设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(4),1135-1141
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.134118
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
ooo
|||
___
1
,
2
∗
§§§
MMM
€€€€€€
1
,
2
§§§
"""
ûûû
1
,
2
§§§
………
ÖÖÖ
1
,
2
1
ž
h
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
#
õ
ž
w
2
ž
h
“
‰
Œ
Æ
A^
ê
Æï
Ä
¤
§
#
õ
ž
w
Â
v
F
Ï
µ
2023
c
3
20
F
¶
¹
^
F
Ï
µ
2023
c
4
21
F
¶
u
Ù
F
Ï
µ
2023
c
4
28
F
Á
‡
Ä
u
Œ
˜
—
k
S
\
²
þ
(SUOWA)
Ž
f
´
\
²
þ
(WA)
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
í
2
,
©
3
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
Ä
:
þ
,
(
Ü
Ä
u
Œ
˜
—
k
S
\
²
þ
Ž
f
A
:
,
?
Ø
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
ƒ
'
5
Ÿ
,
l
éõ
ê
â?
1
•
Ð
/
8
¤
"
'
…
c
Sugeno
ÿ
Ý
§
Choquet
È
©
§
SUOWA
Ž
f
TheChoquetIntegralofSemi-Uninorm
BasedonSugenoMeasures
QiaoxiaLi
1
,
2
∗
,SusuXu
1
,
2
,ZhenXin
1
,
2
,YuheYang
1
,
2
1
SchoolofMathematicsandStatistics,YiliNormalUniversity,Yining Xinjiang
2
InstituteofAppliedMathematics, YiliNormalUniversity,Yining Xinjiang
Received:Mar.20
th
,2023;accepted:Apr.21
st
,2023;published:Apr.28
th
,2023
Abstract
Thesemi-uninormorderedweightedaveraging(SOWA)operatorsisgeneralizeofweightedmeans
andOWAoperators.Inthispaper,theChoquetIntegralofsemi-uninormbasedonSugeno
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
o
|
_
,
M
€€
,
"
û
,
…
Ö
.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
[J].
n
Ø
ê
Æ
,2023,13(4):
1135-1141.DOI:10.12677/pm.2023.134118
o
|
_
measuresarediscussedandcombinethecharacteristicsofthethesemi-uninormorderedweighted
averagingoperators.
Keywords
SugenoMasures,ChoquetIntegral,SUOWAOperators
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
c
ó
à
Ü
$
Ž
Î
´
à
Ü
õ
‡
‰
Æ
+
•
Š
r
Œ
ó
ä
.
3
y
k
Œ
þ
Ž
f
¥
,Choquet
È
©
Ï
Ù
Ï
^
5
ˆ
ü
X
-
‡
Ú
[1].
Š
˜
J
´
Choquet
È
©
í
2
ü
‡
Í
¶
Ž
f
,
\
þ
Š
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
[2]
§
§
‚
3
©
z
¥
ª
„
¦
^
.
¯¢
þ
,
3
&
E
8
¤
ž
,
\
²
þ
(WA)
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
´
Ø
Ó
.
\
²
þ
Ž
f
Š
â
z
‡
&
E
-
‡
5
(
á
5
-
)
5
\
3
X
Ú
¥
-
‡
5
,
k
S
\
²
þ
(OWA)
Ž
f
K
Š
â
§
‚
ƒ
é
˜
-
‡
5
(
˜
-
)
5
\
Ù
3
X
Ú
¥
-
‡
5
.
\
²
þ
(WA)
Ž
f
Ú
k
S
\
²
þ
(OWA)
Ž
f
3
Ü
6
›
›
ì
!
÷
¿
Ý
¯
K
!
õ
O
K
à
8
¯
K
•
¡
[3–5]
?
1
2
•
ï
Ä
.
,
é
õ
Æ
ö3
Ø
Ó
µ
e
ò
WA
Ž
f
Ú
OWA
Ž
f
?
˜
Ú
ÿ
Ð
!
?
Ø
Ú
ï
Ä
[6].2015
c
,Llamazares
J
Ñ
Ä
u
Œ
˜
—
k
S
\
²
þ
(SUOWA)
Ž
f
.
X
Ú
ï
Ä
Q
•
Ä
á
5
-
q
•
Ä
˜
-
8
¤
•{
,
¿
A^u
Ø
(
½õ
á
5
û
ü
¥
,
Ù
A
:
´
3
&
E
8
¤
Ž
f
¥
•
)ü
|
-
•
þ
[7].1974
c
,
F
Æ
ö
Sugeno
í
2
²
;
V
Ç
ÿ
Ý
Œ
Œ
\
5
,
±
å
^
‡
f
ü
N
5
“
²
;
V
Ç
¥
Œ
\
5
^
‡
,
J
Ñ
ÿ
Ý
V
g
,
ù
•·
‚
J
ø
˜
‡
U
k
£
ã
y
¢
¯
K
¥
•
3
ƒ
p
•
6
,
ƒ
p
'
é
y–
ó
ä
[8–11].
8
¤
Ž
f
n
Ø
,
˜
‡
-
‡
S
N
´
8
(
&
E
-
(
½
¯
K
&
E
,
-
N
y
û
ü
ö
‰
Ñ
û
ü
&
E
-
‡
5
§
Ý
,
Ù
Œ
†
'
X
•
ª
û
ü
JÚ
8
((
J
.
X
Û
ò
ü
|
ÿ
Ý
(
Ü
å
5
,
éõ
ê
â?
1
•
Ð
/
8
¤
(
X
Q
•
Ä
á
5
-
q
•
Ä
˜
-
8
¤
•{
),
Š
•
n
í
2
˜
—
½
Œ
˜
—
´
²
~
•
Ä
.2019
c
,
ý
!
o
/
Ï
u
Sugeno
ÿ
Ý
Ú
n
í
2
˜
—
Ú
Œ
˜
—
½
Â
[12],
J
Ñ
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
±
9
†
ƒ
ƒ
'
é
orness
ÿ
ݽ
Â
9
Ù
5
Ÿ
[13],
¿
é
Ù
?
1
Þ
~
`
²
.
©
1
˜
Ü
©
Â
8
ÿ
Ý
!
Œ
˜
—
½
Â
;
1
Ü
©
Š
â
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
½
Â
9
Ù
¦
5
Ÿ
,
é
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
Ù
¦
5
Ÿ
?
˜
Ú
!
Ø
Ú
ï
Ä
.
2.
½
Â
9
`
²
X
•
š
˜
8
Ü
,
A
´
d
X
f
8
¤
σ
−
“
ê
,
¡
8
¼
ê
µ
:
A→
[0
,
∞
)
•
5
ÿ
Ý
(Sugeno
ÿ
Ý
),
´
•
[8–11]:
(1)
µ
(
∅
) = 0;
(2)
µ
(
X
) = 1;
(3)
é
u
A,B
∈A
,
e
A
⊆
B
,
K
µ
(
A
)
≤
µ
(
B
).
DOI:10.12677/pm.2023.1341181136
n
Ø
ê
Æ
o
|
_
½½½
ÂÂÂ
1.1
X
•
k
•
8
,
µ
´
A
þ
Sugeno
ÿ
Ý
.
½
Â
x
=(
x
1
,x
2
,
···
,x
n
)
3
X
þ
Ä
u
ÿ
Ý
µ
Choquet
È
©
•
(
C
)
Z
A
x
dµ
=
n
X
i
=1
x
i
(
µ
(
A
i
)
−
µ
(
A
i
+1
))
.
Ø
J
O
Ž
(
C
)
Z
A
x
dµ
=
n
X
i
=1
(
x
i
−
x
i
+1
)
µ
(
A
i
)
.
Ù
¥
,
X
= (1
,
2
,
···
,n
)
,A
⊆
X,A
i
=
{
i,i
+1
,
···
,n
}
,i
= 1
,
2
,
···
,n,A
n
+1
=
∅
,x
1
≥
x
2
≥···≥
x
n
.
½½½
ÂÂÂ
1.2
[12]
¼
ê
U
:[0
,
1]
2
→
[0
,
1].
¡
U
´
˜
‡
Œ
˜
—
,
´
•
U
é
z
‡
C
þ
ä
k
ü
N
5
…
•
3
ü
e
∈
[0
,
1],
=
é
?
¿
x
∈
[0
,
1],
•
3
e
∈
[0
,
1]
,
k
U
(
e,x
) =
U
(
x,e
) =
x.
±
e
•
ü
‡
ë
Y
Œ
˜
—
µ
~
1.1.
U
¯
P
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
[1
/n,
1]
2
,
nxy
otherwise.
U
T
L
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
max(
x
+
y
−
1
/n,
0)otherwise,
du
U
¯
P
Ú
U
T
L
Ñ
´
ë
Y
,
K
þ
¡
ü
‡
Œ
˜
—
Œ
±
¤
µ
U
T
L
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
max(
x
+
y
−
1
/n,
0)otherwise,
U
¯
p
(
x,y
) =
max(
x,y
)if(
x,y
)
∈
(1
/n,
1]
2
,
nxy
otherwise.
½½½
ÂÂÂ
1.3
[13]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
Œ
˜
—
U
∈
˜
U
1
n
.
é
u
A
⊆
X,
½
Â
υ
U
µ
(1)
,µ
(2)
: 2
X
→
R
•
υ
U
µ
(1)
,µ
(2)
(
A
) =
|
A
|
U
µ
(1)
(
A
)
|
A
|
,
µ
(2)
(
A
)
|
A
|
.
e
A
=
∅
,
P
υ
U
µ
(1)
,µ
(2)
(
∅
) =0.
|
A
|
L
«
8
Ü
A
Ä
ê
.
Ù
¥
,
˜
U
1
n
=
{
U
∈U
1
n
|
U
(
1
k
,
1
k
)
≤
1
k
,
∀
k
∈
X
}
.
w
,
/
,
U
1
n
i
⊆
˜
U
1
n
.
N
´
O
Ž
:
(1)
υ
U
µ
(1)
,µ
(2)
(
∅
) = 0;
(2)
υ
U
µ
(1)
,µ
(2)
(
X
) =
|
X
|
U
(
µ
(1)
(
X
)
|
X
|
,
µ
(2)
(
X
)
|
X
|
) = 1;
(3)
υ
U
µ
(1)
,µ
(2)
ü
N
CX
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
) = max
B
⊆
A
υ
U
µ
(1)
,µ
(2)
(
B
)
÷
v
ü
N
5
.
3.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
9
A
5
½½½
ÂÂÂ
2.1
[13]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
U
∈
˜
U
1
n
.
x
=(
x
1
,x
2
,
···
x
n
)
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
Choquet
È
©
C
U
µ
(1)
,µ
(2)
:
R
n
→
R
½
Â
•
C
U
µ
(1)
,µ
(2)
(
x
) =
n
X
i
=1
(ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
]
)
−
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
−
1]
))
x
[
i
]
,
(1)
DOI:10.12677/pm.2023.1341181137
n
Ø
ê
Æ
o
|
_
Ù
¥
A
[
i
]
=
{
[1]
,
[2]
,
···
,
[
i
]
}
,
A
[0]
=
∅
,
x
[
i
]
(
i
= 1
,
2
,
···
,n
)
L
«
x
¥
1
i
‡
Œ
ê
,
=
x
[1]
≥
x
[2]
≥···≥
x
[
n
]
.
Ø
J
O
Ž
C
U
µ
(1)
,µ
(2)
(
x
) =
n
X
i
=1
ˆ
υ
U
µ
(1)
,µ
(2)
(
A
[
i
]
)(
x
[
i
]
−
x
[
i
+1]
)
.
R
n
þ
˜
‡
\
•
þ
q
´
•
q
= (
q
1
,q
2
,
···
,q
n
)
∈
[0
,
1]
n
…
n
P
i
=1
q
i
= 1
.
W
L
«
R
n
þ
¤
k
\
•
þ
8
Ü
.
5
2.1
d
(1)
ª
Œ
•
,
p
=(
p
1
,p
2
,
···
,p
n
)
,
ω
=(
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
)=
P
i
∈
A
p
i
,µ
(2)
(
A
)=
|
A
|
P
i
=1
ω
i
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
-
•
þ
p
,
ω
Œ
˜
—
k
S
\
²
þ
(SUOWA)
Ž
f
S
U
p
,
ω
:
S
U
p
,
ω
(
x
) =
n
X
i
=1
(ˆ
υ
U
p
,
ω
(
A
[
i
]
)
−
ˆ
υ
U
p
,
ω
(
A
[
i
−
1]
))
x
[
i
]
.
5
2.2
d
(1)
ª
Œ
•
,
p
= (
p
1
,p
2
,
···
,p
n
)
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
P
i
∈
A
p
i
,µ
(2)
(
A
) =
|
A
|
/n
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
-
•
þ
p
\
²
þ
Ž
f
M
p
:
M
p
(
x
) =
n
X
i
=1
p
i
x
i
.
5
2.3
d
(1)
ª
Œ
•
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
|
A
|
/n,µ
(2)
(
A
) =
|
A
|
P
i
=1
ω
i
ž
,
C
U
µ
(1)
,µ
(2)
(
x
)
ò
z
•
Ä
u
ω
k
S
\
²
þ
Ž
f
(OWA
Ž
f
)
O
ω
:
O
ω
(
x
) =
n
X
i
=1
ω
i
x
[
i
]
.
½½½
ÂÂÂ
2.2
[13]
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
U
∈
˜
U
1
n
.
Ä
u
Œ
˜
—
Sugeno
ÿ
Ý
Choquet
È
©
orness
ÿ
Ý
orness
(
C
U
µ
(1)
,µ
(2)
)
½
Â
•
orness
(
C
U
µ
(1)
,µ
(2)
) =
1
n
−
1
n
−
1
X
t
=1
1
n
t
X
T
⊆
X
|
T
|
=
t
υ
U
µ
(1)
,µ
(2)
(
T
)
.
(2)
555
2.4
d
(2)
ª
Œ
•
,
p
= (
p
1
,p
2
,
···
,p
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
P
i
∈
A
p
i
,µ
(2)
(
A
) =
P
|
A
|
i
=1
ω
i
ž
,
orness
(
C
U
µ
(1)
,µ
(2)
)
ò
zÄ
u
-
•
þ
p
,
ω
Œ
˜
—
k
S
\
²
þ
Ž
f
(SUOWA
Ž
f
)
orness
ÿ
Ý
orness
(
S
U
p
,
ω
) :
orness
(
S
U
p
,
ω
) =
1
n
−
1
n
−
1
X
t
=1
1
n
t
X
T
⊆
X
|
T
|
=
t
υ
U
p
,
ω
(
T
)
.
555
2.5
d
(2)
ª
Œ
•
,
η
= (
1
n
,
1
n
,
···
,
1
n
)
,
ω
= (
ω
1
,ω
2
,
···
,ω
n
)
´
ü
‡
-
•
þ
,
µ
(1)
(
A
) =
|
A
|
n
,µ
(2)
(
A
) =
P
|
A
|
i
=1
ω
i
ž
,
orness
(
C
U
µ
(1)
,µ
(2)
)
ò
z
•
Ä
u
ω
k
S
\
²
þ
Ž
f
(OWA
Ž
f
)
orness
ÿ
Ý
orness
(
O
ω
) :
orness
(
O
ω
) =
1
n
−
1
n
−
1
X
i
=1
(
n
−
i
)
ω
i
.
½½½
nnn
2.1
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
e
P
j
i
=1
µ
(2)
≤
j/n
…
min
i
∈
X
µ
(1)
+min
i
∈
X
µ
(2)
≥
1
/n
,
K
é
u
?
¿
T
⊆
X
,
¦
|
T
|
=
t
≥
1,
k
DOI:10.12677/pm.2023.1341181138
n
Ø
ê
Æ
o
|
_
v
U
T
L
µ
(1)
,µ
(2)
(
T
) =
X
i
∈
T
µ
(1)
(
i
)+
t
X
i
=1
µ
(2)
(
i
)
−
t
n
½½½
nnn
2.2
X
•
k
•
8
,
µ
(1)
´
X
þ
˜
‡
Sugeno
ÿ
Ý
,
e
t
≥
1,
K
X
T
⊆
X
|
T
|
=
t
X
i
∈
T
µ
(1)
(
i
) =
n
−
1
t
−
1
!
n
X
i
=1
µ
(1)
(
i
) =
n
−
1
t
−
1
!
=
n
t
!
t
n
?
˜
Ú
,
é
u
j
∈
X
,
X
T
⊆
X
\{
j
}
|
T
|
=
t
X
i
∈
T
µ
(1)
(
i
) =
n
−
2
t
−
1
!
n
X
i
=1
i
6
=
j
µ
(1)
(
i
) =
n
−
2
t
−
1
!
1
−
µ
(1)
(
j
)
=
n
−
1
t
!
t
1
−
µ
(1)
(
j
)
n
−
1
.
½½½
nnn
2.3
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
e
P
j
i
=1
µ
(2)
≤
j/n
…
min
i
∈
X
µ
(1)
+min
i
∈
X
µ
(2)
≥
1
/n
,
K
é
u
t
≥
1,
k
X
T
⊆
X
|
T
|
=
t
v
U
T
L
µ
(1)
,µ
(2)
(
T
) =
n
t
!
t
X
i
=1
µ
(2)
(
i
)
?
˜
Ú
,
é
u
j
∈
X
,
k
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
T
L
µ
(1)
,µ
(2)
(
T
) =
n
−
1
t
!
1
−
µ
(1)
(
j
)
n
−
1
−
1
n
t
+
t
X
i
=1
µ
(2)
(
i
)
!
.
y
²
Š
â
½
n
2.1
Ú
½
n
2.2
§
Œ
X
T
⊆
X
|
T
|
=
t
v
U
T
L
µ
(1)
,µ
(2)
(
T
) =
X
T
⊆
X
|
T
|
=
t
X
i
∈
T
µ
(1)
(
i
)+
X
T
⊆
X
|
T
|
=
t
t
X
i
=1
µ
(2)
(
i
)
−
X
T
⊆
X
|
T
||
=
t
t
n
=
n
t
!
t
n
+
n
t
!
t
X
i
=1
µ
(2)
(
i
)
−
n
t
!
t
n
=
n
t
!
t
X
i
=1
µ
(2)
(
i
)
,
?
˜
Ú
,
Œ
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
T
L
µ
(1)
,µ
(2)
(
T
) =
X
T
⊆
X
\{
j
}
T
|
=
t
X
i
∈
T
µ
(1)
(
i
)+
X
T
⊆
X
\{
j
}
|
T
|
=
t
t
X
i
=1
µ
(2)
(
i
)
−
X
T
⊆
X
\{
j
}
T
|
=
t
t
n
=
n
−
1
t
!
1
−
µ
(1)
(
j
)
n
−
1
−
1
n
t
+
t
X
i
=1
µ
(2)
(
i
)
!
.
DOI:10.12677/pm.2023.1341181139
n
Ø
ê
Æ
o
|
_
½½½
nnn
2.4
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
e
P
j
i
=1
µ
(2)
≤
j/n
…
min
i
∈
X
µ
(1)
+min
i
∈
X
µ
(2)
≥
1
/n
,
K
é
u
t
≥
1,
k
orness
(
S
U
T
L
µ
(1)
,µ
(2)
) =
orness
(
O
w
)
≤
0
.
5
y
²
Š
â
½
Â
2.2
†
5
2.5,
Œ
orness
S
U
T
L
µ
(1)
,µ
(2)
=
1
n
−
1
n
−
1
X
t
=1
1
n
t
!
X
T
∈
N
|
T
|
=
t
v
U
I
1
µ
(1)
,µ
(2)
(
T
)
=
1
n
−
1
n
−
1
X
t
=1
t
X
i
=1
w
i
= orness(
O
w
)
≤
0
.
5
,
½½½
nnn
2.5
X
•
k
•
8
,
µ
(1)
,µ
(2)
´
X
þ
ü
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
k
P
j
i
=1
µ
(2)
≤
j/n
…
P
j
i
=1
µ
(2)
/j
≤
j/n
,
e
T
⊆
X
…
|
T
|
=
t
≥
1,
K
v
U
¯
p
µ
(1)
,µ
(2)
(
T
) =
tU
¯
P
P
i
∈
T
µ
(1)
(
i
)
t
,
P
t
i
=1
µ
(2)
(
i
)
t
!
=
n
t
X
i
∈
T
µ
(1)
(
i
)
!
t
X
i
=1
µ
(2)
(
i
)
!
.
½½½
nnn
2.6
X
•
k
•
8
,
µ
(1)
´
X
þ
˜
‡
Sugeno
ÿ
Ý
,
é
u
¤
k
j
∈
X
,
P
j
i
=1
µ
(2)
≤
j/n
.
e
t
≥
1,
K
X
T
⊆
X
|
T
|
=
t
v
U
˜
P
µ
(1)
,µ
(2)
(
T
) =
n
t
!
t
X
i
=1
µ
(2)
(
i
)
,
?
˜
Ú
§
é
u
j
∈
X
,
k
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
˜
P
µ
(1)
,µ
(2)
(
T
) =
n
n
−
1
1
−
µ
(1)
(
j
)
n
−
1
t
!
t
X
i
=1
µ
(2)
(
i
)
.
y
²
Š
â
½
n
2.2
†
½
n
2.5,
Œ
X
T
⊆
X
|
T
|
=
t
v
U
˜
P
µ
(1)
,µ
(2)
(
T
) =
n
t
t
X
i
=1
µ
(2)
(
i
)
!
X
T
⊆
X
|
T
|
=
t
X
i
∈
T
µ
(1)
(
i
)
=
n
t
!
t
X
i
=1
µ
(2)
(
i
)
.
l
X
T
⊆
X
\{
j
}
|
T
|
=
t
v
U
~
P
µ
(1)
,µ
(2)
(
T
) =
n
t
t
X
i
=1
µ
(2)
(
i
)
!
X
T
⊆
X
\{
j
}
|
T
|
=
t
X
i
∈
T
µ
(1)
(
i
)
=
n
n
−
1
1
−
µ
(1)
(
j
)
n
−
1
t
!
t
X
i
=1
µ
(2)
(
i
)
.
DOI:10.12677/pm.2023.1341181140
n
Ø
ê
Æ
o
|
_
Ä
7
‘
8
ž
h
“
‰
Œ
Æ
?
‘
8
(2021YSYB072)
"
ë
•
©
z
[1]Grabisch,M.(1995)FuzzyIntegralinMulticriteriaDecisionMaking.
FuzzySetsandSystems
,
69
,279-298.
https://doi.org/10.1016/0165-0114(94)00174-6
[2]Yager,R.R.(1988) OnOrdered WeightedAveragingAggregation OperatorsinMuiticriteria DecisionMak-
ing.
IEEETransactionsonSystems,Man,andCybernetics
,
18
,183-190.https://doi.org/10.1109/21.87068
[3]Torra,V.(1996)WeightedOWAOperatorsforSynthesisofInformation.
ProceedingsoftheFifthIEEE
InternationalFuzzySystems
,
2
,966-971.https://doi.org/10.1109/FUZZY.1996.552309
[4]Yager,R.R.(1993)FamiliesofOWAOperators.
FuzzySetsandSystems
,
59
,125-148.
https://doi.org/10.1016/0165-0114(93)90194-M
[5]Llamazares,B.(2015)ConstructingChoquetIntegral-BasedOperatorsThatGeneralizeWeightedMeans
andOWAOperators.
InformationFusion
,
23
,131-138.https://doi.org/10.1016/j.inffus.2014.06.003
[6]
ý
O
,
o
¦
x
.
Ä
u
š
Œ
\
ÿ
Ý
OWA
Ž
f
4
8
8
¤
9
Ù
8
¤
ì
O
[J].
ñ
Ü
“
‰
Œ
ÆÆ
,
g
,
‰
Æ
‡
,
2018,46(3):48-54.
[7]Llamazares,B.(2016)SUOWAOperators:ConstructingSemi-UninormsandAnalyzingSpecificCases.
FuzzySetsandSystems
,
278
,119-136.https://doi.org/10.1016/j.fss.2015.02.017
[8]
Ç
l
,
ê
²
.
©
Û
Æ
Ä
:
[M].
®
:
I
“
ó
’
Ñ
‡
,1991.
[9]Grabisch, M., Murofushi,T. and Sugeno, M. (2000)Fuzzy Measuresand Integrals:Theory and Application.
Physica-Verlag,Heidelberg.
[10]Llamazares,B.(2020)OntheRelationshipbetweentheCrescentMethodandSUOWAOperators.
IEEE
TransactionsonFuzzySystems
,
28
,2645-2650.https://doi.org/10.1109/TFUZZ.2019.2934937
[11]
M
²
m
,
Ç
l
.
ÿ
Ý
†
È
©
n
Ø
[M].
®
:
‰
Æ
Ñ
‡
,1998.
[12]Liu,H.W.(2012)Semi-UninormsandImplicationsonaCompleteLattice.
FuzzySetsandSystems
,
191
,
72-82.https://doi.org/10.1016/j.fss.2011.08.010
[13]
ý
O
,
o
|
_
.
Ä
u
Sugeno
ÿ
Ý
Œ
˜
—
k
S
\
²
þ
Ž
f
9
Ù
4
8
8
¤
ì
O
[J].
X
Ú
†
ê
Æ
,
2019,33(6):11-28.
DOI:10.12677/pm.2023.1341181141
n
Ø
ê
Æ