设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(4),1056-1061
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134111
Aa4à-‚-ÇÈ©
Øª
ÜÜÜLLL
∗
§§§ëë묬¬©©©
H“‰ŒÆêÆÆ§H&²
ÂvFϵ2023c320F¶¹^Fϵ2023c421F¶uÙFϵ2023c428F
Á‡
Green-OsherØª´˜„î‚à¼ê-ÇÈ©Øª§©K•Ę~„AÏà¼ê
3Green-OsherØª¥-ÇÈ©Øª§©ÏL3Green-OsherØª¥§²¡ 4
à-‚ oa ༠ê§'uù༠ê3-ÇÈ©°(e.§ùe.=†l•Ú¡Èk
'"
'…c
à¼ê§Green-OsherØª§Steinerõ‘ª
CurvatureIntegralInequalities
forSomeClassesofClosed
ConvexCurves
ZeyuanZhang
∗
,HuiwenZhao
SchoolofMathematics,YunnanNormalUniversity,KunmingYunnan
Received:Mar.20
th
,2023;accepted:Apr.21
st
,2023;published:Apr.28
th
,2023
∗ÏÕŠö"
©ÙÚ^:ÜL,묩.Aa4à-‚-ÇÈ©Øª[J].nØêÆ,2023,13(4):1056-1061.
DOI:10.12677/pm.2023.134111
ÜL§ë¬©
Abstract
Green-Osherinequalityistheintegralofcurvatureforstrictlyconvexfunctionsin
general,somespecialconvexfunctionsgetcurvatureintegralinequalitiesinGreen-
Osherinequality.Inthispaper,weapplyfourtypesofconvexfunctionsofplane
closedconvexcurvetoGreen-Osherinequality.Wegetsomeexactlowerboundson
theintegrationoftheseconvexfunctionsoverthecurvature.Theselowerbounds
dependonlyonarclengthandarea.
Keywords
ConvexFunction,Green-OsherInequality,SteinerPolynomial
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
1999c,MarkGreenÚStanleyOsher3©[1]¥ïÄಡ-‚-Ç£=Wulff-Ǥà
¼êÈ©˜#Øª.d„L²,«•3ü „Ý•{•£©O•Wulff¤6e6Äž,Ø
ªü>ƒmÉüN~.
‰½k.²¡« •K,«•K´àžÿ,k˜‡{üµ4/ªLˆª5£ãù6Ä1
˜«œ¹e,T«•Âñ•,1«œ¹eÂñ•Wulff/G.Щ«•K´à ž,«•¡
È´t¥õ‘ª,©O¡•Steinerõ‘ª½Wulff-Steinerõ‘ª.
ù‡•{˜‡#A:´,ïÄSteinerÚWulff-Steinerõ‘ªŠ,§‚Ñy3tKŠ.ùü
« œ¹e²;±ØªÑL²,ùõ‘ªäk£K¤¢Št
1
≥t
2
,¿……=KØ´
£©OØ´Wulff/G¤ž,§‚´ØÓ.
2014c,ê[ÚQSA3©[2]¥ïIJ¡Î/‚-ÇÈ©Øª|^È©AÛ¥à8|
±¼ê±9²185Ÿ± Øª†-ÇØª˜‡È©AÛ{zy²,Ù¥
$^©[1]¥Green-Osher‰Ñ˜X'u-ÇÈ©±Øª.
2015c,æx 3©[3]¥ïÄWulff6œ/eÈ©Øª,|^²¡à8|±¼ê5Ÿ
DOI:10.12677/pm.2023.1341111057nØêÆ
ÜL§ë¬©
†©Û•{,Wulff6œ/e˜‡#È©Øª.
2022c§æ ,ÂRÚQSA3©[4]¥ïÄ²¡à-‚p g˜-ÇÈ©Øª§ù
Øª•Green-OsherØªU?/ª,Ùe.=†l•Ú¡Èk'.
Z
Γ
1
k
ds≥
15L
2
−44πA
8π
Z
2π
0
k
n
dθ≥
πL
n
+π[(2
n−1
−2)L+
√
L
2
−4πA](
√
L
2
−4πA)
n−1
2
n−1
A
n
Z
2π
0
1
k
n
dθ≥
L
n
+[(2
n−1
−2)L+
√
L
2
−4πA](
√
L
2
−4πA)
n−1
(2π)
n−1
Γ•î‚à1w-‚,Ù±•PŠL,¤Œ¡ÈPŠA,-ÇPŠk,éun∈N
+
,…n≥2,
…=Γ•±žÒ¤á.
©Ø•ÄWullf/G§Ì‡ïÄ3k.à«•þî‚à¼êA^Green-OsherØª¥
Ñ(J,²¡4à-‚oaà¼ê,'uùà¼ê3-ÇÈ©°(e.,ùe.
=†l•Ú¡Èk'.
©̇½nQãXe:
½n1.1K´²¡˜k.à•,Ù±•PŠL,¤Œ¡ÈPŠA,Γ•R
2
¥˜4à-‚,Ù-
ÇŒ»•
1
k
,K
Z
2π
0
e
1
k
dθ≥2πe
L
2π
,(1.1)
…=Γ•±žÒ¤á.
½n1.2K´²¡˜k .à•,Ù±•PŠL,¤Œ¡ÈPŠA,Γ•R
2
¥˜4à-‚,Ù-
ÇŒ»•
1
k
,K
Z
2π
0
e
1
k
−e
−
1
k
dθ≥2π(e
L
2π
−e
−
L
2π
),(1.2)
…=Γ•±žÒ¤á.
½n1.3K´²¡˜k .à•,Ù±•PŠL,¤Œ¡ÈPŠA,Γ•R
2
¥˜4à-‚,Ù-
ÇŒ»•
1
k
,K
Z
2π
0
e
1
k
+e
−
1
k
dθ≥2π(e
L
2π
+e
−L
2π
),(1.3)
…=Γ•±žÒ¤á.
½n1.4½±•4à-‚,K´²¡˜k.à•,Ù±•PŠL,¤Œ¡ÈPŠA,
Γ•R
2
¥˜4à-‚,Ù-ÇŒ»•
1
k
,K
Z
2π
0
−kln
1
k
dθ≥4π
2
(1−L)+
πL
A
ln2π,(1.4)
…=Γ•±••1žÒ¤á.
DOI:10.12677/pm.2023.1341111058nØêÆ
ÜL§ë¬©
©(Sü
©©•n‡Ü©,1˜Ü©•ÚóÚ̇½n,ùܩ̇0Green-OsherØª
ïÄµ9(J,Óž‰Ñ©ïÄ8Ú̇(J;1Ü©•ý•£,ùܩ̇£
Green-OsherØª†Steinerõ‘ªÄ:•£;1nÜ©•̇½ny²,ùܩ̇|
^Green-OsherØªÚSteinerõ‘ª‰Ñ©̇½ny².
2.ý•£
½Â2.1[1,4]K´²¡˜k.à•,Ù±•PŠL,¤Œ¡ÈPŠA.PA
K
(t)•K+tB¡
È,Ké¤kt≥0,k
A
K
(t) = A+Lt+πt
2
;(2.1)
dž§«•¡È´'užmt˜‡õ‘ª,A
K
(t) = A+Lt+πt
2
¡•KSteinerõ‘ª
t
1
≥t
2
´Steinerõ‘ªü‡Š,K
t
1
=
−L+u
2π
;(2.2)
t
2
=
−L−u
2π
;(2.3)
Ù¥
u=
√
L
2
−4πA.
½Â2.2[1,4]Γ•R
2
¥˜1w4à-‚,Ù-ÇŒ»¼ê•ρ(θ).PF(x)´R
+
þ˜î‚à
¼ê,K
1
2π
Z
S
1
F(ρ(θ))dθ≥
1
2
(F(−t
1
)+F(−t
2
));(2.4)
•Œ‰
Z
S
1
F(ρ(θ))dθ≥π(F(−t
1
)+F(−t
2
));(2.5)
…=Γ•±žÒ¤á.Ù¥,t
1
Út
2
´KSteinerõ‘ªŠ.
3.̇½ny²
½n1.1y²òà¼êF(x) = e
x
“\(2.5)Øª¥,
Z
2π
0
e
1
k
dθ≥π(e
−t
1
+e
−t
2
)
= π(e
L−u
2π
+e
L+u
2π
)
= πe
L
2π
(e
−u
2π
+e
u
2π
)
≥2πe
L
2π
(3.1)
DOI:10.12677/pm.2023.1341111059nØêÆ
ÜL§ë¬©
•˜Ú$^þŠØª?1 ˜,•ª(J.…=Γ•±žÒ¤á.
½n1.2y²òà¼êF(x) = e
x
−e
−x
“\(2.5)Øª¥,Ó$^˜gþŠØª,
Z
2π
0
e
1
k
−e
−
1
k
dθ≥π[(e
−t
1
+e
−t
2
)−(e
t
1
+e
t
2
)]
= π(e
L−u
2π
+e
L+u
2π
−e
−L+u
2π
−e
−L−u
2π
)
= π[e
L
2π
(e
−u
2π
+e
u
2π
)−e
−L
2π
(e
−u
2π
+e
u
2π
)]
= π(e
L
2π
−e
−L
2π
)(e
−u
2π
+e
u
2π
)
≥2π(e
L
2π
−e
−L
2π
)
(3.2)
…=Γ•±žÒ¤á.
½n1.3y²òà¼êF(x) = e
x
+e
−x
“\(2.5)Øª¥,
Z
2π
0
e
1
k
+e
−
1
k
dθ≥π[(e
−t
1
+e
−t
2
)+(e
t
1
+e
t
2
)]
= π(e
L−u
2π
+e
L+u
2π
+e
−L+u
2π
+e
−L−u
2π
)
= π[e
L
2π
(e
−u
2π
+e
u
2π
)+e
−L
2π
(e
−u
2π
+e
u
2π
)]
= π(e
L
2π
+e
−L
2π
)(e
−u
2π
+e
u
2π
)
≥2π(e
L
2π
+e
−L
2π
)
(3.3)
…=Γ•±žÒ¤á.
½n1.4y²òà¼êF(x) = −
lnx
x
“\(2.5)Øª¥,
Z
2π
0
−kln
1
k
dθ≥π[−
ln(−t
1
)
−t
1
−
ln(−t
2
)
−t
2
]
= −π(
2π
L−u
ln
L−u
2π
+
2π
L+u
ln
L+u
2π
)
= −2π
2
[
ln(L−u)
L−u
+
ln(L+u)
L+u
−
ln2π
L−u
−
ln2π
L+u
]
= 2π
2
[−
ln(L−u)
L−u
−
ln(L+u)
L+u
+
2L
4πA
ln2π]
≥2π
2
[−(L−u)+1−(L+u)+1+
L
2πA
ln2π]
= 4π
2
(1−L)+
πL
A
ln2π
(3.4)
dØªA^−
lnx
x
≥−x+1?1 ˜.½±•4à-‚,…=Γ•±••1žÒ
¤á.
©`:
©(J3½ÂGreen-OsherØªÄ:þéƒc(J?1í2,ƒéuƒc®k
DOI:10.12677/pm.2023.1341111060nØêÆ
ÜL§ë¬©
(J,¬•´L˜.
Ð"
©Ø•ÄWullf/G§•ïÄ3k.à«•þî‚à¼êA^Green-OsherØª¥
Ñ(J,XJ´Wullf6œ¹e,Ù-ÇÈ©Øª¬kNØÓº
ë•©z
[1]Green, M. andOsher, S.(1999)SteinerPolynomials, WulffFlows, andSome NewIsoperimetric
InequalitiesforConvexPlaneCurves.AsianJournalofMathematics,3,659-676.
https://doi.org/10.4310/AJM.1999.v3.n3.a5
[2]ê[,QSA.'u-ÇÈ©Øª5P[J].êÆ,“,2014,34(5):925-930.
https://doi.org/10.13548/j.sxzz.2014.05.040
[3]æx.Wulff6œ/e˜‡È©Øª[J].2ÀœhzóÆÆ,2015,25(1):67-68+73.
[4]æ ,ÂR,QSA,((.à-‚-ÇÈ©Øª[J/OL].êÆÆ(¥©‡):1-10.
http://kns.cnki.net/kcms/detail/11.2038.o1.20221108.1653.008.html
DOI:10.12677/pm.2023.1341111061nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.