设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(4),1062-1072
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134112
¥
˜
m
¥
ä
k
[
²
1
1
Ä
/
ª
‡
-
¡
€€€
¸¸¸
H
“
‰
Œ
Æ
ê
ÆÆ
§
H
&
²
Â
v
F
Ï
µ
2023
c
3
20
F
¶
¹
^
F
Ï
µ
2023
c
4
21
F
¶
u
Ù
F
Ï
µ
2023
c
4
28
F
Á
‡
x
:
M
n
→
S
n
+1
•
i
ù6
/
ü
¥
˜
m
¥
åE
\
,
g
Ú
B
©
O
•
x
#
'
¿
d
Ý
þ
Ú
#
'
¿
d
1
Ä
/
ª
,
R
•
g
p
-
Ç
Ü
þ
.
©
ï
Ä
÷
v
^
‡
RB
=0
‡
-
¡
,
¼
A
‡
Ð
Ú
(
J
.
'
…
c
A
Û
§
‡
-
¡
§
[
²
1
§
1
Ä
/
ª
§
M¨obius
/
ª
HypersurfaceswithQuasi-ParallelSecond
BasicForminSphericalSpace
FengSu
SchoolofMathematics,YunnanNormalUniversity,KunmingYunnan
Received:Mar.20
th
,2023;accepted:Apr.21
st
,2023;published:Apr.28
th
,2023
Abstract
Let
x
:
M
n
→
S
n
+1
beisometriimmersionofRiemannianmanifoldintounitsphere
space,and
g
and
B
beMobiusmetricandMobiussecondfundamentalformof
x
©
Ù
Ú
^
:
€
¸
.
¥
˜
m
¥
ä
k
[
²
1
1
Ä
/
ª
‡
-
¡
[J].
n
Ø
ê
Æ
,2023,13(4):1062-1072.
DOI:10.12677/pm.2023.134112
€
¸
respectively
R
isacurvaturetensorinducedby
g
.Inthispaper,westudythehyper-
surfaceoperatorsatisfyingthecondition
RB
= 0
,andobtainsomepreliminaryresults.
Keywords
M¨obiusGeometry,Hypersurface,Quasi-Parallel,M¨obiusSecondFundamentalForm,
M¨obiusForm
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
M¨obius
A
Û
´
¥
¡
þ
3
M¨obius
C
†
+
e
f
6
/
5
A
Û
,
é
M¨obius
ØC
þ
\
þ
Ø
Ó
•
›
^
‡
,
Ò
¬
Ø
Ó
k
¿Â
ï
Ä
•
•
.
•
C
,
L
Ç
k
J
Ñ
¿
ï
Ä
[
²
1
f
6
/
¿
¼
k
(
J
,
~
X
B
α
ij,kl
=
B
α
ij,lk
;
C
α
i,j
=
C
α
j,i
.
É
Ùé
u
,
©
´
3
M¨obius
1
Ä
/
ª
B
[
²
1
Ä
:
þ
‰
ï
Ä
.
k
{
ü
0
˜
e
[
²
1
:
∇
´
d
M¨obius
Ý
þ
g
¤
p
é
ä
,
-
Ç
Ž
f
´
R
.
X,Y,Z
•
f
6
/
þ
1
w
•
þ
|
.
K
k
R
(
X,Y
)=
−∇
X
∇
Y
+
∇
Y
∇
X
+
∇
[
X,Y
]
,
X
J
R
(
X,Y
)
B
=0,
K
¡
M¨obius
1
Ä
/
ª
B
´
[
²
1
.
©
?
˜
Ú
ï
Ä
[
²
1
‡
-
¡
˜
A
Û
5
Ÿ
,
¼
e
A
‡
Ð
Ú
(
J
.
½
n
1.1
¥
S
n
+1
¥
[
²
1
‡
-
¡
M
n
,
X
J
M¨obius
/
ª
Φ
²
1
,
K
‡
-
¡
M
n
Û
Ü
M¨obius
d
u
e
‡
-
¡
ƒ
˜
:
(i)
‚
¡
S
k
(
a
)
×
S
n
−
k
√
1
−
a
2
,
Ù
¥
1
≤
k
≤
n
−
1;
(ii)
R
n
+1
¥
I
O
Î
¡
S
k
(
a
)
×
R
n
−
k
3
N
σ
e
”
,
Ù
¥
1
≤
k
≤
n
−
1;
(iii)
H
n
+1
¥
I
O
Î
¡
S
k
(
a
)
×
H
n
−
k
√
1+
a
2
3
N
τ
e
”
,
Ù
¥
1
≤
k
≤
n
−
2;
(iv)
‡
-
¡
CSS
(
p,q,a
).
Ù
¥
˜
m
!
N
!
CSS
½
Â
•
„
ý
•
£
.
½
n
1.2
S
n
+1
¥
;
‡
-
¡
M
n
,
e
M¨obius
1
Ä
/
ª
B
´
[
²
1
,
K
k
e
ª
¤
á
:
n
(
n
−
1)
Z
M
|
Φ
|
2
dM
=
Z
M
|∇
B
|
2
dM.
½
n
1.3
S
n
+1
¥
;
‡
-
¡
M
n
,
e
A
=
λg
,
λ
∈
C
∞
(
M
),
…
M¨obius
1
Ä
/
ª
B
[
²
1
,
K
DOI:10.12677/pm.2023.1341121063
n
Ø
ê
Æ
€
¸
k
±
e
Ø
ª
¤
á
.
1
n
Z
M
(
4
λ
)
2
dM
≥
Z
M
2
λ
−
1
2
n
|∇
λ
|
2
dM.
©
(
S
ü
©
©
•
o
‡
Ü
©
§
1
˜
Ü
©
•
Ú
ó
Ú
Ì
‡
½
n
§
ù
Ü
©
Ì
‡
0
8
c
M¨obius
A
Û
ï
Ä
9
:
§
Ó
ž
‰
Ñ
©
ï
Ä
8
Ú
(
J
;
1
Ü
©
•
ý
•
£
§
ù
Ü
©
½
Â
M¨obius
1
Ä
/
ª
[
²
1
§
¿
˜
‡
'
…
·
K
.
1
n
Ü
©
Ì
‡
0
[
²
1
V
g
Ú
Ú
^
½
n
.
1
o
Ü
©
•
Ì
‡
½
n
y
²
§
ù
Ü
©
Ï
L
é
®
k
ü
‡
(
J
(
B
α
ij,kl
=
B
α
ij,lk
;
C
α
i,j
=
C
α
j,i
)
\
±
|
^
§
¿
?
˜
Ú
(
J
.
2.
ý
•
£
•
²
3
1998
c
ï
á
¥
˜
m
¥
f
6
/
1
I
.
Ú
#
'
¿
d
ØC
þ
X
Ú
,
©
÷
^
Ù
¥
ú
ª
†
P
Ò
,
[
!
•
„
©
z
[1].
·
‚
Ä
k
½
Â
S
m
+
p
¥
M¨obius
ØC
þ
¿
…
‰
Ñ
(
•
§
.
R
m
+
p
+2
1
´
Lorentz
˜
m
,
K
Ù
Lorentz
S
È
½
Â
•
µ
h
x,ξ
i
=
−
x
0
ξ
0
+
x
1
ξ
1
+
x
2
ξ
2
+
···
+
x
m
+
p
+1
ξ
m
+
p
+1
Ù
¥
x
= (
x
0
,x
1
,x
2
,...,x
m
+
p
+1
);
ξ
= (
ξ
0
,ξ
1
,ξ
2
,...,ξ
m
+
p
+1
),
x
:
M
m
→
S
m
+
p
⊂
R
m
+
p
+1
´
S
m
+
p
¥
Ã
ß
E
\
f
6
/
.
ò
x
M¨obius
˜
•
þ
X
:
M
m
→
R
m
+2
1
X
e
µ
X
=
ρ
(1
,x
) :
M
m
→
R
m
+2
1
,ρ
2
=
m
m
−
1
k
II
k−
mH
2
>
0
.
½
n
2.1
e
ü
‡
f
6
/
x,
˜
x
:
M
m
→
S
m
+
p
´
M¨obius
d
,
…
=
•
3
R
m
+
p
+1
1
¥
Lorentz
C
†
T
∈
O
(
m
+
p
+1
,
1),
¦
X
=
e
XT
.
Ù
¥
O
(
m
+
p
+1
,
1)
´
R
m
+
p
+2
1
¥
±
S
È
h·
,
·i
ØC
Lorentz
+
,
Ï
•
S
m
+
p
¥
M¨obius
+
å
u
O
(
m
+
p
+1
,
1)
±
1
I
f
+
O
+
(
m
+
p
+1
,
1),
Œ
g
=
h
dX,dX
i
=
ρ
2
dx
·
dx,
(2.1)
´
M¨obius
ØC
þ
,
·
‚
ò
g
¡
•
M¨obius
Ý
þ
½
ö
M¨obius
1
˜
Ä
/
ª
.
4
•
(
M,g
)
Laplace
Ž
f
,
k
h4
X,
4
X
i
= 1+
m
2
k,
Ù
¥
k
•
Ý
þ
g
X
þ
-
Ç
.
DOI:10.12677/pm.2023.1341121064
n
Ø
ê
Æ
€
¸
{
E
1
,E
2
,...,E
m
}
´
(
M,g
)
˜
‡
Û
ÜI
O
Ä
,
{
ω
1
,ω
2
,...,ω
m
}
•
Ù
é
ó
Ä
.
¿
…
E
i
(
X
) =
X
i
,
@
o
k
µ
h
X
i
,X
j
i
=
δ
ij
,
1
≤
i,j
≤
m,
½
Â
N
=
−
1
m
4
X
−
1
2
m
2
h4
X,
4
X
i
X,
(2.2)
@
o
k
h
X,X
i
=
h
N,N
i
= 0
,
h
X,N
i
= 1
,
h
X
i
,X
i
= 0
,
(1
≤
i,j
≤
m
)
.
(2.3)
…
h
X,dX
i
= 0
,
h4
X,X
i
=
−
m,
h4
X,X
k
i
= 0
,
1
≤
k
≤
m.
(2.4)
Ï
d
span
{
N,X
}⊥
span
{
X
1
,X
2
,...,X
m
}
,
½
Â
V
=
{
span
{
N,X
}⊕
span
{
X
1
,X
2
,...,X
m
}}
⊥
,
(2.5)
-
V
´
f
˜
m
span
{
X,N,X
1
,X
2
,...,X
m
}
3
R
m
+
p
+2
1
¥
Ö
˜
m
,
Œ
±
e
¡
©
)
.
R
m
+
p
+2
1
=
span
{
X,N
}⊕
span
{
X
1
,X
2
,...,X
m
}⊕
V,
(2.6)
·
‚
é
©
•
I
k
X
e
5
½
:1
≤
i,j,k,
···≤
m
;
m
+1
≤
α
≤
m
+
p
,
·
‚
„
U
ì
O
Ï
d
"
½
%
@
-
E
•
IL
«
3
ˆ
g
‰
Œ
S
¦
Ú
.
¡
V
´
x
:
M
m
→
S
m
+
p
M¨obius
{
m
.
{
m
V
÷
M
m
˜
‡
Û
ÜI
O
Ä
•
{
E
m
+1
,...,E
m
+
p
}
.
@
o
{
X,N,X
1
,...,X
m
,E
m
+1
,...,E
m
+
p
}
¤
R
m
+
p
+2
÷
M
m
¹
Ä
I
e
.
Ù
(
•
§
X
e
:
dX
=
X
i
ω
i
X
i
,
(2.7)
dN
=
X
i,j
A
ij
ω
j
X
i
+
X
i,α
C
α
i
ω
i
E
α
,
(2.8)
dX
i
=
−
X
j
A
ij
ω
j
X
−
ω
i
N
+
X
j
ω
ij
X
j
+
X
i,α
B
α
ij
ω
j
E
α
,
(2.9)
DOI:10.12677/pm.2023.1341121065
n
Ø
ê
Æ
€
¸
dE
α
=
−
X
i
C
α
i
ω
i
X
−
X
i,j
B
α
ij
ω
j
X
i
+
X
β
ω
αβ
E
β
,
(2.10)
Ù
¥
{
ω
ij
}
´
M¨obius
Ý
þ
g
é
ä
/
ª
,
{
ω
αβ
}
´
M
m
þ
{
é
ä
,
…
k
A
ij
=
A
ji
,B
α
ij
=
B
α
ji
.
?
A
=
X
i,j
A
ij
ω
i
⊗
ω
j
,
(2.11)
B
=
X
i,j,α
B
α
ij
ω
i
⊗
ω
j
E
α
,
(2.12)
Φ =
X
i,α
C
α
i
ω
i
E
α
,
(2.13)
Ñ
´
M¨obius
ØC
þ
¶
©
O
¡
A
•
x
Blaschke
Ü
þ
,
B
•
x
M¨obius
1
Ä
/
ª
,Φ
•
x
M¨obius
/
ª
.
©
O
½
Â
C
α
i
,A
ij
,B
α
ij
˜
C
ê
X
e
X
j
C
α
i,j
ω
j
=
dC
α
i
+
X
j
C
α
j
ω
ji
+
X
β
C
β
i
ω
βα
,
(2.14)
X
k
A
ij,k
=
dA
ij
+
X
A
ik
ω
kj
+
X
k
A
kj
ω
ki
,
(2.15)
X
B
α
ij,k
ω
k
=
dB
ij
+
X
k
B
α
ik
ω
kj
+
X
k
B
α
kj
ω
ki
+
X
β
B
β
ij
ω
βα
,
(2.16)
…
dω
ij
−
X
k
ω
ik
∧
ω
kj
=
−
1
2
R
ijkl
ω
k
∧
ω
l
,R
ijkl
=
−
R
ijlk
,
(2.17)
@
o
Œ
(
•
§
Œ
È
^
‡
•
A
ij,k
−
A
ik,j
=
B
α
ik
C
α
j
−
B
α
ij
C
α
k
,
(2.18)
C
α
i,j
−
C
α
j,i
=
B
α
ik
A
kj
−
B
α
kj
A
ki
,
(2.19)
B
α
ij,k
−
B
α
ik,j
=
δ
ij
C
α
k
−
δ
ik
C
α
j
,
(2.20)
R
ijkl
=
X
α
B
α
ik
B
α
jl
−
B
α
il
B
α
jk
+(
δ
ik
A
jl
+
δ
jl
A
ik
−
δ
il
A
jk
−
δ
jk
A
il
)
,
(2.21)
tr
(
A
) =
1
2
m
1+
m
m
−
1
R
,
X
i
B
α
ii
= 0
.
(2.22)
DOI:10.12677/pm.2023.1341121066
n
Ø
ê
Æ
€
¸
Ù
¥
´
{
A
ij,k
}
,
B
α
ij,k
Ú
C
α
i,j
´
A
,
B
Ú
Φ
'
u
g
p
é
ä
C
ê
2
I
O
Ä
e
©
þ
.
i
=
j
¦
Ú
−
X
B
α
ij,i
= (
m
−
1)
C
α
j
,
(2.23)
i
=
k
¦
Ú
X
ij
B
α
ij
2
=
m
−
1
m
,
(2.24)
½
Â
A
ij
Ú
B
ij
C
ê
X
l
A
ij,kl
ω
l
=
dA
ij,k
+
X
l
A
lj,k
ω
li
+
X
l
A
il,k
ω
lj
+
X
A
ij,l
ω
lk
,
(2.25)
X
l
B
α
ij,kl
ω
l
=
dB
α
ij,k
+
X
l
B
α
lj,k
ω
li
+
X
l
B
α
il,k
ω
lj
+
X
l
B
α
ij,l
ω
lk
+
X
β
B
β
ij,k
ω
βα
,
(2.26)
3.
[
²
1
V
g
½
Â
3.1
(
M
n
,g
)
´
˜
‡
i
ù6
/
,
∇
Ú
R
©
O
•
Ý
þ
g
¤
p
é
ä
Ú
-
Ç
Ü
þ
.
X
J
˜
‡
Ü
þ
T
÷
v
RT
= 0,
@
o
K
¡
Ü
þ
T
´
[
²
1
.
X
,
Y
,
Z
´
M
n
þ
1
w
•
þ
|
,
Ù
¥
R
(
X,Y
)
Z
=
−
∇
X
∇
Y
−∇
Y
∇
X
−∇
[
X,Y
]
Z,
(3.1)
T
•
C
Ü
þ
|
,
K
ò
RT
½
Â
•
(
R
(
X,Y
)
T
)(
Z,W
) :=
R
(
X,Y
)(
T
(
Z,W
))
−
T
(
R
(
X,Y
)
Z,W
)
−
T
(
Z,R
(
X,Y
)
W
)
.
(3.2)
·
K
3.2
C
Ü
þ
T
[
²
1
…
=
T
(
R
(
X,Y
)
Z,W
)+
T
(
Z,R
(
X,Y
)
W
) = 0
.
y
é
∀
f
∈
C
∞
(
M
),
k
∇
X
f
=
X
(
f
).
K
(
∇
X
∇
Y
)
f
=
∇
X
(
∇
Y
f
) =
∇
X
(
Y
(
f
)) =
X
(
Y
(
f
))
,
(3.3)
Ó
ž
d
(3.1),
k
R
(
X,Y
)(
f
) =
−
∇
X
∇
Y
−∇
Y
∇
X
−∇
[
X,Y
]
(
f
)
=
−
(
X
◦
Y
−
Y
◦
X
−
[
X,Y
])(
f
)
= 0
.
(3.4)
DOI:10.12677/pm.2023.1341121067
n
Ø
ê
Æ
€
¸
d
d
y
²
T
•
C
Ü
þ
ž
,
du
T
(
Z,W
)
•
1
w
¼
ê
,
k
R
(
X,Y
)(
T
(
Z,W
)) = 0
,
(3.5)
¤
±
d
½
Â
3.1
•
,
C
Ü
þ
T
[
²
1
…
=
0 = (
R
(
X,Y
)
T
)(
Z,W
) =
−
T
(
R
(
X,Y
)
Z,W
)
−
T
(
Z,R
(
X,Y
)
W
)
.
(3.6)
=
T
(
R
(
X,Y
)
Z,W
)+
T
(
Z,R
(
X,Y
)
W
) = 0,
·
K
¤
á
.
{
e
1
,e
2
,...,e
n
}
´
(
M
n
,g
)
˜
‡
Û
ÜI
O
Ä
,
{
ω
1
,ω
2
,...,ω
n
}
•
Ù
é
ó
Ä
.
K
R
(
e
i
,e
j
)
e
k
=
R
ijkl
e
l
,
(3.7)
·
K
3.2
Œ
¤
C
Ü
þ
T
[
²
1
…
=
R
ijkm
T
ml
+
R
ijlm
T
mk
= 0
.
(3.8)
½
Â
3.3
x
:
M
n
→
S
n
+1
•
åE
\
,
g
Ú
B
©
O
•
x
M¨obius
Ý
þ
Ú
M¨obius
1
Ä
/
ª
.
X
J
B
'
u
g
p
é
ä
´
[
²
1
,
K
¡
x
•
M¨obius
[
²
1
‡
-
¡
,
½
M-
[
²
1
‡
-
¡
.
3
2004
c
,
L
Ú
o
°
¥
3
©
z
[3]
¥
k
X
e
©
a
½
n
µ
½
n
3.4
x
:
M
n
→
S
n
+1
(
n
≥
2)
´
ä
k
²
1
M¨obius
1
Ä
/
ª
Ã
ß
E
\
‡
-
¡
.
@
o
M
n
Û
Ü
M¨obius
d
e
‡
-
¡
ƒ
˜
µ
(i)
‚
¡
S
k
(
a
)
×
S
n
−
k
√
1
−
a
2
,
Ù
¥
1
≤
k
≤
n
−
1;
(ii)
R
n
+1
¥
I
O
Î
¡
S
k
(
a
)
×
R
n
−
k
3
N
σ
e
”
,
Ù
¥
1
≤
k
≤
n
−
1;
(iii)
H
n
+1
¥
I
O
Î
¡
S
k
(
a
)
×
H
n
−
k
√
1+
a
2
3
N
τ
e
”
,
Ù
¥
1
≤
k
≤
n
−
2;
(iv)
d
~
1
‰
Ñ
‡
-
¡
CSS
(
p,q,a
).
Ù
¥
H
n
+1
´
n
+1
‘
V
-
˜
m
,
½
Â
•
H
n
+1
=
(
y
0
,y
1
)
∈
R
+
×
R
n
+1
|−
y
2
0
+
y
1
·
y
1
=
−
1
,
σ
:
R
n
+1
→
S
n
+1
´
¥
4
Ý
K
_
,
½
Â
•
σ
(
u
) =
1
−|
u
|
2
1+
|
u
|
2
,
2
u
1+
|
u
|
2
!
,u
∈
R
n
+1
,
τ
:
H
n
+1
→
S
n
+1
´
5
N
,
½
Â
•
τ
(
y
0
,y
1
) =
1
y
0
,
y
1
y
0
,
(
y
0
,y
1
)
∈
H
n
+1
.
~
1
CSS
(
p,q,a
)
DOI:10.12677/pm.2023.1341121068
n
Ø
ê
Æ
€
¸
é
‰
½
g
,
ê
p,q,p
+
q<n
,
9
¢ê
a
∈
(0
,
1)
Ú
b
=
√
1
−
a
2
,
•
Ä
Û
-
¦
È
i
\
‡
-
¡
u
:
S
p
(
a
)
×
S
q
(
b
)
×
R
n
−
p
−
q
−
1
→
R
n
+1
:
u
= (
tu
0
,tu
00
,u
000
)
,u
0
∈
S
p
(
a
)
,u
00
∈
S
q
(
b
)
,t
∈
R
+
,u
000
∈
R
n
−
p
−
q
−
1
,
-
x
=
σ
◦
u
:
S
p
(
a
)
×
S
q
(
b
)
×
R
+
×
R
n
−
p
−
q
−
1
→
S
n
+1
,
½
Â
CSS
(
p,q,a
) =
x
u
:
S
p
(
a
)
×
S
q
(
b
)
×
R
+
×
R
n
−
p
−
q
−
1
.
§
´
S
n
+1
¥
‡
-
¡
.
4.
Ì
‡
½
n
y
²
½
n
1.1
y
d
©
z
[1]
•
|
B
|
2
=
n
−
1
n
,
?
•
Ä
4|
B
|
2
0 =
1
2
4|
B
|
2
=
1
2
4
X
i,j
(
B
ij
)
2
=
X
k
X
i,j
B
ij
B
ij
!
k
=
X
i,j,k
(
B
ij,k
)
2
+
X
i,j,k
B
ij
B
ij,kk
.
(4.1)
ò
B
ij,kk
•
B
ij,kk
= (
B
ij,kk
−
B
ik,jk
)+(
B
ki,jk
−
B
ki,kj
)+(
B
ki,kj
−
B
kk,ij
)+
B
kk,ij
.
(4.2)
é
Œ
È
^
‡
B
ij,k
−
B
ik,j
=
δ
ij
C
k
−
δ
ik
C
j
¦
Œ
B
ij,kk
−
B
ik,jk
=
δ
ij
C
k,k
−
δ
ik
C
j,k
,
(4.3)
DOI:10.12677/pm.2023.1341121069
n
Ø
ê
Æ
€
¸
d
‡
-
¡
M
n
[
²
1
,
L
y
²
B
ij,kl
=
B
ij,lk
,
2
ò
ƒ
†
(3.3)
˜
Ó
“
\
(3.2)
Œ
B
ij,kk
= (
δ
ij
C
k,k
−
δ
ik
C
j,k
)+0+(
δ
ki
C
k,j
−
δ
kk
C
i,j
)+
B
kk,ij
,
(4.4)
2
ò
(3.4)
é
k
¦
Ú
X
k
B
ij,kk
=
δ
ij
X
k
C
k,k
−
C
j,i
+
C
i,j
−
nC
i,j
(4.5)
d
‡
-
¡
M
n
[
²
1
,
L
y
²
C
i,j
=
C
j,i
,(3.5)
Œ
z
•
X
k
B
ij,kk
=
δ
ij
X
k
C
k,k
−
nC
i,j
.
(4.6)
Œ
O
Ž
X
i,j,k
B
ij
B
ij,kk
=
X
i,j,k
B
ij
(
δ
ij
C
k,k
−
nC
i,j
)
=
−
X
i,j
nB
ij
C
i,j
.
(4.7)
•
ò
|∇
B
|
2
=
P
i,j,k
(
B
ij,k
)
2
9
(3.7)
“
\
(3.1)
k
|∇
B
|
2
=
−
X
i,j,k
B
ij
B
ij,kk
=
X
i,j
nB
ij
C
i,j
.
(4.8)
du
f
6
/
M
n
M¨obius
/
ª
Φ
²
1
(
∇
Φ=0),
=
C
α
i,j
= 0,
¤
±
d
(3.8)
•
ª
Œ
±
y
∇
B
= 0,
=
B
²
1
.
K
Š
â
½
n
2.4
Œ
•
,
½
n
1.1
¤
á
.
½
n
1.2
y
²
y
?
˜
Ú
,
e
‡
-
¡
M
n
´
;
,
K
Œ
é
(3.8)
3
‡
-
¡
M
n
þ
È
©
,
k
Z
M
|∇
B
|
2
dM
=
n
Z
M
X
i,j
B
ij
C
i,j
dM,
(4.9)
|
^
©
Ü
È
©
,
Œ
Z
M
|∇
B
|
2
dM
=
n
Z
M
X
i,j
h
(
B
ij
·
C
i
)
j
−
B
ij,j
C
i
i
dM,
(4.10)
d
Ñ
ݽ
n
Œ
Z
M
|∇
B
|
2
dM
=
−
n
Z
M
X
i,j
B
ij,j
C
i
dM,
(4.11)
DOI:10.12677/pm.2023.1341121070
n
Ø
ê
Æ
€
¸
ò
(2.1.23)
ª
“
\
(3.0.30)
Z
M
|∇
B
|
2
dM
=
n
(
n
−
1)
Z
M
C
2
i
dM
=
n
(
n
−
1)
Z
M
|
Φ
|
2
dM.
(4.12)
d
d
y
²
½
n
1.2
¤
á
.
½
n
1.3
y
²
y
Blaschke
Ü
þ
•
•
ƒ
'
V
g
Œ
ë
•
©
z
[2].
ù
p
·
‚
•
Ä
O
Ž
1
2
4|∇
λ
|
2
1
2
4|∇
λ
|
2
=
X
i,j
λ
2
i,j
+
λ
i
λ
i,jj
=
X
i,j
λ
2
i,j
+
λ
i
λ
j,ij
(4.13)
d
Ricci
ð
ª
Œ
1
2
4|∇
λ
|
2
=
X
i,j
λ
2
i,j
+
X
i,j,m
λ
i
(
λ
j,ji
+
λ
m
R
mjij
)
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(
4
λ
)
i
+
X
i,m
λ
i
λ
m
R
im
,
(4.14)
d
©
z
[1]
•
,
R
ij
=
−
P
k
B
ik
B
kj
+
tr
(
A
)
δ
ij
+(
n
−
2)
A
ij
,
ò
ƒ
“
\
(3.14)
1
2
4|∇
λ
|
2
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(
4
λ
)
i
+
X
i,m
λ
i
λ
m
−
X
k
B
ik
B
km
+
tr
(
A
)
δ
im
+(
n
−
2)
A
im
!
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(
4
λ
)
i
+
X
i,m
λ
i
λ
m
−
X
k
B
ik
B
km
+
nλδ
im
+(
n
−
2)
λδ
im
!
=
X
i,j
λ
2
i,j
+
X
i
λ
i
(
4
λ
)
i
−
X
i,m
λ
i
λ
m
B
ik
B
km
+2(
n
−
1)
|∇
λ
|
2
λ,
(4.15)
d
P
i,j
λ
2
i,j
≥
P
i
λ
2
i,i
,
2
d
…
Ü
)
–
]
Ø
ª
k
P
i
λ
2
i,i
≥
1
n
(
P
i
λ
i,i
)
2
,
(3.15)
Œ
˜
•
1
2
4|∇
λ
|
2
≥
1
n
X
i
λ
i,i
!
2
+
X
i
λ
i
(
4
λ
)
i
−
X
i,m
λ
i
λ
m
B
ik
B
km
+2(
n
−
1)
|∇
λ
|
2
λ
=
1
n
(
4
λ
)
2
+
X
i
λ
i
(
4
λ
)
i
−
X
k
X
i
B
ik
λ
i
!
2
+2(
n
−
1)
|∇
λ
|
2
λ,
(4.16)
DOI:10.12677/pm.2023.1341121071
n
Ø
ê
Æ
€
¸
du
P
k
h
P
i
(
B
ik
)
2
·
P
i
(
λ
i
)
2
i
≥
P
k
(
P
i
B
ik
λ
i
)
2
,
K
Œ
U
Y
˜
1
2
4|∇
λ
|
2
≥
1
n
(
4
λ
)
2
+
X
i
λ
i
(
4
λ
)
i
+2(
n
−
1)
λ
|∇
λ
|
2
−
X
k
"
X
i
(
B
ik
)
2
·
X
i
(
λ
i
)
2
#
=
1
n
(
4
λ
)
2
+
X
i
λ
i
(
4
λ
)
i
+2(
n
−
1)
λ
|∇
λ
|
2
−
n
−
1
n
|∇
λ
|
2
,
(4.17)
d
f
6
/
M
n
;
,
K
é
(3.17)
ª
ü
>
3
M
n
þ
È
©
k
0
≥
Z
M
1
n
(
4
λ
)
2
dM
+
Z
M
X
i
λ
i
(
4
λ
)
i
dM
+
Z
M
2(
n
−
1)
λ
−
1
2
n
|∇
λ
|
2
dM
=
Z
M
1
n
(
4
λ
)
2
dM
+
Z
M
X
i
(
λ
i
·4
λ
)
i
dM
−
Z
M
X
i
λ
i,i
·4
λdM
+
Z
M
2(
n
−
1)
λ
−
1
2
n
|∇
λ
|
2
dM
=
Z
M
1
n
−
1
(
4
λ
)
2
dM
+
Z
M
2(
n
−
1)
λ
−
1
2
n
|∇
λ
|
2
(4.18)
n
k
1
n
Z
M
(
4
λ
)
2
dM
≥
Z
M
2
λ
−
1
2
n
|∇
λ
|
2
dM
(4.19)
½
n
1.3
y
.
ë
•
©
z
[1]Wang,C.P.(1998)MoebiusGeometryofSubmanifoldsin
s
n
.
ManuscriptaMathematica
,
96
,
517-534.https://doi.org/10.1007/s002290050080
[2]Guo,Z., Fang,J.B.and Lin,L.M.(2011) HypersurfaceswithIsotropicBlaschke Tensor.
Jour-
naloftheMathematicalSocietyofJapan
,
63
,1155-1186.
https://doi.org/10.2969/jmsj/06341155
[3]Hu,Z.J.andLi,H.Z.(2004)ClassificationofHypersurfaceswithParallelM¨obiusSecond
FundamentalFormin
S
n
+1
.
ScienceChina-Mathematics
,
47
,417-430.
DOI:10.12677/pm.2023.1341121072
n
Ø
ê
Æ