设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(4),1062-1072
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134112
¥˜m¥äk[²11Ä/ª‡-¡
€€€¸¸¸
H“‰ŒÆêÆÆ§H&²
ÂvFϵ2023c320F¶¹^Fϵ2023c421F¶uÙFϵ2023c428F
Á‡
x:M
n
→S
n+1
•iù6/ü ¥˜m¥åE\,gÚB©O•x#'¿dÝþÚ#'¿d
1Ä/ª,R•gp -ÇÜþ.©ïÄ÷v^‡RB=0‡- ¡,¼A‡Ð Ú(
J.
'…c
AÛ§‡-¡§[²1§1Ä/ª§M¨obius/ª
HypersurfaceswithQuasi-ParallelSecond
BasicForminSphericalSpace
FengSu
SchoolofMathematics,YunnanNormalUniversity,KunmingYunnan
Received:Mar.20
th
,2023;accepted:Apr.21
st
,2023;published:Apr.28
th
,2023
Abstract
Letx:M
n
→S
n+1
beisometriimmersionofRiemannianmanifoldintounitsphere
space,andgandBbeMobiusmetricandMobiussecondfundamentalformofx
©ÙÚ^:€¸.¥˜m¥äk[²11Ä/ª‡-¡[J].nØêÆ,2023,13(4):1062-1072.
DOI:10.12677/pm.2023.134112
€¸
respectivelyRisacurvaturetensorinducedbyg.Inthispaper,westudythehyper-
surfaceoperatorsatisfyingtheconditionRB= 0,andobtainsomepreliminaryresults.
Keywords
M¨obiusGeometry,Hypersurface,Quasi-Parallel,M¨obiusSecondFundamentalForm,
M¨obiusForm
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó9̇(J
M¨obiusAÛ´¥¡þ3M¨obiusC†+ef6/5AÛ,éM¨obiusØCþ\þØÓ•
›^‡,Ò¬ØÓk¿ÂïÄ••.•C,LÇkJÑ¿ïÄ[²1f6/¿¼
k(J,~XB
α
ij,kl
=B
α
ij,lk
;C
α
i,j
=C
α
j,i
.ÉÙéu,©´3M¨obius1Ä/ªB
[²1Ä:þ‰ïÄ.k{ü0˜e[²1:∇´dM¨obiusÝþg¤péä,-Ç
Žf´R.X,Y,Z•f6/þ1w•þ|.Kk R(X,Y)=−∇
X
∇
Y
+ ∇
Y
∇
X
+ ∇
[X,Y]
,X
JR(X,Y)B=0,K¡M¨obius1Ä/ªB´[²1.©?˜ÚïÄ[²1‡-¡˜
AÛ5Ÿ,¼eA‡ÐÚ(J.
½n1.1¥S
n+1
¥[²1‡-¡M
n
,XJM¨obius/ªΦ²1,K‡-¡M
n
ÛÜM¨obius
due‡-¡ƒ˜:
(i)‚¡S
k
(a)×S
n−k

√
1−a
2

,Ù¥1 ≤k≤n−1;
(ii)R
n+1
¥IOΡS
k
(a)×R
n−k
3Nσe”,Ù¥1 ≤k≤n−1;
(iii)H
n+1
¥IOΡS
k
(a)×H
n−k

√
1+a
2

3Nτe”,Ù¥1 ≤k≤n−2;
(iv)‡-¡CSS(p,q,a).
Ù¥˜m!N!CSS½Â•„ý•£.
½n1.2S
n+1
¥;‡-¡M
n
,eM¨obius1Ä/ªB´[²1,Kkeª¤á:
n(n−1)
Z
M
|Φ|
2
dM=
Z
M
|∇B|
2
dM.
½n1.3S
n+1
¥;‡-¡M
n
,eA=λg,λ∈C
∞
(M),…M¨obius1Ä/ªB[²1,K
DOI:10.12677/pm.2023.1341121063nØêÆ
€¸
k±eØª¤á.
1
n
Z
M
(4λ)
2
dM≥
Z
M
2

λ−
1
2n

|∇λ|
2
dM.
©(Sü
©©•o‡Ü©§1˜Ü©•ÚóÚ̇½n§ùܩ̇08cM¨obiusAÛïÄ9
:§Óž‰Ñ©ïÄ8Ú(J;1Ü©•ý•£§ùÜ©½ÂM¨obius1Ä/ª
[²1§¿˜‡'…·K.1nܩ̇0[²1V gÚÚ^½n.1oÜ©•̇
½ny²§ùÜ©ÏLé®kü‡(J(B
α
ij,kl
= B
α
ij,lk
;C
α
i,j
= C
α
j,i
)\±|^§¿?˜Ú
(J.
2.ý•£
•²31998cïá¥˜m¥f6/1I.Ú#'¿dØCþXÚ,©÷^ Ù¥
úª†PÒ,[!•„©z[1].
·‚Äk½ÂS
m+p
¥M¨obiusØCþ¿…‰Ñ(•§.
R
m+p+2
1
´Lorentz˜m,KÙLorentzSȽ•µ
hx,ξi= −x
0
ξ
0
+x
1
ξ
1
+x
2
ξ
2
+···+x
m+p+1
ξ
m+p+1
Ù¥x= (x
0
,x
1
,x
2
,...,x
m+p+1
);ξ= (ξ
0
,ξ
1
,ξ
2
,...,ξ
m+p+1
),
x:M
m
→S
m+p
⊂R
m+p+1
´S
m+p
¥ÃßE\f6/.òxM¨obius ˜•þX:M
m
→
R
m+2
1
Xeµ
X= ρ(1,x) : M
m
→R
m+2
1
,ρ
2
=
m
m−1

kIIk−mH
2

>0.
½n2.1eü‡f6/x,˜x: M
m
→S
m+p
´M¨obiusd,…=•3R
m+p+1
1
¥LorentzC
†T∈O(m+p+1,1),¦X=
e
XT.
Ù¥O(m+p+1,1)´R
m+p+2
1
¥±SÈh·,·iØCLorentz+,Ï•S
m+p
¥M¨obius
+åuO(m+p+1,1)±1If+O
+
(m+p+1,1),Œ
g= hdX,dXi= ρ
2
dx·dx,(2.1)
´M¨obiusØCþ,·‚òg¡•M¨obiusÝþ½öM¨obius1˜Ä/ª.4•(M,g)
LaplaceŽf,k
h4X,4Xi= 1+m
2
k,
Ù¥k•ÝþgXþ-Ç.
DOI:10.12677/pm.2023.1341121064nØêÆ
€¸
{E
1
,E
2
,...,E
m
}´(M,g)˜‡ÛÜIOÄ,{ω
1
,ω
2
,...,ω
m
}•ÙéóÄ.¿…E
i
(X) =
X
i
,@okµ
hX
i
,X
j
i= δ
ij
,1 ≤i,j≤m,
½Â
N= −
1
m
4X−
1
2m
2
h4X,4XiX,(2.2)
@ok
hX,Xi= hN,Ni= 0,hX,Ni= 1,hX
i
,Xi= 0,(1 ≤i,j≤m).(2.3)
…
hX,dXi= 0,h4X,Xi= −m,h4X,X
k
i= 0,1 ≤k≤m.(2.4)
Ïd
span{N,X}⊥span{X
1
,X
2
,...,X
m
},
½Â
V= {span{N,X}⊕span{X
1
,X
2
,...,X
m
}}
⊥
,(2.5)
-V´f˜mspan{X,N,X
1
,X
2
,...,X
m
}3R
m+p+2
1
¥Ö˜m,Œ±e¡©).
R
m+p+2
1
= span{X,N}⊕span{X
1
,X
2
,...,X
m
}⊕V,(2.6)
·‚é©•IkXe5½:1≤i,j,k,···≤m;m+1≤α≤m+p,·‚„UìOÏd"½%
@-E•IL«3ˆg‰ŒS¦Ú.¡V´x:M
m
→S
m+p
M¨obius{m.{mV÷M
m
˜‡
ÛÜIOÄ•{E
m+1
,...,E
m+p
}.
@o{X,N,X
1
,...,X
m
,E
m+1
,...,E
m+p
}¤R
m+p+2
÷M
m
¹ÄIe.Ù(•§Xe:
dX=
X
i
ω
i
X
i
,(2.7)
dN=
X
i,j
A
ij
ω
j
X
i
+
X
i,α
C
α
i
ω
i
E
α
,(2.8)
dX
i
= −
X
j
A
ij
ω
j
X−ω
i
N+
X
j
ω
ij
X
j
+
X
i,α
B
α
ij
ω
j
E
α
,(2.9)
DOI:10.12677/pm.2023.1341121065nØêÆ
€¸
dE
α
= −
X
i
C
α
i
ω
i
X−
X
i,j
B
α
ij
ω
j
X
i
+
X
β
ω
αβ
E
β
,(2.10)
Ù¥{ω
ij
}´M¨obiusÝþgéä/ª,{ω
αβ
}´M
m
þ{éä,…kA
ij
= A
ji
,B
α
ij
= B
α
ji
.?
A=
X
i,j
A
ij
ω
i
⊗ω
j
,(2.11)
B=
X
i,j,α
B
α
ij
ω
i
⊗ω
j
E
α
,(2.12)
Φ =
X
i,α
C
α
i
ω
i
E
α
,(2.13)
Ñ´M¨obiusØCþ¶©O¡A•xBlaschkeÜþ,B•xM¨obius1Ä/ª,Φ•xM¨obius
/ª.
©O½ÂC
α
i
,A
ij
,B
α
ij
˜CêXe
X
j
C
α
i,j
ω
j
= dC
α
i
+
X
j
C
α
j
ω
ji
+
X
β
C
β
i
ω
βα
,(2.14)
X
k
A
ij,k
= dA
ij
+
X
A
ik
ω
kj
+
X
k
A
kj
ω
ki
,(2.15)
X
B
α
ij,k
ω
k
= dB
ij
+
X
k
B
α
ik
ω
kj
+
X
k
B
α
kj
ω
ki
+
X
β
B
β
ij
ω
βα
,(2.16)
…
dω
ij
−
X
k
ω
ik
∧ω
kj
= −
1
2
R
ijkl
ω
k
∧ω
l
,R
ijkl
= −R
ijlk
,(2.17)
@oŒ(•§ŒÈ^‡•
A
ij,k
−A
ik,j
= B
α
ik
C
α
j
−B
α
ij
C
α
k
,(2.18)
C
α
i,j
−C
α
j,i
= B
α
ik
A
kj
−B
α
kj
A
ki
,(2.19)
B
α
ij,k
−B
α
ik,j
= δ
ij
C
α
k
−δ
ik
C
α
j
,(2.20)
R
ijkl
=
X
α

B
α
ik
B
α
jl
−B
α
il
B
α
jk

+(δ
ik
A
jl
+δ
jl
A
ik
−δ
il
A
jk
−δ
jk
A
il
),(2.21)
tr(A) =
1
2m

1+
m
m−1
R

,
X
i
B
α
ii
= 0.(2.22)
DOI:10.12677/pm.2023.1341121066nØêÆ
€¸
Ù¥´{A
ij,k
},

B
α
ij,k

Ú

C
α
i,j

´A,BÚΦ'ugpéäCê2IOÄe©þ.
i= j¦Ú
−
X
B
α
ij,i
= (m−1)C
α
j
,(2.23)
i= k¦Ú
X
ij

B
α
ij

2
=
m−1
m
,(2.24)
½ÂA
ij
ÚB
ij
Cê
X
l
A
ij,kl
ω
l
= dA
ij,k
+
X
l
A
lj,k
ω
li
+
X
l
A
il,k
ω
lj
+
X
A
ij,l
ω
lk
,(2.25)
X
l
B
α
ij,kl
ω
l
= dB
α
ij,k
+
X
l
B
α
lj,k
ω
li
+
X
l
B
α
il,k
ω
lj
+
X
l
B
α
ij,l
ω
lk
+
X
β
B
β
ij,k
ω
βα
,(2.26)
3.[²1Vg
½Â3.1(M
n
,g)´˜‡iù6/,∇ÚR©O•Ýþg¤pé äÚ-ÇÜþ.XJ˜‡Ü
þT÷vRT= 0,@oK¡ÜþT´[²1.
X,Y,Z´M
n
þ1w•þ|,Ù¥
R(X,Y)Z= −

∇
X
∇
Y
−∇
Y
∇
X
−∇
[X,Y]

Z,(3.1)
T•CÜþ|,KòRT½Â•
(R(X,Y)T)(Z,W) := R(X,Y)(T(Z,W))−T(R(X,Y)Z,W)−T(Z,R(X,Y)W).(3.2)
·K3.2CÜþT[²1…=
T(R(X,Y)Z,W)+T(Z,R(X,Y)W) = 0.
yé∀f∈C
∞
(M),k∇
X
f= X(f).K
(∇
X
∇
Y
)f= ∇
X
(∇
Y
f) = ∇
X
(Y(f)) = X(Y(f)),(3.3)
Óžd(3.1),k
R(X,Y)(f) = −

∇
X
∇
Y
−∇
Y
∇
X
−∇
[X,Y]

(f)
= −(X◦Y−Y◦X−[X,Y])(f)
= 0.(3.4)
DOI:10.12677/pm.2023.1341121067nØêÆ
€¸
ddy²T•CÜþž,duT(Z,W)•1w¼ê,k
R(X,Y)(T(Z,W)) = 0,(3.5)
¤±d½Â3.1•,CÜþT[²1…=
0 = (R(X,Y)T)(Z,W) = −T(R(X,Y)Z,W)−T(Z,R(X,Y)W).(3.6)
=T(R(X,Y)Z,W)+T(Z,R(X,Y)W) = 0,·K¤á.
{e
1
,e
2
,...,e
n
}´(M
n
,g)˜‡ÛÜIOÄ,{ω
1
,ω
2
,...,ω
n
}•ÙéóÄ.K
R(e
i
,e
j
)e
k
= R
ijkl
e
l
,(3.7)
·K3.2Œ¤CÜþT[²1…=
R
ijkm
T
ml
+R
ijlm
T
mk
= 0.(3.8)
½Â3.3x:M
n
→S
n+1
•åE\,gÚB©O•xM¨obiusÝþÚM¨obius1Ä/ª.
XJB'ugpéä´[²1,K¡x•M¨obius[²1‡-¡,½M-[²1‡-¡.
32004c,LÚo°¥3©z[3]¥kXe©a½nµ
½n3.4x:M
n
→S
n+1
(n≥2)´äk²1M¨obius1Ä/ªÃßE\‡-¡.@
oM
n
ÛÜM¨obiusde‡-¡ƒ˜µ
(i)‚¡S
k
(a)×S
n−k

√
1−a
2

,Ù¥1 ≤k≤n−1;
(ii)R
n+1
¥IOΡS
k
(a)×R
n−k
3Nσe”,Ù¥1 ≤k≤n−1;
(iii)H
n+1
¥IOΡS
k
(a)×H
n−k

√
1+a
2

3Nτe”,Ù¥1 ≤k≤n−2;
(iv)d~1‰Ñ‡-¡CSS(p,q,a).
Ù¥H
n+1
´n+1‘V-˜m,½Â•
H
n+1
=

(y
0
,y
1
) ∈R
+
×R
n+1
|−y
2
0
+y
1
·y
1
= −1

,
σ: R
n+1
→S
n+1
´¥4ÝK_,½Â•
σ(u) =
1−|u|
2
1+|u|
2
,
2u
1+|u|
2
!
,u∈R
n+1
,
τ: H
n+1
→S
n+1
´5N,½Â•
τ(y
0
,y
1
) =

1
y
0
,
y
1
y
0

,(y
0
,y
1
) ∈H
n+1
.
~1CSS(p,q,a)
DOI:10.12677/pm.2023.1341121068nØêÆ
€¸
鉽g,êp,q,p+ q<n,9¢êa∈(0,1)Úb=
√
1−a
2
,•ÄÛ-¦Èi\‡-
¡u: S
p
(a)×S
q
(b)×R
n−p−q−1
→R
n+1
:
u= (tu
0
,tu
00
,u
000
),u
0
∈S
p
(a),u
00
∈S
q
(b),t∈R
+
,u
000
∈R
n−p−q−1
,
-
x= σ◦u: S
p
(a)×S
q
(b)×R
+
×R
n−p−q−1
→S
n+1
,
½Â
CSS(p,q,a) = x

u: S
p
(a)×S
q
(b)×R
+
×R
n−p−q−1

.
§´S
n+1
¥‡-¡.
4.̇½ny²
½n1.1yd©z[1]•
|B|
2
=
n−1
n
,
?•Ä4|B|
2

0 =
1
2
4|B|
2
=
1
2
4
X
i,j
(B
ij
)
2
=
X
k
X
i,j
B
ij
B
ij
!
k
=
X
i,j,k
(B
ij,k
)
2
+
X
i,j,k
B
ij
B
ij,kk
.(4.1)
òB
ij,kk
•
B
ij,kk
= (B
ij,kk
−B
ik,jk
)+(B
ki,jk
−B
ki,kj
)+(B
ki,kj
−B
kk,ij
)+B
kk,ij
.(4.2)
éŒÈ^‡B
ij,k
−B
ik,j
= δ
ij
C
k
−δ
ik
C
j
¦Œ
B
ij,kk
−B
ik,jk
= δ
ij
C
k,k
−δ
ik
C
j,k
,(4.3)
DOI:10.12677/pm.2023.1341121069nØêÆ
€¸
d‡-¡M
n
[²1,Ly²B
ij,kl
= B
ij,lk
,2òƒ†(3.3)˜Ó“\(3.2)Œ
B
ij,kk
= (δ
ij
C
k,k
−δ
ik
C
j,k
)+0+(δ
ki
C
k,j
−δ
kk
C
i,j
)+B
kk,ij
,(4.4)
2ò(3.4)ék¦Ú
X
k
B
ij,kk
= δ
ij
X
k
C
k,k
−C
j,i
+C
i,j
−nC
i,j
(4.5)
d‡-¡M
n
[²1,Ly²C
i,j
= C
j,i
,(3.5)Œz•
X
k
B
ij,kk
= δ
ij
X
k
C
k,k
−nC
i,j
.(4.6)
ŒOŽ
X
i,j,k
B
ij
B
ij,kk
=
X
i,j,k
B
ij
(δ
ij
C
k,k
−nC
i,j
)
= −
X
i,j
nB
ij
C
i,j
.(4.7)
•ò|∇B|
2
=
P
i,j,k
(B
ij,k
)
2
9(3.7)“\(3.1)k
|∇B|
2
= −
X
i,j,k
B
ij
B
ij,kk
=
X
i,j
nB
ij
C
i,j
.(4.8)
duf6/M
n
M¨obius/ªΦ²1(∇Φ=0),=C
α
i,j
= 0,¤±d(3.8)•ªŒ±y∇B= 0,=B
²1.KŠâ½n2.4Œ•,½n1.1¤á.
½n1.2y²
y?˜Ú,e‡-¡M
n
´;,KŒé(3.8)3‡-¡M
n
þÈ©,k
Z
M
|∇B|
2
dM= n
Z
M
X
i,j
B
ij
C
i,j
dM,(4.9)
|^©ÜÈ©,Œ
Z
M
|∇B|
2
dM= n
Z
M
X
i,j
h
(B
ij
·C
i
)
j
−B
ij,j
C
i
i
dM,(4.10)
dÑݽnŒ
Z
M
|∇B|
2
dM= −n
Z
M
X
i,j
B
ij,j
C
i
dM,(4.11)
DOI:10.12677/pm.2023.1341121070nØêÆ
€¸
ò(2.1.23)ª“\(3.0.30)
Z
M
|∇B|
2
dM= n(n−1)
Z
M
C
2
i
dM
= n(n−1)
Z
M
|Φ|
2
dM.(4.12)
ddy²½n1.2¤á.
½n1.3y²
yBlaschkeÜþ••ƒ'VgŒë•©z[2].ùp·‚•ÄOŽ
1
2
4|∇λ|
2
1
2
4|∇λ|
2
=
X
i,j

λ
2
i,j
+λ
i
λ
i,jj

=
X
i,j

λ
2
i,j
+λ
i
λ
j,ij

(4.13)
dRicciðªŒ
1
2
4|∇λ|
2
=
X
i,j
λ
2
i,j
+
X
i,j,m
λ
i
(λ
j,ji
+λ
m
R
mjij
)
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(4λ)
i
+
X
i,m
λ
i
λ
m
R
im
,(4.14)
d©z[1]•,R
ij
= −
P
k
B
ik
B
kj
+tr(A)δ
ij
+(n−2)A
ij
,òƒ“\(3.14)
1
2
4|∇λ|
2
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(4λ)
i
+
X
i,m
λ
i
λ
m
−
X
k
B
ik
B
km
+tr(A)δ
im
+(n−2)A
im
!
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(4λ)
i
+
X
i,m
λ
i
λ
m
−
X
k
B
ik
B
km
+nλδ
im
+(n−2)λδ
im
!
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(4λ)
i
−
X
i,m
λ
i
λ
m
B
ik
B
km
+2(n−1)|∇λ|
2
λ,(4.15)
d
P
i,j
λ
2
i,j
≥
P
i
λ
2
i,i
,2d…Ü)–]Øªk
P
i
λ
2
i,i
≥
1
n
(
P
i
λ
i,i
)
2
,(3.15)Œ˜ •
1
2
4|∇λ|
2
≥
1
n
X
i
λ
i,i
!
2
+
X
i
λ
i
(4λ)
i
−
X
i,m
λ
i
λ
m
B
ik
B
km
+2(n−1)|∇λ|
2
λ
=
1
n
(4λ)
2
+
X
i
λ
i
(4λ)
i
−
X
k
X
i
B
ik
λ
i
!
2
+2(n−1)|∇λ|
2
λ,(4.16)
DOI:10.12677/pm.2023.1341121071nØêÆ
€¸
du
P
k
h
P
i
(B
ik
)
2
·
P
i
(λ
i
)
2
i
≥
P
k
(
P
i
B
ik
λ
i
)
2
,KŒUY˜
1
2
4|∇λ|
2
≥
1
n
(4λ)
2
+
X
i
λ
i
(4λ)
i
+2(n−1)λ|∇λ|
2
−
X
k
"
X
i
(B
ik
)
2
·
X
i
(λ
i
)
2
#
=
1
n
(4λ)
2
+
X
i
λ
i
(4λ)
i
+2(n−1)λ|∇λ|
2
−
n−1
n
|∇λ|
2
,(4.17)
df6/M
n
;,Ké(3.17)ªü>3M
n
þÈ©k
0 ≥
Z
M
1
n
(4λ)
2
dM+
Z
M
X
i
λ
i
(4λ)
i
dM+
Z
M
2(n−1)

λ−
1
2n

|∇λ|
2
dM
=
Z
M
1
n
(4λ)
2
dM+
Z
M
X
i
(λ
i
·4λ)
i
dM−
Z
M
X
i
λ
i,i
·4λdM+
Z
M
2(n−1)

λ−
1
2n

|∇λ|
2
dM
=
Z
M

1
n
−1

(4λ)
2
dM+
Z
M
2(n−1)

λ−
1
2n

|∇λ|
2
(4.18)
nk
1
n
Z
M
(4λ)
2
dM≥
Z
M
2

λ−
1
2n

|∇λ|
2
dM(4.19)
½n1.3y.
ë•©z
[1]Wang,C.P.(1998)MoebiusGeometryofSubmanifoldsins
n
.ManuscriptaMathematica,96,
517-534.https://doi.org/10.1007/s002290050080
[2]Guo,Z., Fang,J.B.and Lin,L.M.(2011) HypersurfaceswithIsotropicBlaschke Tensor. Jour-
naloftheMathematicalSocietyofJapan,63,1155-1186.
https://doi.org/10.2969/jmsj/06341155
[3]Hu,Z.J.andLi,H.Z.(2004)ClassificationofHypersurfaceswithParallelM¨obiusSecond
FundamentalForminS
n+1
.ScienceChina-Mathematics,47,417-430.
DOI:10.12677/pm.2023.1341121072nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.