ä
û
Ú
U
O
•
ê
?
1
!
Ø
†
ï
Ä
.
2.
½
Â
9
`
²
X
•
š
˜
8
Ü
,
A
´
d
X
f
8
¤
σ
−
“
ê
,
¡
8
¼
ê
µ
:
A→
[0
,
∞
)
•
5
ÿ
Ý
(Sugeno
ÿ
Ý
),
´
•
[10,11]:
(1)
µ
(
∅
) = 0;
(2)
µ
(
X
) = 1;
(3)
é
u
A,B
∈A
,
e
A
⊆
B
,
K
µ
(
A
)
≤
µ
(
B
).
½½½
ÂÂÂ
1.1
X
•
k
•
8
,
µ
´
A
þ
Sugeno
ÿ
Ý
.
½
Â
x
=(
x
1
,x
2
,
···
,x
n
)
3
X
þ
Ä
u
ÿ
Ý
µ
Choquet
È
©
•
(
C
)
Z
A
x
dµ
=
n
X
i
=1
x
i
(
µ
(
A
i
)
−
µ
(
A
i
+1
))
.
Ø
J
O
Ž
(
C
)
Z
A
x
dµ
=
n
X
i
=1
(
x
i
−
x
i
+1
)
µ
(
A
i
)
.
DOI:10.12677/pm.2023.1341091041
n
Ø
ê
Æ
o
|
_
Ù
¥
,
X
= (1
,
2
,
···
,n
)
,A
⊆
X,A
i
=
{
i,i
+1
,
···
,n
}
,i
= 1
,
2
,
···
,n,A
n
+1
=
∅
,x
1
≥
x
2
≥···≥
x
n
.
½½½
ÂÂÂ
1.2
[12]
¼
ê
U
: [0
,
1]
2
→
[0
,
1].
¡
U
´
˜
‡
Œ
˜
—
,
´
•
U
é
z
‡
C
þ
ä
k
ü
N
5
…
•
3
ü
e
∈
[0
,
1],
=
é
?
¿
x
∈
[0
,
1],
•
3
e
∈
[0
,
1]
,
k
U
(
e,x
) =
U
(
x,e
) =
x.
±
e
•
ü
‡
ë
Y
Œ
˜
—
µ
~
1.1.
U
¯
P
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
[1
/n,
1]
2
,
nxy
otherwise.
U
T
L
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
max(
x
+
y
−
1
/n,
0)otherwise,
du
U
¯
P
Ú
U
T
L
Ñ
´
ë
Y
,
K
þ
¡
ü
‡
Œ
˜
—
Œ
±
¤
µ
U
T
L
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
max(
x
+
y
−
1
/n,
0)otherwise,
U
¯
p
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
nxy
otherwise.
½½½
ÂÂÂ
1.3
[
?
]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
Œ
˜
—
U
∈
˜
U
1
n
.
é
u
A
⊆
X,
½
Â
υ
U
µ
(1)
,µ
(2)
: 2
X
→
R
•
υ
U
µ
(1)
,µ
(2)
(
A
) =
|
A
|
U
µ
(1)
(
A
)
|
A
|
,
µ
(2)
(
A
)
|
A
|
.
e
A
=
∅
,
P
υ
U
µ
(1)
,µ
(2)
(
∅
) =0.
|
A
|
L
«
8
Ü
A
Ä
ê
.
Ù
¥
,
˜
U
1
n
=
{
U
∈U
1
n
|
U
(
1
k
,
1
k
)
≤
1
k
,
∀
k
∈
X
}
.
w
,
/
,
U
1
n
i
⊆
˜
U
1
n
.
N
´
O
Ž
:
(1)
υ
U
µ
(1)
,µ
(2)
(
∅
) = 0;
(2)
υ
U
µ
(1)
,µ
(2)
(
X
) =
|
X
|
U
(
µ
(1)
(
X
)
|
X
|
,
µ
(2)
(
X
)
|
X
|
) = 1;
(3)
υ
U
µ
(1)
,µ
(2)
ü
N
CX
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
) = max
B
⊆
A
υ
U
µ
(1)
,µ
(2)
(
B
)
÷
v
ü
N
5
.
3.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
9
A
5
½½½
ÂÂÂ
2.1
[
?
]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
U
∈
˜
U
1
n
.
x
= (
x
1
,x
2
,
···
x
n
)
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
C
U
µ
(1)
,µ
(2)
:
R
n
→
R
½
Â
•
C
U
µ
(1)
,µ
(2)
(
x
) =
n
X
i
=1
(ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
]
)
−
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
−
1]
))
x
[
i
]
,
(1)
Ù
¥
A
[
i
]
=
{
[1]
,
[2]
,
···
,
[
i
]
}
,
A
[0]
=
∅
,
x
[
i
]
(
i
= 1
,
2
,
···
,n
)
L
«
x
¥
1
i
‡
Œ
ê
,
=
x
[1]
≥
x
[2]
≥···≥
x
[
n
]
.
DOI:10.12677/pm.2023.1341091042
n
Ø
ê
Æ
o
|
_
Ø
J
O
Ž
C
U
µ
(1)
,µ
(2)
(
x
) =
n
X
i
=1
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
]
)(
x
[
i
]
−
x
[
i
+1]
)
.
R
n
þ
˜
‡
\
•
þ
q
´
•
q
= (
q
1
,q
2
,
···
,q
n
)
∈
[0
,
1]
n
…
n
P
i
=1
q
i
= 1
.
W
L
«
R
n
þ
¤
k
\
•
þ
8
Ü
.
5
2.1
d
(1)
ª
Œ
•
,
p
=(
p
1
,p
2
,
···
,p
n
)
,
ω
=(
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
)=
P
i
∈
A
p
i
,µ
(2)
(
A
)=
|
A
|
P
i
=1
ω
i
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
-
•
þ
p
,
ω
Œ
˜
—
k
S
\
²
þ
(SUOWA)
Ž
f
S
U
p
,
ω
:
S
U
p
,
ω
(
x
) =
n
X
i
=1
(ˆ
υ
U
p
,
ω
(
A
[
i
]
)
−
ˆ
υ
U
p
,
ω
(
A
[
i
−
1]
))
x
[
i
]
.
5
2.2
d
(1)
ª
Œ
•
,
p
= (
p
1
,p
2
,
···
,p
n
)
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
P
i
∈
A
p
i
,µ
(2)
(
A
) =
|
A
|
/n
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
-
•
þ
p
\
²
þ
Ž
f
M
p
:
M
p
(
x
) =
n
X
i
=1
p
i
x
i
.
5
2.3
d
(1)
ª
Œ
•
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
|
A
|
/n,µ
(2)
(
A
) =
|
A
|
P
i
=1
ω
i
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
ω
k
S
\
²
þ
Ž
f
(OWA
Ž
f
)
O
ω
:
O
ω
(
x
) =
n
X
i
=1
ω
i
x
[
i
]
.
½½½
ÂÂÂ
2.2
[
?
]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
U
∈
˜
U
1
n
.
Ä
u
Œ
˜
—
Sugeno
ÿ
Ý
Choquet
È
©
orness
ÿ
Ý
orness
(
C
U
µ
(1)
,µ
(2)
)
½
Â
•
orness
(
C
U
µ
(1)
,µ
(2)
) =
1
n
−
1
n
−
1
X
t
=1
1
n
t
X
T
⊆
X
|
T
|
=
t
υ
U
µ
(1)
,µ
(2)
(
T
)
.
(2)
555
2.4
d
(2)
ª
Œ
•
,
p
= (
p
1
,p
2
,
···
,p
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
P
i
∈
A
p
i
,µ
(2)
(
A
) =
P
|
A
|
i
=1
ω
i
ž
,
orness
(
C
U
µ
(1)
,µ
(2)
)
ò
zÄ
u
-
•
þ
p
,
ω
Œ
˜
—
k
S
\
²
þ
Ž
f
(SUOWA
Ž
f
)
orness
ÿ
Ý
orness
(
S
U
p
,
ω
) :
orness
(
S
U
p
,
ω
) =
1
n
−
1
n
−
1
X
t
=1
1
n
t
X
T
⊆
X
|
T
|
=
t
υ
U
p
,
ω
(
T
)
.
555
2.5
d
(2)
ª
Œ
•
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
|
A
|
n
,µ
(2)
(
A
) =
P
|
A
|
i
=1
ω
i
ž
,
orness
(
C
U
µ
(1)
,µ
(2)
)
ò
z
•
Ä
u
ω
k
S
\
²
þ
Ž
f
(OWA
Ž
f
)
orness
ÿ
Ý
orness
(
O
ω
) :
orness
(
O
ω
) =
1
n
−
1
n
−
1
X
i
=1
(
n
−
i
)
ω
i
.
DOI:10.12677/pm.2023.1341091043
n
Ø
ê
Æ
o
|
_
½½½
ÂÂÂ
2.3
[9]
X
•
k
•
8
,
µ
´
X
þ
I
O
N
þ
,
j
∈
X
.
j
'
u
µ
â
Ê
Š
½
Â
•
µ
φ
(
µ,j
) =
X
T
⊆
X
\
j
}
(
n
−
t
−
1)!
t
!
n
!
(
µ
(
T
∪{
j
}
)
−
µ
(
T
))
.
Ù
,
˜
‡
L
ˆ
ª
•
µ
φ
(
µ,j
) =
1
n
n
−
1
X
t
=0
1
n
−
1
t
!
X
T
⊆
X
\{
j
}
|
T
|
=
t
(
µ
(
T
∪{
j
}
)
−
µ
(
T
))
.
½½½
ÂÂÂ
2.4
[9]
X
•
k
•
8
,
µ
´
X
þ
I
O
N
þ
,
K
j
∈
X
.
j
'
u
µ
Ä
û
Ú
U
O
Š
½
Â
•
µ
veto(
C
µ
,j
) = 1
−
1
n
−
1
X
T
⊆
X
\{
j
}
1
n
−
1
t
!
µ
(
T
)
favor(
C
µ
,j
) =
1
n
−
1
X
T
⊆
X
\{
j
}
1
n
−
1
t
!
µ
(
T
∪{
j
}
)
−
1
n
−
1
Ø
J
O
Ž
,
,
˜
«
L
ˆ
ª
•
µ
veto(
C
µ
,j
) = 1
−
1
n
−
1
n
−
1
X
t
=0
1
n
−
1
t
!
µ
(
T
)
favor(
C
µ
,j
) =
1
n
−
1
n
−
1
X
t
=0
1
n
−
1
t
!
X
T
⊆
X
\{
j
}
|
T
|
=
t
µ
(
T
∪{
j
}
)
−
1
n
−
1
.
ÚÚÚ
nnn
2.1
[9]
X
•
k
•
8
,
µ
´
X
þ
I
O
N
þ
,
K
k
veto(
C
µ
,j
)+favor(
C
µ
,j
) = 1+
nφ
(
µ,j
)
−
1
n
−
1
½½½
nnn
2.1
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
e
P
j
i
=1
µ
(2)
≤
j/n
…
min
i
∈
X
µ
(1)
+min
i
∈
X
µ
(2)
≥
1
/n
,
K
é
u
?
¿
j
∈
X
,
k
φ
v
U
T
L
µ
(1)
,µ
(2)
,j
=
µ
(1)
(
j
)
,
veto
S
U
T
L
µ
(1)
,µ
(2)
,j
=
nµ
(1)
(
j
−
1)
2(
n
−
1)
+1
−
orness
S
U
T
L
µ
(1)
,µ
(2)
,
favor
S
U
T
L
µ
(1)
,µ
(2)
,j
=
nµ
(1)
(
j
−
1)
2(
n
−
1)
+orness
S
U
T
L
µ
(1)
,µ
(2)
.
DOI:10.12677/pm.2023.1341091044
n
Ø
ê
Æ
o
|
_
y
²
Š
â
½
Â
2.3,
Œ
φ
v
U
T
L
µ
(1)
,µ
(2)
,j
=
1
n
n
−
1
X
t
=0
1
n
−
1
t
!
X
T
⊆
X
\{
j
}
|
T
|
=
t
µ
(1)
(
j
)+
µ
(2)
(
t
+1)
−
1
n
=
1
n
n
−
1
X
t
=0
µ
(1)
(
j
)+
µ
(2)
(
t
+1)
−
1
n
=
µ
(1)
(
j
)
.
?
˜
Ú
,
k
½
Â
2.4,
Œ
Ä
û
Ú
U
O
Š
•
µ
veto
S
U
T
L
µ
(1)
,µ
(2)
,j
= 1
−
1
n
−
1
n
−
1
X
t
=1
1
n
−
1
t
!
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
T
L
µ
(1)
,µ
(2)
(
T
)
= 1
−
1
n
−
1
1
−
µ
(1)
(
j
)
n
−
1
−
1
n
n
−
1
X
t
=1
t
+
n
−
1
X
t
=1
t
X
i
=1
µ
(2)
(
i
)
!
= 1
−
1
−
nµ
(1)
(
j
)
2(
n
−
1)
−
orness
O
(2)
µ
=
nµ
(1)
(
j
−
1)
2(
n
−
1)
+1
−
orness
S
U
T
L
µ
(1)
,µ
(2)
.
favor
S
U
T
L
µ
(1)
,µ
(2)
,j
= 1
−
veto
S
U
T
L
µ
(1)
,µ
(2)
,j
+
nφ
v
U
T
L
µ
(1)
,µ
(2)
,j
−
1
n
−
1
=
−
nµ
(1)
(
j
−
1)
2(
n
−
1)
+orness
S
U
T
L
µ
(1)
,µ
(2)
+
nµ
(1)
(
j
−
1)
n
−
1
=
nµ
(1)
(
j
−
1)
2(
n
−
1)
+orness
S
U
T
L
µ
(1)
,µ
(2)
.
½½½
nnn
2.2
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
P
j
i
=1
µ
(2)
≤
j/n
.
e
v
U
¯
p
µ
(1)
,µ
(2)
´
X
þ
I
O
N
þ
,
K
é
u
j
∈
X
,
k
φ
v
U
˜
p
µ
(1)
,µ
(2)
,j
=
1
n
−
1
1
−
µ
(1)
(
j
)+
nµ
(1)
(
j
−
1)
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
!
,
veto
S
U
˜
w
µ
(1)
,µ
(2)
,j
= 1
−
n
n
−
1
1
−
µ
(1)
(
j
)
orness
S
U
˜
~p
µ
(1)
,µ
(2)
,
favor
S
U
e
p
µ
(1)
,µ
(2)
,j
=1
−
veto
S
U
˜
p
p,w
,j
+
n
(
n
−
1)
2
·
1
−
µ
(1)
(
j
)+
nµ
(1)
(
j
)
−
1
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
!
−
1
n
−
1
.
DOI:10.12677/pm.2023.1341091045
n
Ø
ê
Æ
o
|
_
yyy
²²²
Š
â
½
Â
2.4
Ú
5
2.5,
é
u
j
∈
X
,
·
‚
Œ
veto
S
U
e
p
µ
(1)
,µ
(2)
,j
= 1
−
1
n
−
1
n
−
1
X
t
=1
1
n
−
1
t
!
X
T
⊆
X
\|{
j
}
|
T
|
=
t
v
U
e
p
µ
(1)
,µ
(2)
(
T
)
= 1
−
1
n
−
1
n
n
−
1
1
−
µ
(1)
(
j
)
n
−
1
X
t
=1
t
X
i
=1
µ
(2)
(
i
)
= 1
−
1
−
µ
(1)
(
j
)
n
n
−
1
orness(
O
w
)
= 1
−
1
−
µ
(1)
(
j
)
n
n
−
1
orness
S
U
˜
P
µ
(1)
,µ
(2)
.
Ó
n
,
é
u
t
≥
1,
Œ
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
¯
P
µ
(1)
,µ
(2)
(
T
∪{
j
}
) =
X
T
⊆
X
\{
j
}
T
|
=
t
n
t
+1
X
i
∈
T
µ
(1)
(
i
)+
µ
(1)
(
j
)
!
t
+1
X
i
=1
µ
(2)
(
i
)
!
=
n
t
+1
t
+1
X
i
=1
µ
(1)
(
i
)
!
n
−
1
t
!
t
1
−
µ
(1)
(
j
)
n
−
1
+
µ
(1)
(
j
)
.
5
¿
,
t
= 0
ž
,
±
e
(
Ø
•
¤
á
,
X
T
⊆
X
\{
j
}
|
T
|
=0
v
U
¯
P
µ
(1)
,µ
(2)
(
T
∪{
j
}
) =
v
U
¯
p
µ
(1)
,µ
(2)
(
{
j
}
) =
nµ
(1)
(
j
)
µ
(2)
(1)
.
Ï
d
,
Š
â
½
Â
2.4,
Œ
favor
S
U
¯
p
µ
(1)
,µ
(2)
,j
=
1
n
−
1
n
−
1
X
t
=0
n
t
+1
t
+1
X
i
=1
µ
(2)
(
i
)
!
t
1
−
µ
(1)
(
j
)
n
−
1
+
µ
(1)
(
j
)
−
1
n
−
1
=
n
(
n
−
1)
2
n
−
1
X
t
=0
(
n
−
1
−
t
)
µ
(1)
(
j
)+
t
t
+1
t
+1
X
i
=1
µ
(2)
(
i
)
!
−
1
n
−
1
=
n
(
n
−
1)
2
n
X
t
=1
(
n
−
t
)
µ
(1)
(
j
)+
t
−
1
t
t
X
i
=1
µ
(2)
(
i
)
!
−
1
n
−
1
=
n
(
n
−
1)
2
n
X
i
=1
n
X
t
=
i
(
n
−
t
)
µ
(1)
(
j
)+
t
−
1
t
!
µ
(2)
(
i
)
−
1
n
−
1
.
?
˜
Ú
DOI:10.12677/pm.2023.1341091046
n
Ø
ê
Æ
o
|
_
n
X
i
=1
n
X
t
=
i
(
n
−
t
)
µ
(1)
(
j
)+
t
−
1
t
!
µ
(2)
(
i
)
=
n
X
i
=1
n
X
t
=
i
1
−
µ
(1)
(
j
)
+
nµ
(1)
(
j
−
1)
t
!
µ
(2)
(
i
)
=
n
X
i
=1
1
−
µ
(1)
(
j
)
(
n
−
i
+1)+
nµ
(1)
(
j
−
1)
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
=
1
−
µ
(1)
(
j
)
n
X
i
=1
(
n
−
i
)
µ
(1)
(
i
)+1
!
+(
np
j
−
1)
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
,
d
orness
(
O
ω
)
9
orness
S
U
˜
p
µ
(1)
,µ
(2)
,
Œ
favor
S
U
¯
p
µ
(1)
,µ
(2)
,j
=
n
n
−
1
1
−
µ
(1)
(
j
)
orness
S
U
¯
p
µ
(1)
,µ
(2)
,j
+
n
(
n
−
1)
2
·
1
−
µ
(1)
(
j
)+
nµ
(1)
(
j
)
−
1
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
!
−
1
n
−
1
=1
−
veto
S
U
¯
P
µ
(1)
,µ
(2)
,j
+
n
(
n
−
1)
2
·
1
−
µ
(1)
(
j
)+
nµ
(1)
(
j
)
−
1
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
!
−
1
n
−
1
.
Š
â
Ú
n
2.1,
Œ
φ
v
U
¯
p
µ
(1)
,µ
(2)
,j
=
1
n
(
n
−
1)
veto
S
U
µ
(1)
,µ
(2)
,j
+favor
S
U
µ
(1)
,µ
(2)
,j
−
1
+1
=
1
n
−
1
1
−
µ
(1)
(
j
)+
nµ
(1)
(
j
)
−
1
n
X
i
=1
n
X
t
=
i
1
t
!
µ
(2)
(
i
)
!
.
©
Ï
L
J
Ñ
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
,
é
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
â
Ê
Š
!
Ä
û
Ú
U
O
•
ê
?
1
!
Ø
†
ï
Ä
.
,
,
•
•
Ð
·
A
û
ü
ö
Ø
Ó
/
ª
Ð
&
E
±
9
&
E
K
Ü
I
‡
,
N
õ
Æ
ö
J
Ñ
é
õ
ÿ
Ð
Ž
f
.
Ï
d
,
·
‚
e
˜
Ú
ó
Š
´
ò
o
÷
8
n
Ø
†
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
(
Ü
å
5
,
A^
Ù
ƒ
'
•
£
,
é
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
‰
?
˜
Ú
ï
Ä
.
Ä
7
‘
8
ž
h
“
‰
Œ
Æ
?
‘
8
(2021YSYB072)
"
ë
•
©
z
[1]Grabisch,M. (1995)FuzzyIntegral inMulticriteria DecisionMaking.
FuzzySetsandSystems
,
69
,279-298.
https://doi.org/10.1016/0165-0114(94)00174-6
[2]Yager,R.R. (1988)On OrderedWeighted Averaging AggregationOperatorsin MuiticriteriaDecision Mak-
ing.
IEEETransactionsonSystems,Man,andCybernetics
,
18
,183-190.https://doi.org/10.1109/21.87068
DOI:10.12677/pm.2023.1341091047
n
Ø
ê
Æ
o
|
_
[3]Yager,R.R.(1993)FamiliesofOWAOperators.
FuzzySetsandSystems
,
59
,125-148.
https://doi.org/10.1016/0165-0114(93)90194-M
[4]Dujmovic,J.J.(2008)ContinuousPreferenceLogicforSystemEvaluation.
IEEETransactionsonFuzzy
Systems
,
15
,1082-1099.https://doi.org/10.1109/TFUZZ.2007.902041
[5]Jin,L.S.(2015)Some PropertiesandRepresentationMethodsforOrdered Weighted Averaging Operators.
FuzzySetsandSystems
,
261
,60-86.https://doi.org/10.1016/j.fss.2014.04.019
[6]Yager,R.R.(2004)OWAAggregationoveraContinuousIntervalArgumentwithApplicationstoDecision
Making.
IEEETransactionsonSystems,Man,andCybernetics,PartB(Cybernetics)
,
34
,1952-1963.
https://doi.org/10.1109/TSMCB.2004.831154
[7]Li,D.F.(2011)TheGOWAOperatorBasedApproachto MultiattributeDecisionMakingUsing Intuition-
isticFuzzySets.
MathematicalandComputerModelling
,
53
,1182-1196.
https://doi.org/10.1016/j.mcm.2010.11.088
[8]Llamazares,B.(2016)SUOWAOperators:ConstructingSemi-UninormsandAnalyzingSpecificCases.
FuzzySetsandSystems
,
278
,119-136.https://doi.org/10.1016/j.fss.2015.02.017
[9]Llamazares, B.(2018) Closed-FormExpressions forSomeIndicesofSUOWAOperators.
InformationFusion
,
41
,80-90.https://doi.org/10.1016/j.inffus.2017.08.010
[10]
Ç
l
,
ê
²
.
©
Û
Æ
Ä
:
[M].
®
:
I
“
ó
’
Ñ
‡
,1991.
[11]Grabisch, M., Murofushi, T. and Sugeno, M.(2000) Fuzzy Measures andIntegrals:Theory and Application.
Physica-Verlag,Heidelberg.
[12]
ý
O
,
o
|
_
.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
k
S
\
²
þ
Ž
f
9
Ù
4
8
8
¤
ì
O
[J].
X
Ú
†
ê
Æ
,
2019,33(6):11-28.
DOI:10.12677/pm.2023.1341091048
n
Ø
ê
Æ