设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(5),2049-2066
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.125209
˜až¢šg£‡46N3‘k.•þ
·½5
ééé
-Ÿ“‰ŒÆêÆ‰ÆÆ§-Ÿ
ÂvFϵ2023c47F¶¹^Fϵ2023c429F¶uÙFϵ2023c56F
Á‡
©ïÄ˜ašg£ž¢‡46N•§3‘k.•þN·½5"Äk^Garlekin•{
ïá)•35§,|^UþO•{)•˜5Ú-½5"
'…c
‡46N§Ã•ž¢§·½5
TheWell-PosednessofaDelayed
Non-AutonomousMicropolarFluid
on2DBoundedDomains
QilingWang
SchoolofMathematicalSciences,ChongqingNormalUniversity,Chongqing
Received:Apr.7
th
,2023;accepted:Apr.29
th
,2023;published:May6
th
,2023
Abstract
Inthispaper,westudythewell-posenessofanon-autonomousdelayedmicropolar
©ÙÚ^:é .˜až¢šg£‡46N3‘k.•þ·½5[J].A^êÆ?Ð,2023,12(5):2049-2066.
DOI:10.12677/aam.2023.125209
é
fluidon2Dboundeddomains.Weprovetheexistenceofsolutionsbythemethodof
theGarlerinapproximation.Then we usetheenergymethodtoprovetheuniqueness
andthestabilityofsolutions.
Keywords
MicropolarFluid,Delay,Well-Posedness
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
36NåÆnØ¥§‡4 6´˜aŒ ±uÿ6N‡*(Cz…Škšþ!AåÜþ6N"
3ÔnÆ¥§§L«3Å50Ÿ¥¹k‘Å!k(½••ˆâ6N§§éul¯ïÄ6N
Ä寝KÚy–ó§“Ú‰Æ[´š~-‡"‡46•§|´Í¶Navier-Stokes •§
˜‡ -‡í2§6N¥âf^= „Ý•"ž§‡46$ÄŒ±^Navier-Stokes •§5
£ã"‡46•§|Œ±éÐ/£ã6NÏL˜‡dÏ§=âf^=„ÝØ•"ž§
6N$Ä5"ƒ'u²;Navier-Stokes•§§‡456N.U•xÑXàÜÔ6N!—
¬!ÄÔÉ—!G6NAÏ6NÄåÆ1•"Ïd§§êÆnØÉ¯õêÆ['5"
Eringen u1966 c3©z[1] ¥•@JÑ‡456Nnا¦Ú\˜‡ êÆ.§T .£
ã˜aäk‡^=AÚ.5šÚî6N$ħ46N6Ä$ÄŒ±^±e•§5£ãµ
∂u
∂t
−(ν+ν
r
)4u−2ν
r
∇×ω+(u·∇)u+∇p= f,(1)
∇·u= 0,(2)
∂ω
∂t
−(c
a
+c
d
)4ω+4ν
r
ω+(u·∇)ω−(c
0
+c
d
−c
a
)∇(∇·ω)−2ν
r
∇×u=
e
f,(3)
Ù¥u=(u
1
,u
2
,u
3
)´6N„ݧpL«Øå§ω=(ω
1
,ω
2
,ω
3
)´âf^=„ݧf=
(f
1
,f
2
,f
3
)Ú
e
f=(
e
f
1
,
e
f
2
,
e
f
3
)•å"AO/§ëêν,ν
r
,c
0
,c
a
,c
d
L«Ê5Xê§d©
z[1,2]Œ•§ª(1),(3)L«ÄþÅð§ª(2)L«ŸþÅð"XJν
r
=0,ω=(0,0,0),K•
§(1)-(3) Œz{•ØŒØ Navier-Stokes •§"Ïd§‡456N6Ä•§ŒÀ•Navier-
Stokes•§í2§Ï•§‚•Ä6N‡*(§ÙäNÔnµŒ±ë„©z[2,3].
du‡46N6Ä3y¢-.¥2•A^§®²˜êÆ[ÚÔn Æ[\ïÄ"
DOI:10.12677/aam.2023.1252092050A^êÆ?Ð
é
'u‡46•§)•35!•˜5!K5Ú•žm1•ïÄ®kéõ§ƒ'(JŒë„©
z[2–8].~X§3©z[3] ¥§ïÄT•§|L
2
NáÚf•35±9Hausdorff ‘êÚ©
/‘êO§3©z[9] ¥y²T•§|H
2
NáÚf•35§©z[10–13] ©Oy
T•§|3k.•þNáÚfÚ˜—áÚf•35§3©z[14] ¥y²T•§|.£á
Úf•35§3©z[15,16] ¥H
1
.£áÚf§ ©z[17] y²3Šk š!Ÿ>.^‡
Lipschitzk.•þL
2
.£áÚf•35"©z[18] ïÄ‘k.•šġ456N6Ä)
.£ìC1•"
,§â·‚¤•§8cé¹Ã•ž¢‡46N6ÄïÄ©z¿Øõ"¯¤±•§ ž¢
A®y² 3ÔnÚ)Ôy–¥²~Ñy§¿äk-‡Š^§3y¢-.¥•äk2•A^"
~X§·‚Ž3ó§››¥¦^,a.å 5››˜‡XÚž§qég,/bùå
Ø=AT†XÚcGƒ'§…AT†XÚLG•ƒ'§kž$–†XÚ‡u
ÐL§ƒ'"
©•ïĹអ‘‡46•§|)N·½5§Ù•§|/ªXeµ
∂u
∂t
−(ν+ν
r
)4u−2ν
r
∇×ω+(u·∇)u+∇p= f+g(t,u
t
),t>0,x∈Ω,(4)
∂ω
∂t
−α4ω+4ν
r
ω−2ν
r
∇×u+(u·∇)ω=
e
f+eg(t,u
t
),t>0,x∈Ω,(5)
∇·u= 0,3(0,+∞)×Ω,(6)
u= 0,ω= 0,,3(0,+∞)×∂Ω,(7)
(u(0,·),ω(0,·)) = (u
0
(·),ω
0
(·)),(8)
(u(t,x),ω(t,x)) = φ(t,x),t∈(−∞,0],x∈Ω.(9)
Ù¥α=c
a
+ c
d
,x=(x
1
,x
2
)∈Ω⊂R
2
´˜‡äk1w>.∂Ωk.m•§¿÷ve¡
Poincar´eØªµ
λ
1
kϕk
2
L
2
(Ω)
≤k∇ϕk
2
L
2
(Ω)
,∀ϕ(x) ∈H
1
0
(Ω),(10)
ùpλ
1
>0´½Â•H
1
0
(Ω)∩H
2
(Ω)¿…÷vDirichlet>.^‡Žf−41˜‡AЧù
pλ
1
´†˜mΩ k'~ê"
3ª(4)-(9)¥§u=(u
1
,u
2
) ´6N„ݧpÚω©O•6NØåÚ„ݧf(t,x)=
(f
1
,f
2
) Ú
e
f(t,x) ´å§g(t,u
t
)=(g
1
,g
2
) Úeg(t,ω
t
) ´•¹,¢DAž¢å§u
t
,ω
t
´
«m(−∞,0] þž¢¼ê§Ù/ªXeµ
u
t
= u(t+s),ω
t
= ω(t+s),∀t>0.(11)
d§φ(t,x) = (u(t,x),ω(t,x))´ž¢«m(−∞,0]Ð©Š§…
∇×u=
∂u
2
∂x
1
−
∂u
1
∂x
2
,∇×ω= (
∂ω
3
∂x
2
,
∂ω
3
∂x
1
).
DOI:10.12677/aam.2023.1252092051A^êÆ?Ð
é
©8´y²ª(4)-(9)f)N·½5"ùp¦^Faedo-Galerkin Cq•{y²)
•35§,^Uþ•{y²)•˜5Ú-½5"Š˜J´§CaraballoÚReal3©
z[19,20]¥ïÄäkk•ž¢Navier-Stokes•§ìC1•"5§Mar´ın-rubio,RealÚ
Valero 3©z[21] ¥ò©z[20] ¥(J*ÐÃ.•"•C§Zhao ÚSun 3©z[22] ¥ïÄ
¹kÕž¢šg£‡456N3‘k.•S)·½5§ ,ïáƒ'L§.£áÚ
f•35§ÙÀž¢˜m•
C
γ
(
b
H) =

ϕ∈C

(−∞,0];
b
H

: ∃lim
s→−∞
e
γs
ϕ(s) ∈
b
H

,
C
γ
(
b
H)´˜‡Banach˜m,‰ê•
kϕk
γ
=sup
s∈(−∞,0]
e
γs
kϕ(s)k.
©gŽ5u©z[23],©‘3òÿ©z[22] (J§3‘k.«•Sïá)·½5§
Àž¢ž¢˜m•
BCL
−∞
(
b
H) = {ϕ∈C((−∞,0];
b
H) :lim
s→−∞
ϕ(s)3
b
H¥•3}
Ù¥BCL
−∞
(
b
H)´˜‡Banach˜m§‰ê•
kϕk
BCL
−∞
(
b
H)
=sup
s∈(−∞,0]
kϕ(s)k.
©äNSüXeµ1Ü©´ý•£§3ù˜Ü©§·‚òÚ\Ð>НK(4)-(9) f
/ª§¿‰ÑÙf)½Â"31nÜ©¥§·‚y²(4)-(9)f)N·½5"
2.ý•£
3!¥§·‚Äk0˜ÎÒÚŽf§,Ú\Ð>НK(4)-(9) f/ª§¿‰ÑÙ
f)½Â"·‚©O^RÚZ
+
L«¢êÚšKê8Ü"cL«Ï^~ê§§3ØÓ/
•ŒUØÓŠ"
L
p
(Ω)ÚW
m,p
(Ω)L«Ï~Lebesgue˜mÚÏ~Sobolev˜m, Ù‰ê•k·k
p
, k·k
m,p
;
Ù¥
kϕk
p
:=

Z
Ω
|ϕ|
p
dx

1
p
,kϕk
m,p
:=

X
β≤m
Z
Ω
|D
β
ϕ|
p
dx

1
p
AO/§k·k:= kϕk
L
2
(Ω)
,H
m
(Ω) := W
m,2
(Ω);H
1
0
(Ω) := {ϕ∈C
∞
0
(Ω)×C
∞
0
(Ω)}3H
1
(Ω)˜m¥
4•",Ú\Xe¼ê˜mµ
V= {ϕ∈C
∞
0
(Ω)×C
∞
0
(Ω) : ϕ= (ϕ
1
,ϕ
2
),∇·ϕ= 0},
H= V3L
2
(Ω)×L
2
(Ω)4•§…‰ê•k·k
H
= k·k…éó˜m•H
∗
= H,
DOI:10.12677/aam.2023.1252092052A^êÆ?Ð
é
V= V3H
1
(Ω)×H
1
(Ω)4•§…‰ê•k·k
V
= k·k
2,2
…éó˜m•V
∗
,
b
H= H×L
2
(Ω)‰ê•k·k
b
H
…éó˜m•
b
H
∗
,
b
V= V×H
1
0
(Ω)‰ê•k·k
b
V
…éó˜m•
b
V
∗
,
Ù¥k·k
b
H
Úk·k
b
V
/ª•
k(u,v)k
b
H
= (kuk
2
H
+kvk
2
)
1
2
,k(u,v)k
b
V
= (kuk
2
V
+kvk
2
H
1
)
1
2
.
3©¥§XJvk· u)§·‚òÎÒk·k
H
Úk·k
b
H
{z•^ÓÎÒk·k.
(·,·)´L
2
(Ω),H½
b
H¥Sȧh·,·i´VÚV
∗
½
b
VÚ
b
V
∗
éóÈ",§·‚
0n‡k^Žf"1˜‡ŽfA½Â•µé?¿w=(u,ω),φ=(Φ,φ
3
)∈
b
V,Ù¥
u= (u
1
,u
2
) ∈V,Φ = (φ
1
,φ
2
) ∈V,¤á
hAw,φi= (ν+ν
r
)(∇u,∇Φ)+α(∇ω,∇φ
3
)
= (ν+ν
r
)
2
X
i=1
Z
Ω
∂u
i
∂x
j
∂φ
i
∂x
j
+α
2
X
i=1
Z
Ω
∂ω
∂x
i
∂φ
3
∂x
i
dx,
D(A)=
b
V∩(H
2
(Ω))
3
.Ùg§½ÂŽfB(·,·) •µé?¿u=(u
1
,u
2
)∈V,ψ=(ψ
1
,ψ
2
,ψ
3
)∈
b
V,φ= (φ
1
,φ
2
,φ
3
) ∈
b
V,¤á
hB(u,w),φi= ((u·∇)w,φ) =
3
X
j=1
2
X
i=1
Z
Ω
u
i
∂ψ
j
∂x
i
φ
j
dx,
•§½ÂŽfN(·) •
N(w) = (−2ν
r
∇×w,−2ν
r
∇×u,+4ν
r
ω),∀w= (u,ω) ∈
b
V.
•§·‚‰ÑŽfA,B(·,·)ÚN(·)˜5Ÿ§ë„©z[3,11].
Ún2.1.(ë„©z[3,11])
(1)•3ü‡~êc
1
Úc
2
¦
c
1
hAw,wi6kwk
2
b
V
6c
2
hAw,wi,∀w∈
b
V.(12)
d§éu?¿w∈D(A) k
min

ν+ν
r
,α

k∇wk
2
≤hAw,wi6kwkkAwk6λ
−
1
2
1
k∇wkkAwk(13)
(2)•3˜‡~êλ,§••6uΩ,ùéu?¿(u,ψ,ϕ) ∈V×
b
V×
b
V¦
DOI:10.12677/aam.2023.1252092053A^êÆ?Ð
é
|hB(u,ψ),ϕi|6



λkuk
1/2
k∇uk
1/2
k∇ψkkϕk
1/2
k∇ϕk
1/2
,
λkuk
1/2
k∇uk
1/2
k∇ϕkkψk
1/2
k∇ψk
1/2
.
(14)
d§XJ(u,ψ,ϕ) ∈V×D(A)×D(A),K
|hB(u,ψ),Aϕi|6λkuk
1/2
k∇uk
1/2
k∇ϕkk∇ψk
1/2
kAψk
1/2
.(15)
(3)ùp•3˜‡~êc¦
N(ψ) 6ckψk
b
V
,∀ψ∈
b
V.(16)
d§
−hN(ψ),Aψi6
1
4
kAψk
2
+c
2
(ν
r
)kψk
2
b
V
,∀ψ∈D(A),(17)
δ
1
kψk
2
b
V
6hAψ,ψi+hNψ,ψi,∀ψ∈D(A).(18)
ùpδ
1
= min{ν,α}.
3Ún2.1 Ä:þ§·‚?˜Úk±eÚn"
Ún2.2.(ë„©z[22])
(1)A´˜‡lVV
∗
ÚD(A) 
b
H‚5ëYŽf,N(·) ´˜‡l
b
V
b
H‚5ëYŽf.
(2)B(·,·) ´˜‡lV×
b
V
b
V
∗
‚5ëYŽf§d§é∀u∈V,∀w∈
b
Vk
hB(u,ψ),ϕi= −hB(u,ϕ),ψi,∀u∈V,∀ψ∈
b
V,∀ϕ∈
b
V.(19)
3.N·½5
!?Ö´ïáª(4)-(9) f)N·½5"
Äk§Šâ12 !¥0ÎÒÚŽf§·‚(4)-(9) f/ª(ë„©z[22])
∂w
∂t
+Aw+B(u,w)+N(w) = F(t)+G(t,W
t
), t>0,(20)
w
t=0
= w
0
= w(s) = (u(s),ω(s)) = φ(s),s∈(−∞,0],(21)
Ù¥§
w= (u,ω),F(t) = F(t+x) = (f(t+x),
e
f(t+x)),G(t,W
t
) = (g(t,u
t
),eg(t,ω
t
)), t>0,
ž¢¼êu
t
Úω
t
dª(11) ½Â"
•?nÕž¢§·‚Ú\˜mBCL
−∞
(
b
H),½ÂXeµ
DOI:10.12677/aam.2023.1252092054A^êÆ?Ð
é
BCL
−∞
(
b
H) = {ϕ∈C((−∞,0];
b
H) :lim
s→−∞
ϕ(s)3
b
H¥•3}
BCL
−∞
(
b
H)´˜‡Banach˜m§…‰ê•µ
kϕk
BCL
−∞
(
b
H)
:=sup
s∈(−∞,0]
kϕ(s)k.
Њ¯K(20)-(21) f)½ÂXe"
½Â3.1.é∀T>0,XJ¼êw∈C((−∞,T];
b
H) ∩L
2
(0,T;
b
V)…w
0
=φ(s)∈BCL
−∞
(
b
H)Ú
u(t,x) = φ,t∈(τ−h,τ),¦é∀t∈(0.T),∀ϕ∈
b
V•§
d
dt
(w,ϕ)+hAw,ϕi+hB(u,w),ϕi+hN(w),ϕi= hF(t),ϕi+(G(t,w
t
),ϕ)
3©ÙD
0
(0,T) ¿Âe¤á§Kw´•§(20)-(21) 3«m(−∞,T] þ˜‡f).
•¼Њ¯K(20)-(21) )N·½5§·‚I‡é¼êFÚGJјb"
(I)bé?¿T>0,F(·,x) = (f(·,x),
e
f(·,x)) ∈L
2
(0,T;
b
V
∗
).
(II)bG: [0,T]×BCL
−∞
(
b
H) 7→G(t,ξ) ∈(L
2
(Ω))
3
÷vµ
(i)é∀ξ∈BCL
−∞
(
b
H),N[0,T] 3t7→G(t,ξ) ∈(L
2
(Ω))
3
´Œÿ¶
(ii)G(·,0) = (0,0,0);
(iii)•3˜‡~êL
G
>0 ¦éu?¿t∈[0,T],ξ,η∈BCL
−∞
(
b
H),
kG(t,ξ)−G(t,η)k6L
G
kξ−ηk
BCL
−∞
(
b
H)
.
^‡(ii) Ú(iii) L²
kG(t,ξ)k6L
G
kξk
BCL
−∞
(
b
H)
,∀ξ∈BCL
−∞
(
b
H).(22)
e5y²•§(20)-(21) f)•35!•˜5!-½5"
½n3.1.(f)•35)é?¿T>0,bφ∈BCL
−∞
(
b
H) ´‰½§¿…b(I)Ú(II)
¤á§K¯K(20)-(21) 3«m(−∞,T]¥–•3˜‡f)"
y ·‚ò^n‡Ú½5y²½n3.1.
Ú½1.³7Cq)ÛÜ•35
·‚Äk£½ÂŽfA˜5Ÿ"¯¢þ§ŠâýŽf²;ÌnØ(„©z[24])§
•3˜‡AŠS{λ
n
}
∞
n=1
÷v
0 <λ
1
6λ
2
6···6λ
n
6···,λ
n
→+∞n→∞,
ÚÙéAA•þx{v
n
}
∞
n=1
⊆D(A),§´
b
H˜mFËAħ…d{v
1
,v
2
,···,v
n
,···}Ü
DOI:10.12677/aam.2023.1252092055A^êÆ?Ð
é
¤§3
b
V˜m¥È—§¦
Av
n
= λ
n
v
n
,∀n∈N.
b8ÜV
m
:= span{v
1
,···,v
m
},¿•ÄNP
m
w:=
m
P
j=1
(w,v
j
)v
j
,w∈
b
H½w∈
b
V§éuz‡
T>0,½Â¯K(20)-(21) Galerkin Cq)•
w
m
(t) :=
m
X
j=1
γ
m,j
(t)v
j
,
ùpXêγ
m,j
(t)÷ve~‡©…ܯK
d
dt

w
m
(t),v
j

+hAw
m
(t),v
j
i+hB(u
m
(t)),w
m
(t)),v
j
i+hN(w
m
(t)),v
j
i
= hF(t),v
j
i+(G(t,w
m
t
),v
j
), 1 6j6m,t∈(0,T),(23)
w
m
(s) = P
m
φ(s), s∈(−∞,0],(24)
3D
0
(0,T)¥•Ä•§(23).
þãអ~•¼‡©•§|÷vÛÜ)•3•˜5^‡(ë•©z[25])"Ïd§·‚
Ñ(23)-(24)k˜‡½Â3[0,t
m
)…0 ≤t
m
≤T•˜ÛÜ)"e5§·‚ò¼˜‡k
O§¿()w
m
(¢•3u‡«m[0,T].
Ú½2.kO
ò(23)z‡•§¦±γ
m,j
(t),j= 1,···,m¿¦Ú§|^(18)ÚhB(u,ψ),ψi= 0(„©z[22]
)k
1
2
d
dt
kw
m
(t)k
2
+δ
1
kw
m
(t)k
2
b
V
6hF(t),w
m
(t)i+(G(t,w
m
),w
m
(t)), t∈(0,T).(25)
qϕ
kw
m
t
k
BCL
−∞
(
b
H)
= sup
θ60
kw
m
(t+θ)k>kw
m
(t)k,0 <t<T,(26)
·‚(Ü(22),(25),(26) ÚCauchy Øªk
1
2
d
dt
kw
m
(t)k
2
+δ
1
kw
m
(t)k
2
b
V
6hF(t),w
m
(t)i+(G(t,w
m
),w
m
(t))
6kF(t)k
b
V
∗
kw
m
(t)k
b
V
+L
G
kw
m
t
k
BCL
−∞
(
b
H)
kw
m
(t)k
6
δ
1
2
kw
m
(t)k
2
b
V
+
1
2δ
1
kF(t)k
2
b
V
∗
+L
G
kw
m
t
k
2
BCL
−∞
(
b
H)
,(27)
ª(27) L²
DOI:10.12677/aam.2023.1252092056A^êÆ?Ð
é
d
dt
kw
m
(t)k
2
+δ
1
kw
m
(t)k
2
b
V
6
1
δ
1
kF(t)k
2
b
V
∗
+2L
G
kw
m
t
k
2
BCL
−∞
(
b
H)
, t∈(0,T).(28)
0 6s6t6T¿ò•§(28) •
d
dt
kw
m
(s)k
2
+δ
1
kw
m
(s)k
2
b
V
6
1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
, s∈(0,T).(29)
é(29) ¥s3[0,t] þÈ©k
kw
m
(t)k
2
+δ
1
t
Z
0
kw
m
(s)k
2
b
V
ds6kw
m
(0)k
2
+
t
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds.(30)
˜•¡§Šâ˜mBCL
−∞
(
b
b
H)‰ê½Â§·‚k
ku
m
t
k
2
BCL
−∞
(
b
H)
= sup
θ60
kw
m
(t+θ)k
2
6max
n
sup
θ≤−t
kw
m
(t+θ)k
2
,sup
−t6θ60
kw
m
(t+θ)k
2
o
,(31)
Ú
sup
θ≤−t
kw
m
(t+θ)k
2
=sup
θ≤−t
kφ(t+θ)k
2
.(32)
,˜•¡§·‚bt>t+θ>0,,é(29) 'us3«m[0,t+θ] þÈ©k
kw
m
(t+θ)k
2
+δ
1
t+θ
Z
0
kw
m
(s)k
2
b
V
ds
6kw
m
(0)k
2
+
t+θ
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds.(33)
d(33) ·‚k
kw
m
(t+θ)k
2
6kw
m
(0)k
2
+
t+θ
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds.(34)
é(34) 'uθ∈[−t,0] þ(.k
sup
−t6θ60
kw
m
(t+θ)k
2
6sup
−t6θ60

kw
m
(0)k
2
+
t+θ
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds

.(35)
DOI:10.12677/aam.2023.1252092057A^êÆ?Ð
é
l(31)-(35) k
kw
m
t
k
2
BCL
−∞
(
b
H)
6max
n
sup
θ≤−t
kφ(t+θ)k
2
,sup
−t6θ60

kw
m
(0)k
2
+
t+θ
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds

o
.(36)
du
sup
θ∈(−∞,−t]
kφ(t+θ)k= sup
θ60
kφ(θ)k= kφk
BCL
−∞
(
b
H)
,(37)
l(36)-(37) ·‚
kw
m
t
k
2
BCL
−∞
(
b
H)
6kφk
2
BCL
−∞
(
b
H)
+
t
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds.(38)
l(38) ÚGronwall Øªk
kw
m
t
k
2
BCL
−∞
(
b
H)
6(kφk
2
BCL
−∞
(
b
H)
+
1
δ
1
t
Z
0
kF(s)k
2
b
V
∗
ds

e
2L
G
t
,∀t∈[0,T].(39)
éuR>0, kφk
BCL
−∞
(
b
H)
6R,K(39) L²ùp•3˜‡'uδ
1
,L
G
,F,TÚR~ êc,
¦
kw
m
t
k
2
BCL
−∞
(
b
H)
6c(T,R),∀m>1.(40)
·‚l(26) Ú(40) Œ±
{w
m
}3L
∞
(0,T;
b
H)´k."(41)
·‚l(26),(30) Ú(40)•Œ±
δ
1
t
Z
0
kw
m
(s)k
2
b
V
ds6kw
m
(0)k
2
+
t
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
kw
m
s
k
2
BCL
−∞
(
b
H)
)ds.
6R
2
+
t
Z
0

1
δ
1
kF(s)k
2
b
V
∗
+2L
G
c(T,R)

ds.(42)
aqu(40),·‚Œ±l(42)ùp•3,˜‡~êc(T,R) >0¦
kw
m
k
2
L
2
(0,T;
b
V)
6c(T,R),∀m>1.(43)
DOI:10.12677/aam.2023.1252092058A^êÆ?Ð
é
d(23) ·‚Œ±§é∀v∈Vk
|h(w
m
(t))
0
,vi|6|hAw
m
(t),vi|+|hB(u
m
(t),w
m
(t)),vi|
+|hN(w
m
(t)),vi|+|hF(t),vi|+|(G(t,w
m
t
),v)|
6c(λ,ν
r
)(kw
m
(t)k
b
V
+ku
m
(t)k
1
2
k∇u
m
(t)k
1
2
kw
m
(t)k
1
2
k∇w
m
(t)k
1
2
+kF(t)k
b
V
∗
+kG(t,w
m
t
)k)kvk
b
V
,
6c(λ,ν
r
)(kw
m
(t)k
b
V
+kw
m
(t)kk∇w
m
(t)k+kF(t)k
b
V
∗
+kG(t,w
m
t
)k)kvk
b
V
.(44)
ùp~êc(λ,ν
r
)ûuλÚÚn2.1 ~êc(ν
r
),l(44) k
k(w
m
(t))
0
k
b
V
∗
6c(λ,ν
r
)(kw
m
(t)k
b
V
+kw
m
(t)kk∇w
m
(t)k+kF(t)k
b
V
∗
+kG(t,w
m
t
)k).(45)
(22)Ú(41),(43)Ú(45) L²
{(w
m
(t))
0
}3L
2
(0,T;
b
V
∗
)´k."(46)
l(40)-(41),(43),(46) †Ú½1 ¥ÛÜ•35ƒ(ܧ·‚3¤kžmt∈[0,T] 
GalerkinCq)Û•35"
Ú½3.Ûf)•35
·‚òy²³7Cq)4•¼ê´•§(20)-(21)f)"•Ä(40),(41),(43)Ú
(46),ÏLé‚À{§·‚Œ±˜‡fS(E,^ƒÓÎÒL«){w
m
},,‡ƒ
w∈L
∞
(0,T;
b
H)∩L
2
(0,T;
b
V) Úw
0
∈L
2
(0,T;
b
V
∗
),¿…ξ(t) ∈L
2
(0,T;(L
2
(Ω))
3
)¦
w
m
*w3L
∞
(0,T;
b
H)f(Âñ§(47)
w
m
*w3L
2
(0,T;
b
V)fÂñ§(48)
(w
m
)
0
*w
0
3L
2
(0,T;
b
V
∗
)fÂñ§(49)
w
m
→w3L
2
(0,T;(L
2
(Ω))
3
)rÂñ§(50)
G(·,w
m
) *ξ(t)3L
2
(0,T;(L
2
(Ω))
3
)fÂñ"(51)
y3§d(48)-(49) Ú;i\½n(ë„©z[26])§
u
m
∈C
0
([0,T];H),u∈C
0
([0,T];H).
Ó§l(48)-(50),·‚Œ±¼(é¤kfS¤á)
u
m
(t) →u(t)3Ha.e.t∈(0,T).
••§(20)-(21) f)§·‚I‡éª(23) ¥m4•m→∞,e5y²š‚5‘
DOI:10.12677/aam.2023.1252092059A^êÆ?Ð
é
eÂñ'Xµ
lim
m→∞
T
Z
0
hB(u
m
(t),w
m
(t)),vidt=
T
Z
0
hB(u(t),w(t)),vidt,∀v∈
b
V,(52)
lim
m→∞
T
Z
0

G(t,w
m
t
),v

=
T
Z
0

G(t,w
t
),v

dt,∀v∈
b
V.(53)
du(52) y²Ú©z[22] y²aq§¤±3ùpŽÑy²§y3·‚y²(53).
e5·‚Äky²BCL
−∞
(
b
H)¥Ð©ŠCq(„©z[27,(11)]).
P
m
φ→φ, 3BCL
−∞
(
b
H).(54)
XJ(54) ؤá§K•3>0 Ú˜‡Sθ
m
⊂(−∞,0] ¦
|P
m
φ(θ
m
)−φ(θ
m
)|>,∀m.(55)
·‚bθ
m
→−∞.XJθ
m
→θ,K
P
m
φ(θ
m
) →φ(θ
m
),
m→∞ž§
|P
m
φ(θ
m
)−φ(θ
m
)|≤|P
m
φ(θ
m
)−P
m
φ(θ)|+|P
m
φ(θ)−φ(θ)|→0,
½Âx=lim
θ→−∞
φ(θ),·‚k
|P
m
φ(θ
m
)−φ(θ
m
)|≤|P
m
φ(θ
m
)−P
m
x)|+|P
m
x−x|+|x−φ(θ
m
)|→0,
ù†(55) gñ§¤±(54) ¤á"|^(54),·‚k
sup
θ60
ku
m
(t+θ)−u(t+θ)k
= max

sup
θ∈(−∞,−t]
kP
m
φ(θ+t)−φ(θ+t)k,sup
θ∈[−t,0]
ku
m
(t+θ)−u(t+θ)k

6max

kP
m
φ−φk
BCL
−∞
(H)
,max
θ∈[0,t]
ku
m
(θ)−u(θ)k

→0,
ùL²
u
m
t
→u
t
3BCL
−∞
(
b
H)rÂñ§∀t6T.(56)
lb(II)(iii)Ú(56) Œ±Ñ
g(t,u
m
t
) →g(t,u
t
)3L
2
(0,T;H)rÂñ"(57)
DOI:10.12677/aam.2023.1252092060A^êÆ?Ð
é
d(57) ·‚Œ±(53).
3ù«œ¹e§·‚Œ±|^(48)-(50) Ú(52)-(53)=z(23)¥4•§Ñu´¯K
(20)-(21)f)"ddy²½n3.1 f)•35"
e5·‚ïÄf)•˜5"
½n3.2.(•˜5) ½n3.1^‡¤á§@oéuz‡Ð©Šu
0
= φ(s) ∈BCL
−∞
(
b
H),∀T>0,
•§(20)-(21) äk•˜f)"
yw
1
=(w
1
,ω
1
) Úw
2
=(w
2
,ω
2
) ´•§(20)-(21) 3«m(−∞,T] ü ‡)§ kÓ
Њw
1
0
= w
2
0
= φ(s).-w= w
1
−w
2
,Két∈(0,T] ·‚k
dw(t)
dt
+Aw(t)+B(u
1
,w
1
)−B(u
2
,w
2
)+N(w)
= G(t,w
1
t
)−G(t,w
2
t
).(58)
ò(58) Úw(t) ŠSÈk
1
2
d
dt
kw(t)k
2
+hAw(t),w(t)i+hB(u
1
(t),w
1
(t))−B(u
2
(t),w
2
(t)),w(t)i+hN(w),w(t)i
= (G(t,w
1
t
)−G(t,w
2
t
),w(t)),t∈(0,T].(59)
l©z[22],·‚k
|hB(u
1
(t),w
1
(t))−B(u
2
(t),w
2
(t)),w(t)i|
= |hB(u
1
(t)−u
2
(t),w
1
(t)w(t))−B(u
2
(t),w(t)),w(t)i|
= |hB(u(t),w
1
(t))w(t)i|
6λku(t)k
1
2
k∇u(t)k
1
2
kw(t)k
1
2
k∇w(t)k
1
2
k∇w
1
(t)k
1
2
6λkw(t)kkw(t)k
b
V
kw
1
(t)k
b
V
.(60)
(Ü(18),(60) Úb(II)(iii)§l(59)·‚Œ±
1
2
d
dt
kw(t)k
2
+δ
1
kw(t)k
2
b
V
6|hB(u
1
(t),w
1
(t))−B(u
2
(t),w
2
(t)),w(t)i|+(G(t,w
1
t
)−G(t,w
2
t
),w(t))
6λkw(t)kkw(t)k
b
V
kw
1
(t)k
b
V
+L
G
kw
t
k
BCL
−∞
(
b
H)
kw(t)k.(61)
du
w(θ) = 0, ∀θ60.
Ú
kw
s
k
BCL
−∞
(
b
H)
= sup
θ60
kw(s+θ)k6sup
θ∈[−s,0]
kw(s+θ)k=sup
r∈[0,s]
kw(r)k, 0 6s6T.
DOI:10.12677/aam.2023.1252092061A^êÆ?Ð
é
é(61) 3[0,t] þÈ©k
kw(t)k
2
+2δ
1
t
Z
0
kw(s)k
2
b
V
ds
62L
G
t
Z
0
kw
s
k
BCL
−∞
(
b
H)
kw(s)kds+2λ
t
Z
0
kw(s)kkw(s)k
b
V
kw
1
(s)k
b
V
ds
62L
G
t
Z
0
sup
r∈[0,s]
kwrkkw(s)kds+2λ
t
Z
0
kw(s)kkw(s)k
b
V
kw
1
(s)k
b
V
ds
62L
G
t
Z
0
sup
r∈[0,s]
kwrk
2
ds+2δ
1
t
Z
0
kw(s)k
2
b
V
ds+
λ
2
2δ
1
t
Z
0
kw(s)k
2
kw
1
(s)k
2
b
V
ds
6(2L
G
+
λ
2
2δ
1
)
t
Z
0
(1+kw
1
(s)k
2
b
V
)sup
r∈[0,s]
kw(r)k
2
ds+2δ
1
t
Z
0
kw(s)k
2
b
V
ds.(62)
l(62) k
sup
r∈[0,t]
kw(t)k
2
6(2L
G
+
λ
2
2δ
1
)
t
Z
0
(1+kw
1
(s)k
2
b
V
)sup
r∈[0,s]
kw(r)k
2
ds.(63)
é(63) ¦^Gronwall Øªk
sup
r∈[0,t]
kw(t)k= 0,∀t∈[0,T].
l·‚y²)•˜5"
•§·‚yf)ƒéuЩŠ-½5"
½n3.3.()'uЊ-½5)½n3.1 ^‡¤á§…u
(i)
´¯K(20)-(21)3i=1,2 ž
éAuЊφ
(i)
∈BCL
−∞
(
b
H) )§K
max
r∈[0,t]
kw
(1)
(r)−w
(2)
(r)k
2
6c

kφ
(1)
(0)−φ
(2)
(0)k
2
+kφ
(1)
(s)−φ
(2)
(s)k
2
BCL
−∞
(
b
H)

×exp

c
t
Z
0
(1+kw
(1)
(s)k
2
b
V
)ds

,(64)
kw
(1)
t
−w
(2)
t
k
2
BCL
−∞
(
b
H)
6ckφ
(1)
−φ
(2)
k
2
BCL
−∞
(
b
H)
exp

c
t
Z
0
(1+kw
(1)
(s)k
2
b
V
)ds

.(65)
yw
(i)
= (u
(i)
,ω
(i)
)(i= 1,2) ´¯K(20)-(21) éAuЊφ
(i)
∈BCL
−∞
(
b
H) )§·‚
½Â
DOI:10.12677/aam.2023.1252092062A^êÆ?Ð
é
u= u
(1)
−u
(2)
,ω= ω
(1)
−ω
(2)
,w= (u,ω) = w
(1)
−w
(2)
,φ(.) = φ
(1)
(.)−φ
(2)
(.).
Kk
1
2
d
dt
kw(t)k
2
+hAw(t),w(t)i+hB(u
(1)
(t),w
(1)
(t))−B(u
(2)
(t),w
(2)
(t)),w(t)i
+hN(w),w(t)i= (G(t,w
(1)
t
)−G(t,w
(2)
t
),w(t)),t∈(0,T].(66)
aqu(60) k
|hB(u
(1)
(t),w
(1)
(t))−B(u
(2)
(t),w
(2)
(t)),w(t)i|
= |hB(u(t),w
(1)
(t))w(t)i|
6λkw(t)kkw(t)k
b
V
kw
1
(t)k
b
V
6δ
1
kw(t)k
2
b
V
+
λ
2
4δ
1
kw(t)k
2
kw
1
(t)k
2
b
V
.(67)
éus∈[0,t],·‚k
kw
s
k
BCL
−∞
(
b
H)
= sup
θ60
kw(s+θ)k
= max

sup
θ∈(−∞,−s]
kφ(s+θ)k,sup
θ∈[−s,0]
kw(s+θ)k

6max

kφ(s)k
BCL
−∞
(
b
H)
,max
θ∈[0,s]
kw(s)k

.(68)
db(II)(iii)Ú(68) 
t
Z
0

G(s,w
(1)
s
)−G(s,w
(2)
s
),w(s)

ds6
t
Z
0
L
G
kw
s
k
BCL
−∞
(
b
H)
kw(s)kds
6
t
Z
0
L
G
kφ(s)k
BCL
−∞
(
b
H)
kw(s)kds+
t
Z
0
L
G
kw(s)k·max
θ∈[0,s]
kw(θ)kds.(69)
nÜ(18),(67) Ú(69),é(66) È©
1
2
kw(t)k
2
+δ
1
Z
t
0
kw(s)k
2
b
V
ds
6
1
2
kφ(0)k
2
+δ
1
Z
t
0
kw(s)k
2
b
V
ds+
λ
2
4δ
1
Z
t
0
kw(s)k
2
kw
1
(s)k
2
b
V
ds
+
t
Z
0
L
G
kφ(s)k
BCL
−∞
(
b
H)
kw(s)kds+
t
Z
0
L
G
kw(s)k·max
θ∈[0,s]
kw(θ)kds.
DOI:10.12677/aam.2023.1252092063A^êÆ?Ð
é
=
kw(t)k
2
6kφ(0)k
2
+
λ
2
2δ
1
Z
t
0
kw(s)k
2
kw
1
(s)k
2
b
V
ds+
t
Z
0
2L
G
kφ(s)k
BCL
−∞
(
b
H)
kw(s)kds
+
t
Z
0
2L
G
kw(s)k·max
θ∈[0,s]
kw(θ)kds.(70)
du
2L
G
kφ(s)k
BCL
−∞
(
b
H)
t
Z
0
kw(s)kds6
L
G
2
kφ(s)k
2
BCL
−∞
(
b
H)
+2L
G

t
Z
0
kw(s)kds

2
6
L
G
2
kφ(s)k
2
BCL
−∞
(
b
H)
+2L
G
t
t
Z
0
kw(s)k
2
ds
6ckφ(s)k
2
BCL
−∞
(
b
H)
+c
t
Z
0
max
r∈[0,s]
kw(r)k
2
ds.(71)
òtO†•r∈[0,t],é(70) ¥r(r∈[0,t])•ŒŠ§¿$^(71) ·‚k
max
r∈[0,t]
kw(r)k
2
6kφ(0)k
2
+ckφ(s)k
2
BCL
−∞
(
b
H)
+c
t
Z
0

1+kw
(1)
(s)k
2
b
V

max
r∈[0,s]
kw(r)k
2
ds.(72)
éª(72) A^Gronwall Øª§ª(64).dª(72)Úª(68) ÚѪ(65).ddy²f)
-½5"
ë•©z
[1]Eringen,A.C.(1966)TheoryofMicropolarFluids.JournalofMathematicsandMechanics,
16,1-18.https://doi.org/10.1512/iumj.1967.16.16001
[2]Lukaszewicz,G. (1999)Micropolar Fluids:Theory and Applications. SpringerScience & Busi-
nessMedia,Berlin.
[3]Lukaszewicz,G. (2001)Long TimeBehavior of2D MicropolarFluidFlows.Mathematicaland
ComputerModelling,34,487-509.https://doi.org/10.1016/S0895-7177(01)00078-4
[4]Dong,B.Q.andZhang,Z.(2010)GlobalRegularityofthe2DMicropolarFluidFlowswith
ZeroAngularViscosity.JournalofDifferentialEquations,249,200-213.
https://doi.org/10.1016/j.jde.2010.03.016
DOI:10.12677/aam.2023.1252092064A^êÆ?Ð
é
[5]Ferreira,L.C.F.andPrecioso,J.C.(2013)ExistenceofSolutionsforthe3D-MicropolarFluid
System with Initial Data in Besov-Morrey Spaces. Zeitschriftf¨urAngewandteMathematikund
Physik,64,1699-1710.https://doi.org/10.1007/s00033-013-0310-8
[6]Galdi,G.P.andRionero,S.(1977)ANoteontheExistenceandUniquenessofSolutionsof
theMicropolarFluidEquations.InternationalJournalofEngineeringScience,15,105-108.
https://doi.org/10.1016/0020-7225(77)90025-8
[7]Lukaszewicz,G. (1990) On Non-Stationary Flows of Incompressible Asymmetric Fluids.Math-
ematicalMethodsintheAppliedSciences,13,219-232.
https://doi.org/10.1002/mma.1670130304
[8]Lukaszewicz, G. (2003) Asymptotic Behavior of Micropolar Fluid Flows. InternationalJournal
ofEngineeringScience,41,259-269.https://doi.org/10.1016/S0020-7225(02)00208-2
[9]Chen,J.,Chen,Z.M.andDong,B.Q.(2006)ExistenceofH
2
-GlobalAttractorsoftwo-
DimensionalMicropolar FluidFlows.JournalofMathematical AnalysisandApplications, 322,
512-522.https://doi.org/10.1016/j.jmaa.2005.09.011
[10]Dong,B.Q.andChen,Z.M.(2006)GlobalAttractorsofTwo-DimensionalMicropolarFluid
FlowsinSomeUnboundedDomains.AppliedMathematicsandComputation,182,610-620.
https://doi.org/10.1016/j.amc.2006.04.024
[11]Lukaszewicz, G. andSadowski, W.(2004)Uniform Attractor for2D Magneto-Micropolar Fluid
FlowinSomeUnboundedDomains.Zeitschriftf¨urAngewandteMathematikundPhysik,55,
247-257.https://doi.org/10.1007/s00033-003-1127-7
[12]Nowakowski,B.(2013)Long-TimeBehaviorofMicropolarFluidEquationsinCylindrical
Domains.NonlinearAnalysis:RealWorldApplications,14,2166-2179.
https://doi.org/10.1016/j.nonrwa.2013.04.005
[13]Zhao,C.,Zhou,S.andLian,X.(2008)H
1
-UniformAttractorandAsymptoticSmoothing
EffectofSolutionsforaNonautonomousMicropolarFluidFlowin2DUnboundedDomains.
NonlinearAnalysis:RealWorldApplications,9,608-627.
https://doi.org/10.1016/j.nonrwa.2006.12.005
[14]Chen,J.,Dong,B.Q.andChen,Z.M.(2007)UniformAttractorsofNon-HomogeneousMi-
cropolarFluidFlowsinNon-SmoothDomains.Nonlinearity,20,1619-1635.
https://doi.org/10.1088/0951-7715/20/7/005
[15]Chen,J.,Dong, B.Q. and Chen,Z.M. (2007) Pullback Attractors of Non-Autonomous Microp-
olarFluidFlows.JournalofMathematicalAnalysisandApplications,336,1384-1394.
https://doi.org/10.1016/j.jmaa.2007.03.044
[16]Lukaszewicz,G.andTarasi´nska,A.(2009)OnH
1
-PullbackAttractorsforNonautonomous
MicropolarFluidEquationsinaBoundedDomain.NonlinearAnalysis:Theory,Methods&
Applications,71,782-788.https://doi.org/10.1016/j.na.2008.10.124
DOI:10.12677/aam.2023.1252092065A^êÆ?Ð
é
[17]Chen,G.(2009)PullbackAttractorforNon-HomogeneousMicropolarFluidFlowsinNon-
SmoothDomains.NonlinearAnalysis:RealWorldApplications,10,3018-3027.
https://doi.org/10.1016/j.nonrwa.2008.10.005
[18]Zhao,C.and Zhou,S. (2007) Pullback Attractors for a Non-AutonomousIncompressibleNon-
NewtonianFluid.JournalofDifferentialEquations,238,394-425.
https://doi.org/10.1016/j.jde.2007.04.001
[19]Caraballo,T.andReal,J.(2003)AsymptoticBehaviourofTwo-DimensionalNavier-Stokes
EquationswithDelays.ProceedingsoftheRoyalSocietyofLondon.SeriesA:Mathematical,
PhysicalandEngineeringSciences,459,3181-3194.https://doi.org/10.1098/rspa.2003.1166
[20]Caraballo,T.andReal,J.(2004) Attractors 2D-Navier-StokesModeswithDelays. Journalof
DifferentialEquations,205,271-497.https://doi.org/10.1016/j.jde.2004.04.012
[21]Marin-Rubio, P. and Real, J.(2007) Attractors for 2D-Navier-StokesEquations withDelayson
SomeUnboundedDomains.NonlinearAnalysis:Theory,Methods&Applications,67,2784-
2799.https://doi.org/10.1016/j.na.2006.09.035
[22]Zhao,C.andSun,W.(2017)GlobalWell-PosednessandPullbackAttractorsforaTwo-
DimensionalNon-AutonomousMicropolarFluidFlowswithInfiniteDelays.Communications
inMathematicalSciences,15,97-121.https://doi.org/10.4310/CMS.2017.v15.n1.a5
[23]Liu,L.,Caraballo,T.andMar´ın-Rubio,P.(2018)StabilityResultsfor2DNavier-Stokes
EquationswithUnboundedDelay.JournalofDifferentialEquations,265,5685-5708.
https://doi.org/10.1016/j.jde.2018.07.008
[24]M´alek,J.,Neˇcas,J.,Rokyta,M.andRuˇziˇcka,M.(1996) Weak andMeasure-Valued Solutions
toEvolutionaryPDE.CRCPress,NewYork.
[25]Hino,Y.,Kato,J.andNaito,T.(1991)FunctionalDifferentialEquationswithInfiniteDelay.
Springer-Verlag,Berlin.
[26]Chepyzhov,V.V.andVishik,M.I.(2002)AttractorsforEquationsofMathematicalPhysics.
AmericanMathematicalSociety,Providence.https://doi.org/10.1090/coll/049
[27]Mar´ın-Rubio,P.,Real,J.andValero,J.(2011)PullbackAttractorsforaTwo-Dimensional
Navier-StokesModelinanInfiniteDelayCase.NonlinearAnalysis:Theory,MethodsAppli-
cations,74,2012-2030.https://doi.org/10.1016/j.na.2010.11.008
DOI:10.12677/aam.2023.1252092066A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.