设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(5),1157-1172
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135121
†¥Banach¼ê˜mƒ'2ÂMorrey
˜mþV‚5Calder´on-ZygumdŽf
9Ù†fk.5
oooÈÈÈrrr
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c42F¶¹^Fϵ2023c54F¶uÙFϵ2023c511F
Á‡
©Ì‡?ØV‚5C−ZŽfT9Ù†f[b
1
,b
2
,T]3†¥Banach¼ê˜mƒ'
2ÂMorrey˜mM
u
(X)þk.5.y²Tl¦È˜mM
u
1
(X
1
) ×M
u
2
(X
2
)˜m
M
u
(Y)k.. ?˜Ú, •y²db
1
,b
2
∈BMO(X)ÚT)¤†f[b
1
,b
2
,T]´l¦È˜m
M
u
1
(X
1
)×M
u
2
(X
2
) ˜mM
u
(Y) k., Ù¥u= u
1
u
2
.
'…c
V‚5Calder´on-ZygumdŽf§†f§¥Banach ¼ê˜m§2ÂMorrey˜m§k.5
BoundednessofBilinearC−ZOperators
andItsCommutatorGeneratedbyon
GeneralizedMorreySpacesAssociated
withBallBanachFunctionSpaces
XuemeiLi
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©ÙÚ^:oÈr.†¥Banach¼ê˜mƒ'2ÂMorrey˜mþV‚5Calder´on-ZygumdŽf9Ù†f
k.5[J].nØêÆ,2023,13(5):1157-1172.DOI:10.12677/pm.2023.135121
oÈr
Received:Apr.2
nd
,2023;accepted:May4
th
,2023;published:May11
th
,2023
Abstract
In this paper, the authors mainly discussthe boundedness of bilinear C−Zoperator T
and itscommutator [b
1
,b
2
,T] on generalized Morreyspacesassociated with ballBanach
functionspacesM
u
(X).TheauthorsprovebilinearC−ZoperatorTisboundedfrom
product spaces M
u
1
(X
1
)×M
u
2
(X
2
)into spaces M
u
(Y).Further, theyalsoprove thatthe
commutator[b
1
,b
2
,T]generatedbyb
1
,b
2
∈BMO(X)andTareboundedfromproduct
spacesM
u
1
(X
1
)×M
u
2
(X
2
)intospacesM
u
(Y),whereu= u
1
u
2
.
Keywords
BilinearC−ZOperator,Commutator,BallBanachFunctionSpaces,Generalized
MorreySpace,Boundedness
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
NÚ©ÛŠ•êÆ˜‡-‡©|, åдd{IêÆ[Fourier |^n?ênØïÄ9D
•§žÚ\. NÚ©Û̇ïļê˜mÚŽfnØ, Cc5, ®¤•y “êÆØ%ïÄ+•
ƒ˜.
¯¤±•, Hardy-Littlewood4ŒŽfM´•Ä²þŽf, §Œ±››Nõ٦ȩŽ
f.f´R
n
þ˜‡Û܌ȼê,KHardy-Littlewood 4ŒŽfMfŒ½Â•:
Mf(x) = sup
x∈B
1
|B|
Z
B
|f(y)|dy,∀x∈R
n
,(1)
Ù¥B(x,r) = y∈R
n
: |x−y|<r´˜¥%x∈R
n
,Œ»•r>0m¥.
d,C−ZÛÉÈ©Žf•´ũۥ˜a4Ù-‡Žf, 1975c,CofimanÚMeyerÄ
g0õ‚5C−ZÈ©Ž fnØ([1]).d, õ‚5C−ZÈ©Žf3ˆ«¼ê˜mþk
X2•A^.~X: HuÚMeng ïáõ‚5C−ZŽf3¦ÈH
p
˜mþk.5([2]); LuÚ
DOI:10.12677/pm.2023.1351211158nØêÆ
oÈr
Zhuõ‚5C−ZŽf3C•IHerz-Morrey˜mM
˙
K
α(·),λ
q,p(·)
(R
n
)þk.([3])±9WangÚ
LiuïÄõ‚5C−ZŽf3¦È2ÂMorrey ˜m(L
p
(ω),L
q
)
α
þk.5([4]).
,˜•¡, ¥Banach¼ê˜mnØÉ'5.2017c,Sawano<1˜g¥Banach¼
ê˜m½Â([5]). §•¹ˆ«¼ê˜m, ~X: Lebesgue ˜ m, Morrey ˜m, Orlize ˜m±9\
C•ILebesgue ˜m.•ïÄý ‡©•§)ÛÜK5, 1938c,Morrey ÄgÚ\
Morrey˜m½Â:éu?¿f∈L
q
loc
(R
n
),K
kfk
M
p
q
=sup
x∈X,r>0
|B(x,r)|
1
p
−
1
q
kfk
q
L
(B(x,r)),1 <q≤p≤∞.(2)
3ùp, ·‚Œ±¦^˜¼ê5O†|B(x,r)|
1
p
−
1
q
ÚL
q
(B(x,r)), Ù¦¼ê˜m. ~X: 2
ÂOrlicz-Morrey˜m,2ÂC•IMorrey˜mÚ2·ÜMorrey˜m([6–10]).
C5,Ho,K-PïÄÛÉÈ©Žf3Morrey-Banach˜mþf.O([11])…?Ø3¥
Banach ¼ê˜mþErd´elyi-Kober ©êgÈ©ŽfŽf5Ÿ([12]),±9Ÿ²¼Äu¥
Banach¼ê˜mþ2ÂMorrey˜mþ‚5C−ZŽfk.5([13]).
Éþãéu,©Ì‡•ÄÄu¥Banach¼ê˜mþ2ÂMorrey˜mþV‚5C−Z
Žf9Ù†fk.5.
3Qã̇(Jƒc,·‚k5£˜©¤I½Â.
½Â1.1[5]˜‡Banach ˜mX⊂M(R
n
) ¡•R
n
þ¥Banach ¼ê˜m, eX÷v±e
^‡:
(1)kfk
X
= 0 =⇒f= 0a.e.,
(2)|g|≤|f|a.e.=⇒kgk
X
≤kfk
X
,
(3)0 ≤f
n
↑fa.e.=⇒kf
n
k
X
↑kfk
X
,
(4)B∈B=⇒χ
B
∈X,
(5)∀B∈B,∃C(B) >0,¦
R
B
f(x)dx≤C(B)kfk
X
,∀f∈X,
ùpM(R
n
)L«¤k3R
n
þLebesgueŒÿ¼ê˜m, B={B(x,r) :x∈R
n
,r>0}L«
m¥8x.
½Â1.2 [14]éu?¿¥Banach¼ê˜mX, Xéó˜mX
0
½Â•:
X
0
:= {f∈M(R
n
) : kfk
X
0
=sup
g∈X,kgk
X
≤1
kfgk
L
1
<∞}.(3)
5P1.3 eX´¥Banach¼ê˜m, KX
0
•´¥Banach¼ê˜m.
½Â1.4[13]X´˜‡¥Banach¼ê˜m,eu(x,r):R
n
×(0,∞)→(0,∞)´˜‡
LebesgueŒÿ¼ê, K†¥Banach¼ê˜mƒ'é2ÂMorrey ˜mM
u
(X) ½Â•:
kfk
M
u
(X)
=sup
x∈X,r>0
1
u(x,r)
1
kχ
B(x,r)
k
X
kχ
B(x,r)
fk
X
<∞,f∈M(X).(4)
DOI:10.12677/pm.2023.1351211159nØêÆ
oÈr
½Â1.5 [15]éu?¿¥Banach¼ê˜mX,
(1)eHardy −Littlewood 4ŒŽfM3˜mXþk.,KL«•X∈M,
(2)eHardy −Littlewood 4ŒŽfM3˜mX
0
þk.,KL«•X∈M
0
.
½Â1.6[16]ØK(·,·,·)∈L
1
loc
(R
n
×R
n
×R
n
\{(x,x,x):x∈R
n
}) ¡•V‚5C−ZØ,
eK÷v±e^‡:
(1)é¤k(x,y
1
,y
2
) ∈R
n
×R
n
×R
n
…x6= y
i
,(j= 1,2),•3˜~êC,¦
|K(x,y
1
,y
2
)|≤
C
(|x−y
1
|+|x−y
2
|)
2n
;(5)
(2)•3~êδ>0ÚC>0,¦é¤kx,x
0
,y
1
,y
2
∈R
n
…|x−x
0
|≤
1
2
max
j=1,2
{|x−y
j
|},K
|K(x,y
1
,y
2
)−K(x
0
,y
1
,y
2
)|≤C
|x−x
0
|
δ
(|x−y
1
|+|x−y
2
|)
2n+δ
;(6)
(3)•3~êδ>0ÚC>0,¦é¤kx,y
1
,y
0
1
,y
2
∈R
n
…|y
1
−y
0
1
|≤
1
2
max
j=1,2
{|x−y
j
|},K
|K(x,y
1
,y
2
)−K(x,y
0
1
,y
2
)|≤C
|y
1
−y
0
1
|
δ
(|x−y
1
|+|x−y
2
|)
2n+δ
;(7)
(4)•3~êδ>0ÚC>0,¦é¤kx,y
1
,y
2
,y
0
2
∈R
n
…|y
2
−y
0
2
|≤
1
2
max
j=1,2
{|x−y
j
|},K
|K(x,y
1
,y
2
)−K(x,y
1
,y
0
2
)|≤C
|y
2
−y
0
2
|
δ
(|x−y
1
|+|x−y
2
|)
2n+δ
;(8)
f
1
,f
2
∈L
∞
C
(R
n
),V‚5Ž fT¡•ØK÷v^‡(5),(6),(7) Ú(8)V‚5C−ZŽf,
½Â•:
T(f
1
,f
2
)(x) =
Z
R
n
Z
R
n
K(x,y
1
,y
2
)f
1
(y
1
)f
2
(y
2
)dy
1
dy
2
,x/∈(f
1
)
\
(f
2
),(9)
Ù¥L
∞
C
(R
n
)´¤käk;|8L
∞
(R
n
)¼ê˜m.
½Â1.7 [16]‰½b
1
,b
2
∈L
1
loc
(R
n
),Kdb
1
,b
2
,T)¤†f[b
1
,b
2
,T]½Â•:
[b
1
,b
2
,T](f
1
,f
2
)(x) =
Z
R
2n

b
1
(x)−b
1
(y
1
)

b
2
(x)−b
2
(y
2
)

f
1
(y
1
)f
2
(y
2
)

|x−y
1
|+|x−y
2
|

2n
dy
1
dy
2
.(10)
2.ý•£
Ún2.1 [17]X´˜‡¥Banach¼ê˜m,XJf∈X,g∈X
0
,Kfg´ŒÈ,…
Z
R
n
|f(x)g(x)|dx≤kfk
X
kgk
X
0
.(11)
DOI:10.12677/pm.2023.1351211160nØêÆ
oÈr
Ún2.2 [18]X´˜‡¥Banach¼ê˜m,K
|B|≤kχ
B
k
X
kχ
B
k
X
0
≤C|B|,B∈B,(12)
ω´3R
n
þ˜‡šK Û܌ȼê, K\Hardy ŽfH
ω
Ú\\Hardy 4ŒŽf
H
∗
ω
©O½Â•µ
H
ω
g(t) :=
Z
∞
t
g(s)ω(s)ds,0 <t<∞,g∈L
1
loc
(R
n
),(13)
H
∗
ω
g(t) :=
Z
∞
t
(1+ln
s
t
)g(s)ω(s)ds,0 <t<∞,g∈L
1
loc
(R
n
),(14)
Ún2.3 [19]‰½˜‡šK4O¼êg∈(0,∞), KØª
esssup
t>0
υ
2
(t)H
ω
g(t) ≤Cesssup
t>0
υ
1
(t)g(t)
¤á,…=A= sup
t>0
υ
2
(t)
R
∞
t
ω( s)ds
sup
s<τ<∞
υ
1
(τ)
<∞,A∼C.
Ún2.4 [20]‰½˜‡šK4O¼êg∈(0,∞), KØª
esssup
t>0
υ
2
(t)H
∗
ω
g(t) ≤Cesssup
t>0
υ
1
(t)g(t)
¤á,…=A= sup
t>0
υ
2
(t)
R
∞
t
(1+ln
s
t
)
ω(s)ds
sup
s<τ<∞
υ
1
(τ)
<∞,A∼C.
3.˜mM
u
(X)þV‚5ŽfT
½n3.1X
1
,X
2
ÚY´¥Banach¼ê˜m, ÷vkχ
B
k
Y
0
kχ
B
k
X
1
kχ
B
k
X
2
≤C, Ù¥X
i
∈
M
S
M
0
,(i=1,2). bT´d(9)¤½ÂV‚5C−ZŽf, ekT(f
1
,f
2
)k
Y
≤Ckf
1
k
X
1
kf
2
k
X
2
¤á.¼êu
1
,u
2
: R
n
×(0,∞) →(0,∞) …÷v^‡
Z
∞
r
essinf
t<s<∞
u
1
(x,s)kχ
B
(x,s)k
X
kχ
B
(x,t)k
X
dt
t
≤Cu
2
(x,r),u= u
1
u
2
,(15)
K•3C>0,¦é¤kf
1
∈X
1
T
M
u
1
(X
1
)
Úf
2
∈X
2
T
M
u
2
(X
2
)
,k
kT(f
1
,f
2
)k
M
u
(Y)
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
3y²ƒc,k‰Ñ˜‡k^íØ.
íØ3.2÷vÚn2.3^‡,…v
2
(t)=u
2
(z,t)
−1
,v
1
(t)=u
1
(z,t)
−1
kχ
B(z,t)
k
−1
X
,g(t)=
kχ
B(z,t)
fk
X
,ω(t) = t
−1
kχ
B(z,t)
k
−1
X
,k
sup
z∈X,r>0
u
2
(z,r)
−1
Z
∞
r
kfχ
B(z,t)
k
X
kχ
B(z,t)
k
−1
X
dt
t
≤Csup
z∈X,r>0
u
1
(z,r)
−1
kχ
B(z,r)
k
−1
X
kfχ
B(z,t)
k
X
=kfk
M
u
1
(X)
DOI:10.12677/pm.2023.1351211161nØêÆ
oÈr
½n3.1y²x∈B(z,r) ∈B,éf
i
?1Xe©):
f
i
= f
1
i
+f
∞
i
= f
i
χ
2B
+f
i
χ
X\2B
,i= 1,2(16)
K
kT(f
1
,f
2
)k
M
u
(Y)
≤kT(f
1
1
,f
1
2
)k
M
u
(Y)
+kT(f
1
1
,f
∞
2
)k
M
u
(Y)
+kT(f
∞
1
,f
1
2
)k
M
u
(Y)
+kT(f
∞
1
,f
∞
2
)k
M
u
(Y)
=: D
1
+D
2
+D
3
+D
4
k5OD
1
, dkT(f
1
,f
2
)k
Y
≤Ckf
1
k
X
1
kf
2
k
X
2
, u=u
1
u
2
, kχ
B(z,r)
k
Y
=kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
±
9ª(11),(12)ÚíØ3.2,
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
T(f
1
1
,f
1
2
)k
Y
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
kf
1
χ
B(z,2r)
k
X
1
kf
2
χ
B(z,2r)
k
X
2
=C
1
u(z,r)
1
kχ
B(z,r)
k
Y
|B(z,r)|kf
1
χ
B(z,2r)
k
X
1
Z
∞
2r
dt
t
1+n
|B(z,r)|kf
2
χ
B(z,2r)
k
X
2
Z
∞
2r
dt
t
1+n
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
|B(z,r)|
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
dt
t
1+n
|B(z,r)|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
dt
t
1+n
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
0
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
dt
t
1+n
×kχ
B(z,r)
k
X
2
kχ
B(z,r)
k
X
0
2
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
dt
t
1+n
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
X
0
1
dt
t
1+n
×kχ
B(z,r)
k
X
2
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
X
0
2
dt
t
1+n
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
×kχ
B(z,r)
k
X
2
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
=C
1
u
1
(z,r)
1
kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
×
1
u
2
(z,r)
1
kχ
B(z,r)
k
X
2
kχ
B(z,r)
k
X
2
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
,
éþªü>Óžþ(.,D
1
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.•OD
2
,Äk•Ä
|T(f
1
1
,f
∞
2
)(x)|…x∈B(z,r),y∈B
c
(z,2r),k
1
2
|z−y|≤|x−y|≤
3
2
|z−y|,$^ª(5),(9), (11),(12)
ÚFubini’s ½n,k
DOI:10.12677/pm.2023.1351211162nØêÆ
oÈr
|T(f
1
1
,f
∞
2
)(x)|
≤C
Z
2B
Z
X\2B
|f
1
(y
1
)f
2
(y
2
)|
(|x−y
1
|+|x−y
2
|)
2n
dy
1
dy
2
≤C
Z
2B
|f
1
(y
1
)|dy
1
Z
X\2B
|f
2
(y
2
)|
|x−y
2
|
2n
dy
2
≤Ckf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
k
X
0
1
Z
X\2B
|f
2
(y
2
)|
|x−y
2
|
2n
dy
2
=C|B(z,r)|kf
1
χ
B(z,2r)
k
X
1
Z
∞
2r
dt
t
1+n
|B(z,r)|kχ
B(z,2r)
k
−1
X
1
Z
X\2B
|f
2
(y
2
)|
Z
∞
|z−y
2
|
dt
t
n+1
dy
2
≤C|B(z,r)|
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
dt
t
1+n
|B(z,r)|kχ
B(z,2r)
k
−1
X
1
Z
∞
2r
Z
2r≤|z−y
2
|<t
|f
2
(y
2
)|dy
2
dt
t
n+1
≤Ckχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
0
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
dt
t
1+n
|B(z,r)|kχ
B(z,2r)
k
−1
X
1
×
Z
∞
2r
Z
B(z,t)
|f
2
(y
2
)|dy
2
dt
t
n+1
≤Ckχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
|B(z,r)|kχ
B(z,2r)
k
−1
X
1
×
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
≤Cr
n
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
,
?˜Ú,dª(4),íØ3.2Úkχ
B(z,r)
k
Y
= kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
,k
D
2
=sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
kT(f
1
1
,f
∞
2
)χ
B(z,r)
k
Y
≤Csup
z∈X,r>0
r
n
kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
kχ
B(z,r)
k
Y
1
u
1
(z,r)
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
×
1
u
2
(z,r)
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
aquD
2
O,éN´
D
3
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
e5OD
4
,$^ª(5),(9),(11),(12)ÚFubini’s ½n,
DOI:10.12677/pm.2023.1351211163nØêÆ
oÈr
|T(f
∞
1
,f
∞
2
)|
≤
Z
X\2B
Z
X\2B
|K(x,y
1
,y
2
)||f
∞
1
(y
1
)||f
∞
2
(y
2
)|dy
1
dy
2
≤C
Z
(X\2B)
2n
2
Y
i=1
|f
i
(y
i
)|
|x−y
i
|
n
dy
i
≤C
Z
(X\2B)
2n
2
Y
i=1
|f
i
(y
i
)|
|z−y
i
|
n
dy
i
≤C
2
Y
i=1
Z
X\2B
|f
i
(y
i
)|
Z
∞
|z−y
i
|
dt
t
n+1
dy
i
≤C
2
Y
i=1
Z
∞
2r
Z
2r≤|z−y
i
|<t
|f
i
(y
i
)|dy
i
dt
t
n+1
≤C
2
Y
i=1
Z
∞
2r
Z
B(z,t)
|f
i
(y
i
)|dy
i
dt
t
n+1
≤C
2
Y
i=1
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
,
?,dª(4)ÚíØ3.2
D
4
=sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
kT(f
∞
1
,f
∞
2
)χ
B(z,r)
k
Y
≤C
2
Y
i=1
sup
z∈X,r>0
1
u
i
(z,r)
1
kχ
B(z,r)
k
X
i
kχ
B(z,r)
k
X
i
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
≤Ckf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
(ÜD
1
,D
2
,D
3
O,½n3.1y..
4.˜mM
u
(X)þV‚5C-ZŽf†f[b
1
,b
2
,T]
3‰Ñ̇½nƒc,Äk£˜ek.²þ¼ê˜mBMO½Â(„©z[21]).
½Â4.1˜‡Û܌ȼêf∈BMO(X),ef÷v
kfk
BMO
=sup
B∈R
n
1
|B|
Z
B
|f(y)−f
B
|dy<∞,(17)
Ù¥f
B
=
1
|B|
R
B
f(y)dy.
54.2XJHardy-Littlewood 4ŒŽfM3X
0
þk.,K
k·k
BMO(X)
= k·k
BMO
= k·k
∗
…k
DOI:10.12677/pm.2023.1351211164nØêÆ
oÈr
kfk
BMO(X)
=sup
B∈R
n
kχ
B
(f−f
B
)k
X
kχ
B(z,r)
k
X
.(18)
Ún4.3 [22]f∈BMO(X),Kéu0 <2r<t, k
|f
B(x,r)
−f
B(x,t)
|≤Ckfk
BMO
ln
t
r
,∀x∈R
n
.(19)
½n4.4X
1
,X
2
ÚY´¥Banach¼ê˜m,÷vkχ
B
k
Y
0
kχ
B
k
X
1
kχ
B
k
X
2
≤C,Ù¥
X
i
∈M
S
M
0
,(i=1,2).bb
1
,b
2
∈BMO(X),KdTÚb
1
,b
2
)¤V‚5C-ZŽf
†f[b
1
,b
2
,T]´d(10)¤½Â,ek[b
1
,b
2
,T](f
1
,f
2
)k
Y
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
X
1
kf
2
k
X
2
¤á.¼ê
u
1
,u
2
: R
n
×(0,∞) →(0,∞) …÷v^‡
Z
∞
r
(1+ln
t
r
)
essinf
t<s<∞
u
1
(x,s)kχ
B
(x,s)k
X
kχ
B
(x,t)k
X
dt
t
≤Cu
2
(x,r),u= u
1
u
2
,(20)
K•3C>0,¦é¤kf
1
∈X
1
T
M
u
1
(X
1
)
Úf
2
∈X
2
T
M
u
2
(X
2
)
,k
k[b
1
,b
2
,T](f
1
,f
2
)k
M
u
(Y)
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
3y²ƒc,k‰Ñ˜‡k^íØ.
íØ4.5÷vÚn2.4^‡,…v
2
(t)=u
2
(z,t)
−1
,v
1
(t)=u
1
(z,t)
−1
kχ
B(z,t)
k
−1
X
,g(t)=
kχ
B(z,t)
fk
X
,ω(t) = t
−1
kχ
B(z,t)
k
−1
X
,k
sup
z∈X,r>0
u
2
(z,r)
−1
Z
∞
r
(1+ln
t
r
)kfχ
B(z,t)
k
X
kχ
B(z,t)
k
−1
X
dt
t
≤Csup
z∈X,r>0
u
1
(z,r)
−1
kχ
B(z,r)
k
−1
X
kfχ
B(z,t)
k
X
=kfk
M
u
1
(X)
.
½n4.4y²x∈B(z,r) ∈B,éf
i
?1Xe©):
f
i
= f
1
i
+f
∞
i
= f
i
χ
2B
+f
i
χ
X\2B
,i= 1,2
K$^ª(4),(10)ÚMonkowskiØª, 
k[b
1
,b
2
,T](f
1
,f
2
)k
M
u
(Y)
≤k[b
1
,b
2
,T](f
1
1
,f
1
2
)k
M
u
(Y)
+k[b
1
,b
2
,T](f
1
1
,f
∞
2
)k
M
u
(Y)
+k[b
1
,b
2
,T](f
∞
1
,f
1
2
)k
M
u
(Y)
+k[b
1
,b
2
,T](f
∞
1
,f
∞
2
)k
M
u
(Y)
=: E
1
+E
2
+E
3
+E
4
k5OE
1
,dk[b
1
,b
2
,T](f
1
,f
2
)k
Y
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
X
1
kf
2
k
X
2
,u= u
1
u
2
,
kχ
B(z,r)
k
Y
= kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
±9ª(11),(12)ÚíØ3.2,
DOI:10.12677/pm.2023.1351211165nØêÆ
oÈr
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
[b
1
,b
2
,T](f
1
1
,f
1
2
)k
Y
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
k[b
1
,b
2
,T](f
1
1
,f
1
2
)k
Y
≤C
1
u(z,r)
1
kχ
B(z,r)
k
Y
kb
1
k
∗
kb
2
k
∗
kf
1
χ
B(z,2r)
k
X
1
kf
2
χ
B(z,2r)
k
X
2
=Ckb
1
k
∗
kb
2
k
∗
1
u(z,r)
1
kχ
B(z,r)
k
Y
2
Y
i=1
|B(z,r)|kf
i
χ
B(z,2r)
k
X
i
Z
∞
2r
dt
t
n+1
≤Ckb
1
k
∗
kb
2
k
∗
1
u(z,r)
1
kχ
B(z,r)
k
Y
2
Y
i=1
kχ
B(z,r)
k
X
i
kχ
B(z,r)
k
X
0
i
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
dt
t
n+1
≤Ckb
1
k
∗
kb
2
k
∗
1
u(z,r)
1
kχ
B(z,r)
k
Y
2
Y
i=1
kχ
B(z,r)
k
X
i
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
=Ckb
1
k
∗
kb
2
k
∗
1
u
1
(z,r)
kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
×
1
u
2
(z,r)
kχ
B(z,r)
k
X
2
kχ
B(z,r)
k
X
2
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
,
þªü>Óžþ(.,kE
1
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.•OE
2
,Äk•Ä
|[b
1
,b
1
,T](f
1
1
,f
∞
2
)(x)|,éu∀x∈B(z,r),y∈B
c
(z,2r),k
1
2
|z−y|≤|x−y|≤
3
2
|z−y|,dª
(5),(10),(11),(12),(18),(19)ÚFubini’s ½n,
|[b
1
,b
1
,T](f
1
1
,f
∞
2
)(x)|
≤
Z
2B
Z
X\2B
|K(x,y
1
,y
2
)||b
1
(x)−b
1
(y
1
)||b
2
(x)−b
1
(y
2
)||f
1
1
(y
1
)||f
∞
2
(y
2
)|dy
1
dy
2
≤C
Z
B(z,2r)
Z
B
c
(z,2r)
|b
1
(x)−b
1
(y
1
)||b
2
(x)−b
1
(y
2
)||f
1
(y
1
)||f
2
(y
2
)|
(|x−y
1
|+|x−y
2
|)
2n
dy
1
dy
2
≤C
Z
B(z,2r)
|b
1
(x)−b
1
(y
1
)||f
1
(y
1
)|dy
1
Z
B
c
(z,2r)
|b
2
(x)−b
1
(y
2
)||f
2
(y
2
)|
|x−y
2
|
2n
dy
2
≤C

|b
1
(x)−(b
1
)
B(z,2r)
|
Z
B(z,2r)
|f
1
(y
1
)|dy
1
+
Z
B(z,2r)
|b
1
(y
1
)−(b
1
)
B(z,2r)
||f
1
(y
1
)|dy
1

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
B
c
(z,2r)
|f
2
(y
2
)|
|z−y
2
|
2n
dy
2
+
Z
B
c
(z,2r)
|b
2
(y
2
)−(b
2
)
B(z,2r)
||f
2
(y
2
)|
|z−y
2
|
2n
dy
2

≤C

|b
1
(x)−(b
1
)
B(z,2r)
|kf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
k
X
0
1
+kf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
(b
1
(·)−(b
1
)
B(z,2r)
)k
X
0
1

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
B
c
(z,2r)
|f
2
(y
2
)|
Z
∞
|z−y|
dt
t
n+1
dy
2
+
Z
B
c
(z,2r)
|b
2
(y
2
)−(b
2
)
B(z,2r)
||f
2
(y
2
)|
Z
∞
|z−y|
dt
t
n+1
dy
2

DOI:10.12677/pm.2023.1351211166nØêÆ
oÈr
=C

|b
1
(x)−(b
1
)
B(z,2r)
|kf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
k
X
0
1
+kf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
(b
1
(·)−(b
1
)
B(z,2r)
)k
X
0
1
kχ
B(z,2r)
k
X
0
1
kχ
B(z,2r)
k
X
0
1

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
Z
2r≤|z−y|<t
|f
2
(y
2
)|dy
2
dt
t
n+1
+
Z
∞
2r
Z
2r≤|z−y|<t
|b
2
(y
2
)−(b
2
)
B(z,2r)
||f
2
(y
2
)dy
2
|
dt
t
n+1

≤C

|b
1
(x)−(b
1
)
B(z,2r)
|kf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
k
X
0
1
+kf
1
χ
B(z,2r)
k
X
1
kb
1
k
∗
kχ
B(z,2r)
k
X
0
1

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
Z
B(z,t)
|f
2
(y
2
)|dy
2
dt
t
n+1
+
Z
∞
2r
Z
B(z,t)
|b
2
(y
2
)−(b
2
)
B(z,2r)
||f
2
(y
2
)dy
2
|
dt
t
n+1

≤Ckf
1
χ
B(z,2r)
k
X
1
kχ
B(z,2r)
k
X
0
1

kb
1
k
∗
+|b
1
(x)−(b
1
)
B(z,2r)
|

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
X
0
2
dt
t
n+1
+
Z
∞
2r
Z
B(z,t)
|b
2
(y
2
)−(b
2
)
B(z,t)
||f
2
(y
2
)dy
2
|
dt
t
n+1
+
Z
∞
2r
Z
B(z,t)
|(b
2
)
B(z,2r)
−(b
2
)
B(z,t)
||f
2
(y
2
)dy
2
|
dt
t
n+1

≤C|B(z,r)|kf
1
χ
B(z,2r)
k
X
1
Z
∞
2r
dt
t
n+1
|B(z,2r)|kχ
B(z,2r)
k
−1
X
1

kb
1
k
∗
+|b
1
(x)−(b
1
)
B(z,2r)
|

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+
Z
∞
2r
k(b
2
(·)−(b
2
)
B(z,t)
)χ
B(z,t)
k
X
0
2
kf
2
χ
B(z,t)
k
X
2
dt
t
n+1
+
Z
∞
2r
|(b
2
)
B(z,2r)
−(b
2
)
B(z,t)
|kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
X
0
2
dt
t
n+1

≤C|B(z,r)|
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
dt
t
n+1
|B(z,2r)|kχ
B(z,2r)
k
−1
X
1

kb
1
k
∗
+|b
1
(x)−(b
1
)
B(z,2r)
|

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+
Z
∞
2r
k(b
2
(·)−(b
2
)
B(z,t)
)χ
B(z,t)
k
X
0
2
kχ
B(z,t)
k
X
0
2
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+
Z
∞
2r
|(b
2
)
B(z,2r)
−(b
2
)
B(z,t)
|kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t

DOI:10.12677/pm.2023.1351211167nØêÆ
oÈr
≤Ckχ
B(z,r)
k
X
1
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
X
0
1
dt
t
n+1
|B(z,2r)|kχ
B(z,2r)
k
−1
X
1
×

kb
1
k
∗
+|b
1
(x)−(b
1
)
B(z,2r)
|

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+kb
2
k
∗
Z
∞
2r
(1+ln
t
r
)kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
≤Cr
n
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t

kb
1
k
∗
+|b
1
(x)−(b
1
)
B(z,2r)
|

×

|b
2
(x)−(b
2
)
B(z,2r)
|
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+kb
2
k
∗
Z
∞
2r
(1+ln
t
r
)kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
,
?,dª(4),(18)ÚíØ4.5,±9kχ
B(z,r)
k
Y
= kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
,
E
2
=sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
k[b
1
,b
2
,T](f
1
1
,f
∞
2
)χ
B(z,r)
k
Y
≤Csup
z∈X,r>0
r
n
kχ
B(z,r)
k
X
1
kχ
B(z,r)
k
X
2
kχ
B(z,r)
k
Y
kb
1
k
∗
1
u
1
(z,r)
Z
∞
2r
kf
1
χ
B(z,t)
k
X
1
kχ
B(z,t)
k
−1
X
1
dt
t
×

kb
2
k
∗
1
u
2
(z,r)
Z
∞
2r
kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t
+kb
2
k
∗
1
u
2
(z,r)
Z
∞
2r
(1+ln
t
r
)kf
2
χ
B(z,t)
k
X
2
kχ
B(z,t)
k
−1
X
2
dt
t

≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
^aqu3E
2
O¥¦^•{,N´
E
3
≤Ckb
1
k
∗
kb
2
k
∗
kf
1
k
M
u
1
(X
1
)
kf
2
k
M
u
2
(X
2
)
.
•OE
4
,éu∀x∈B(z,r),y∈B
c
(z,2r),Œ±
1
2
|z−y|≤|x−y|≤
3
2
|z−y|.$^ª
(5),(10),(11),(12),(18),(19),(20)ÚíØ4.5±9Fuibin’s ½n,k
|[b
1
,b
1
,T](f
∞
1
,f
∞
2
)(x)|
≤C
Z
(X\2B)
2
|b
1
(x)−b
1
(y
1
)||b
2
(x)−b
2
(y
2
)||f
1
(y
1
)||f
2
(y
2
)|
(|x−y
1
|+|x−y
2
|)
2n
dy
1
dy
2
≤C
2
Y
i=1
Z
X\2B
|b
i
(x)−b
i
(y
i
)||f
i
(y
i
)|
|x−y
i
|
n
dy
i
≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
X\2B
|f
i
(y
i
)|
|z−y
i
|
n
dy
i
+C
2
Y
i=1
Z
X\2B
|b
i
(y
i
)−(b
i
)
B(z,r)
||f
i
(y
i
)|
|z−y
i
|
n
dy
i
DOI:10.12677/pm.2023.1351211168nØêÆ
oÈr
≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
X\2B
|f
i
(y
i
)|
Z
∞
|z−y|
dt
t
n+1
dy
i
+C
2
Y
i=1
Z
X\2B
|b
i
(y
i
)−(b
i
)
B(z,r)
||f
i
(y
i
)|
Z
∞
|z−y|
dt
t
n+1
dy
i
=C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
Z
2r≤|z−y|<t
|f
i
(y
i
)|dy
i
dt
t
n+1
dy
i
+C
2
Y
i=1
Z
∞
2r
Z
2r≤|z−y|<t
|b
i
(y
i
)−(b
i
)
B(z,r)
||f
i
(y
i
)|dy
i
dt
t
n+1
≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
Z
B(z,t)
|f
i
(y
i
)|dy
i
dt
t
n+1
dy
i
+C
2
Y
i=1
Z
∞
2r
Z
B(z,t)
|b
i
(y
i
)−(b
i
)
B(z,r)
||f
i
(y
i
)|dy
i
dt
t
n+1
≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
X
0
i
dt
t
n+1
+C
2
Y
i=1

Z
∞
2r
Z
B(z,t)
|b
i
(y
i
)−(b
i
)
B(z,t)
||f
i
(y
i
)|dy
i
dt
t
n+1
+
Z
∞
2r
Z
B(z,t)
|(b
i
)
B(z,r)
−(b
i
)
B(z,t)
||f
i
(y
i
)|dy
i
dt
t
n+1

≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+C
2
Y
i=1

Z
∞
2r
k

b
i
(·)−(b
i
)
B(z,t)

χ
B(z,t)
k
X
0
i
kf
i
χ
B(z,t)
k
X
i
dt
t
n+1
+
Z
∞
2r
|(b
i
)
B(z,r)
−(b
i
)
B(z,t)
|kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
X
0
i
dt
t
n+1

≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+C
2
Y
i=1

Z
∞
2r
k

b
i
(·)−(b
i
)
B(z,t)

χ
B(z,t)
k
X
0
i
kχ
B(z,t)
k
X
0
i
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+
Z
∞
2r
|(b
i
)
B(z,r)
−(b
i
)
B(z,t)
|kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t

≤C
2
Y
i=1
|b
i
(x)−(b
i
)
B(z,r)
|
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+C
2
Y
i=1
kb
i
k
∗
Z
∞
2r
(1+ln
t
r
)kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
DOI:10.12677/pm.2023.1351211169nØêÆ
oÈr
?˜Ú,dª(4),(18)ÚíØ4.5,
E
4
=sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
k[b
1
,b
2
,T](f
∞
1
,f
∞
2
)χ
B(z,r)
k
Y
≤C
2
Y
i=1
sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
k

b
i
(x)−(b
i
)
B(z,r)

χ
B(z,r)
k
Y
×
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+C
2
Y
i=1
sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
kχ
B(z,r)
k
Y
kb
i
k
∗
×
Z
∞
2r
(1+ln
t
r
)kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
≤C
2
Y
i=1
sup
z∈X,r>0
1
u(z,r)
1
kχ
B(z,r)
k
Y
k

b
i
(x)−(b
i
)
B(z,r)

χ
B(z,r)
k
Y
kχ
B(z,r)
k
Y
kχ
B(z,r)
k
Y
×
Z
∞
2r
kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
+C
2
Y
i=1
kb
i
k
∗
sup
z∈X,r>0
1
u(z,r)
Z
∞
2r
(1+ln
t
r
)kf
i
χ
B(z,t)
k
X
i
kχ
B(z,t)
k
−1
X
i
dt
t
≤C
2
Y
i=1
kb
i
k
∗
kf
i
k
M
u
i
(X
i
)
.
(ÜE
1
,E
2
,E
3
O,½n4.4y..
Ä7‘8
Ü“‰ŒÆ2022cÝïÄ)‰ï]Ï‘8(2022KYZZ-S121)"
ë•©z
[1]Coifman,R.R.andMeyer,Y.(1975)OnCommutatorsofSingularIntegralsandBilinear
SingularIntegrals.TransactionsoftheAMS,212,315-331.
https://doi.org/10.1090/S0002-9947-1975-0380244-8
[2]Hu, G.E.and Meng,Y. (2012) Multilinear Calder´on-Zygmund Operator on Products of Hardy
Spaces.ActaMathematicaSinica,EnglishSeries,28,281-294.
https://doi.org/10.1007/s10114-012-0240-y
[3]Lu,Y.andZhu,Y.P.(2014)BoundednessofMultilinearCalder´on-ZygmundSingularOpera-
torsonMorrey-HerzSpaceswithVariableExponents.ActaMathematica Sinica,30,1180-1194.
https://doi.org/10.1007/s10114-014-3410-2
DOI:10.12677/pm.2023.1351211170nØêÆ
oÈr
[4]Wang,P.W.andLiu,Z.G.(2017)WeightedNormInequalitiesforMultilinearCalder´on-
ZygmundOperatorsinGeneralizedMorreySpaces.JournalofInequalitiesandApplications,
2017,ArticleNo.48.https://doi.org/10.1186/s13660-017-1325-z
[5]Sawano, Y.,Ho, K.-P.,Yang,D.andYang, S.(2017)HardySpacesforBallQuasi-BanachFunc-
tionSpaces.DissertationesMathematicae, 525,1-102. https://doi.org/10.4064/dm750-9-2016
[6]Fu,Z.,Lin,Y.andLu,S.(2008)λ-CentralBMOEstimatesforCommutatorsofSingular
IntegralOperatorswithRoughKernels.ActaMathematicaSinica,EnglishSeries,24,373-
386.https://doi.org/10.1007/s10114-007-1020-y
[7]Fu,Z.,Lu, S., Wang,H. andWang,L. (2019) Singular Integral Operators with RoughKernels
onCentralMorreySpaceswithVariableExponent.AnnalesAcademiæScientiarumFennicæ,
44,505-522.https://doi.org/10.5186/aasfm.2019.4431
[8]Tao,J.,Yang,D.andYang,D.(2019)BoundednessandCompactnessCharacterizationsof
CauchyIntegralCommutatorsonMorreySpaces.MathematicalMethodsintheAppliedSci-
ences,42,1631-1651.https://doi.org/10.1002/mma.5462
[9]Tao,J.,Yang,D.andYang,D.(2020)Beurling-AhlforsCommutatorsonWeightedMorrey
SpacesandApplicationstoBeltramiEquations.PotentialAnalysis,53,1467-1491.
https://doi.org/10.1007/s11118-019-09814-7
[10]Yang,M.,Fu,Z.andSun,J.(2019)ExistenceandLargeTimeBehaviortoCoupled
Chemotaxis-FluidEquationsinBesov-MorreySpaces.JournalofDifferentialEquations,266,
5867-5894.https://doi.org/10.1016/j.jde.2018.10.050
[11]Ho,K.-P.(2019)WeakTypeEstimatesofSingularIntegralOperatorsonMorrey-Banach
Spaces.IntegralEquationsandOperatorTheory,91,ArticleNo.20.
https://doi.org/10.1007/s00020-019-2517-3
[12]Ho, K.-P. (2021)Erd´elyi-Kober FractionalIntegralOperators onBall BanachFunction Spaces.
RendicontidelSeminarioMatematicodellaUniversit`adiPadova,145,93-106.
https://doi.org/10.4171/RSMUP/72
[13]Wei,M.Q. (2022) Linear Operators and Their Commutators Generated by Calder´on-Zygmund
OperatorsonGeneralizedMorreySpacesAssociatedwithBallBanachFunctionSpaces.Pos-
itivity,26,ArticleNo.84.https://doi.org/10.1007/s11117-022-00949-3
[14]Ho,K.-P.(2021)NonlinearCommutatorsonMorrey-BanachSpaces.JournalofPseudo-
DifferentialOperatorsandApplications,12,ArticleNo.48.
https://doi.org/10.1007/s11868-021-00419-6
[15]Ho, K.-P.(2020)Definabilityof SingularIntegralOperatorson Morrey-BanachSpaces.Journal
oftheMathematicalSocietyofJapan,72,155-170.https://doi.org/10.2969/jmsj/81208120
[16]Wang,W.andXu,J.(2017)MultilinearCalder´on-ZygmundOperatorsandTheirCommu-
tatorswithBMOFunctionsinVariableExponentMorreySpaces.FrontiersofMathematics,
12,1235-1246.https://doi.org/10.1007/s11464-017-0653-0
DOI:10.12677/pm.2023.1351211171nØêÆ
oÈr
[17]Bennett, C.andSharpley, R.C.(1988)InterpolationofOperators.AcademicPress, Cambridge.
[18]Izuki,M.andNoi,T.(2016)BoundednessofFractionalIntegralsonWeightedHerzSpaces
withVariableExponent.JournalofInequalitiesandApplications,2016,ArticleNo.199.
https://doi.org/10.1186/s13660-016-1142-9
[19]Guliyev, V.S.(2012)GeneralizedWeighted MorreySpacesandHigher OrderCommutatorsof
SublinearOperators.EuropeanJournalofMathematics,3,33-61.
[20]Guliyev, V.S.(2013)GeneralizedLocalMorreySpacesand FractionalIntegral Operators with
RoughKernel.JournalofMathematicalSciences,193,211-227.
https://doi.org/10.1007/s10958-013-1448-9
[21]Duoandikoetxea,J.(2001)FourierAnalysis(TranslatedandRevisedfromthe1995Spanish
OriginalbyDavidCruz-Uribe).GraduateStudiesinMathematics,Vol.29,AmericanMathe-
maticalSociety,Providence,RI.https://doi.org/10.1090/gsm/029
[22]Janson,S.(1978)MeanOscillationandCommutatorsofSingularIntegralOperators.Arkiv
f¨orMatematik,16,263-270.https://doi.org/10.1007/BF02386000
DOI:10.12677/pm.2023.1351211172nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.